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ABSTRACT

Context. Zeeman-Doppler imaging (ZDI) is used to study the surface magnetic field topology of stars, based on high-resolution
spectropolarimetric time series observations. Multiple ZDI inversions have been conducted for the early B-type star τ Sco, which has
been found to exhibit a weak but complex non-dipolar surface magnetic field.
Aims. The classical ZDI framework suffers from a significant limitation in that it provides little to no reliable uncertainty quantification
for the reconstructed magnetic field maps, with essentially all published results being confined to point estimates. To fill this gap, we
propose a Bayesian framework for probabilistic ZDI. Here, the proposed framework is demonstrated on τ Sco in the weak-field limit.
Methods. We propose three distinct statistical models, and use archival ESPaDOnS high-resolution Stokes V observations to
carry out the probabilistic magnetic inversion in closed form. The surface magnetic field is parameterised by a high-dimensional
spherical-harmonic expansion.
Results. We provide mean magnetic field distributions along with the corresponding surface uncertainty maps for τ Sco. By comparing
three different prior distributions over the latent variables in the spherical-harmonic decomposition, our results showcase the ZDI
sensitivity to various hyperparameters. The mean magnetic field maps are qualitatively similar to previously published point estimates,
but analysis of the magnetic energy distribution indicates high uncertainty and higher energy content at low angular degrees l.
Conclusions. Our results effectively demonstrate that, for stars in the weak-field regime, reliable uncertainty quantification of recovered
magnetic field maps can be obtained in closed form with natural assumptions on the statistical model. Future work will explore
extending this framework beyond the weak-field approximation and incorporating prior uncertainty over multiple stellar parameters in
more complex magnetic inversion problems.
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1. Introduction

Magnetic fields are understood to play a significant role in the
formation and evolution of stars. For example, magnetic inter-
locking of young stars with their accretion disks and winds is
the main mechanism behind stellar rotational braking (Shu et al.
1994; Bouvier et al. 2014), and is therefore a key component
of the early stellar evolution. At all stellar ages, a multitude of
time-dependent surface phenomena and processes – spots, flares,
chromospheric emission – is believed to be driven by magnetic
fields (Reiners 2012). Extension of the surface field into the cir-
cumstellar environment – the stellar magnetosphere – shapes
stellar winds, thereby governing the stellar angular momentum
evolution (Weber & Davis 1967; Matt & Pudritz 2008; Vidotto
et al. 2009), and strongly impacts the interaction of stars and
nearby planets (Lanza 2018; Strugarek 2016; Vidotto 2020).

Two basic types of magnetic fields are known to exist in stars
(e.g. Donati & Landstreet 2009). On the one hand, all cool, low-
mass stars, including the Sun and similar objects, continuously
generate magnetic fields in their interiors through the so-called
dynamo process. The resulting fields emerge at stellar surfaces in
the form of evolving structures with moderate average strengths
(10–100 G) and spatial scales ranging from a tiny fraction of the
stellar surface (small-scale fields) all the way to the scales com-

parable to stellar radii (large-scale or global fields). On the other
hand, the majority of hot, intermediate-mass and massive stars
are not immediately recognised as magnetic. Only about 10% or
less, depending on the stellar mass, of these objects possess de-
tectable magnetic fields (Grunhut et al. 2017; Sikora et al. 2019).
Characteristics of these fields are drastically different from those
in cool stars. Magnetic fields of hot stars are topologically simple
and strong (∼ kG), lack significant small-scale components, and
are constant on the observable time scales.

Irrespective of the type of stellar magnetic field, informa-
tion about its strength and surface geometry represents a criti-
cal stellar parameter highly sought after by theoretical and ob-
servational studies alike. Direct detection of stellar magnetic
fields typically relies on the Zeeman effect in spectral lines (e.g.
Landi Degl’Innocenti & Landolfi 2004). In the presence of a field,
atomic energy levels split into magnetic sub-levels. This produces
the corresponding splitting of spectral lines. Additionally, lines
become polarised, with the direction of polarisation dependent on
the field vector orientation and the amplitude of the polarisation
signal linked to the field strength. This Zeeman-induced polarisa-
tion is particularly useful for detecting and characterising stellar
magnetic fields.

Polarisation observations of stars are typically carried out
using a combination of a high-resolution spectrograph and a cir-
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cular polarimeter (e.g. Donati et al. 1997). Such instrumentation
can measure the total intensity spectrum (Stokes I parameter)
together with the circular polarisation spectrum (Stokes V pa-
rameter). The latter is sensitive to the line of sight component
of the magnetic field. A complementary measurement of linear
polarisation spectra (Stokes Q and U parameters), which provide
information on the transverse field component, is also possible,
but rarely accomplished due to a factor of 10 weaker linear polar-
isation signals (Wade et al. 2000; Kochukhov et al. 2011; Rosén
et al. 2015).

Quantitative interpretation of the observed polarisation spec-
tra of stars other than the Sun faces a significant challenge due
to the unresolved nature of these observations. Polarisation sig-
natures recorded by a distant observer represent an average of
Stokes V profiles originating from different locations on the vis-
ible stellar hemisphere, which makes it impossible to infer the
magnetic field geometry from a single observation. Considerably
more information is contained in a time sequence of polarisa-
tion observations of rotating magnetic stars. First, the rotational
Doppler shift redistributes signals from different parts of the stel-
lar surface within a spectral line profile, allowing one to relate the
position in the line profile to the longitude on the stellar surface.
Effectively, this makes a single line profile observation equiva-
lent to a one-dimensional projection of the stellar surface map
(Vogt et al. 1987). Second, the spectral line profile changes due
to stellar rotation as different parts of the stellar surface come
in and out of view. Combining these two effects in the inversion
technique known as Doppler Imaging (DI) offers the possibility to
reconstruct two-dimensional maps of the surfaces of unresolved
distant stars by fitting a set of spectral line profiles recorded at
different stellar rotation phases (e.g. Kochukhov 2016).

DI was initially applied to map spots on different kinds of
rapidly rotating stars with inhomogeneous surfaces using inten-
sity spectra (Khokhlova et al. 1986; Vogt et al. 1999). The same
inversion principles were subsequently extended to the prob-
lem of reconstructing the magnetic geometry of both cool stars
with complex fields (Brown et al. 1991; Donati 1999) and hot
stars with simple field topologies (Piskunov & Kochukhov 2002;
Kochukhov et al. 2002). These early Zeeman-Doppler imaging
(ZDI) studies approximated magnetic field distributions as a set
of three independent images corresponding to the three magnetic
field vector components, and employed either maximum entropy
or Tikhonov regularisation to ensure convergence to a stable and
unique solution. The majority of more recent ZDI applications use
the spherical-harmonic decomposition to describe the stellar sur-
face magnetic field (Donati et al. 2006b; Kochukhov et al. 2014;
Folsom et al. 2018). This approach ensures that the reconstructed
magnetic field is solenoidal and provides a convenient framework
to characterise poloidal/toroidal as well as axisymmetric/non-
axisymmetric magnetic field components as a function of the
spatial scale (angular degree l). In this case, spherical-harmonic
coefficients, rather than the field vector component values at
particular coordinates on the stellar surface, represent the free
parameters of the inversion problem. Unless the stellar field is
restricted to a very simple configuration (e.g. a pure dipole with
only l = 1 harmonics), regularisation is still required for stable
recovery, due to the ill-posedness of the inverse problem.

Regardless of the specific implementation of ZDI, existing
magnetic inversion methods suffer from one major shortcoming:
it is difficult or outright impossible to provide realistic uncertain-
ties of the derived magnetic field maps. Essentially all published
mapping results represent point estimates, without an attempt to
explore the full range of solutions compatible with observations.
Due to the high dimensionality of the spectropolarimetric inver-

sion problem and the complexity and computational intensity of
the synthetic forward model, obtaining a probabilistic solution is
challenging. Occasionally, uncertainties are assessed empirically
by comparing magnetic field distributions computed from inde-
pendent line profile observations (Kochukhov et al. 2019, 2022).
Some ZDI studies also considered formal uncertainties obtained
from the diagonal of a Hessian matrix (Piskunov & Kochukhov
2002). The former approach is, however, feasible only for strongly
magnetic stars, and the latter yields biased uncertainties since
parameter correlations are not considered. Additionally, several
important stellar parameters (including rotational period, pro-
jected rotational velocity and inclination of the rotational axis)
enter ZDI calculations. Each of these parameters is known to a
limited precision, but their uncertainties are rarely propagated to
magnetic maps (Petit et al. 2008). All these problems make it dif-
ficult to judge the reliability of published ZDI results, hindering
their interpretation and wide utilisation.

In this paper, we address the problem of deriving realistic
ZDI uncertainties by presenting a fully Bayesian framework for
probabilistic ZDI. Previously, similar methods have only been
applied to determine properties of stellar magnetic fields from
circular spectropolarimetric observations under an oblique dipole
model assumption (Petit & Wade 2012), which is a restrictive as-
sumption not suitable for many magnetic stars. Here, we present
a general framework for probabilistic ZDI, using a probabilistic
model based on a general spherical-harmonic field parameteri-
sation. Compared to the dipolar modelling approach, our proba-
bilistic ZDI framework applies to arbitrarily complex magnetic
field geometries. To present the proposed framework, we start
with the comparatively simple problem of probabilistic ZDI re-
construction for a target star with fixed nuisance parameters and a
weak magnetic field, which ensures a linear relation between the
free parameters describing the magnetic map and the modelled
polarisation signal. More specifically, we apply the Bayesian
framework for uncertainty quantification of the surface magnetic
field of the star τ Sco (HD 149438, HR 6165). In a future paper,
we will extend our approach to stars exhibiting stronger magnetic
fields, corresponding to a non-linear line profile response, and
incorporate a Bayesian treatment of input stellar parameters.

Our target, τ Sco, is a bright, massive star with spectral type
B0.2V. This star is located in the ∼ 10 Myr-old (Feiden 2016)
Upper Sco stellar association. This star exhibits unusual char-
acteristics, such as a slow rotation, a younger age than the sur-
rounding stellar population, and a nitrogen excess (e.g. Przybilla
et al. 2010; Nieva & Przybilla 2014), which distinguishes it from
the other massive stars in Upper Sco. Even more remarkably,
Donati et al. (2006b) demonstrated through spectropolarimetric
observations and ZDI modelling the presence of a relatively weak
(≤ 600 G) and unusually complex magnetic field at the surface
of that star. Unlike the majority of hot, magnetic stars, which
possess a roughly dipolar (i.e. spherical-harmonic modes with
l = 1) field geometries (Shultz et al. 2018), τ Sco was found to
exhibit a surface magnetic structure containing significant power
in the harmonic modes of up to l = 5, with the largest contribution
coming from l ∈ [3, 4].

These unusual chemical, rotational, and magnetic character-
istics of τ Sco spurred a series of studies to explain this star as
a product of a stellar merger (Nieva & Przybilla 2014; Schnei-
der et al. 2016; Keszthelyi et al. 2021). In particular, Schneider
et al. (2019) presented 3D magnetohydrodynamical simulations
tailored to τ Sco that demonstrated generation of a powerful mag-
netic field during a stellar merger event. This field decays quickly
after the merger, settling into the stable non-axisymmetric config-
uration observed today (Schneider et al. 2020; Braithwaite 2008).
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So far, τ Sco remains the only well-established magnetic star that
is likely a merger product. Therefore, it plays the role of a key
benchmark object for investigations into both binarity and mag-
netism of massive stars. At the same time, a follow-up ZDI anal-
ysis of τ Sco by Kochukhov & Wade (2016), using an extended
observational dataset, suggested that the outcome of magnetic
inversions based on circular polarisation spectra strongly depends
on the assumptions of the magnetic field parameterisation. This
non-uniqueness problem may arise in various applications of
ZDI (e.g. Donati & Brown 1997; Kochukhov et al. 2002), but is
particularly significant for τ Sco due to its field complexity and
small amount of rotational Doppler broadening. Consequently,
Kochukhov & Wade (2016) obtained vastly different magnetic
field geometries and strengths with equally good fits to available
observations of τ Sco by using different, but equally plausible,
harmonic parameterisations. These issues, and the significance
of τ Sco for wider massive-star research, position this star as a
particularly interesting target for probabilistic ZDI.

This paper is organised in the following way: in Sect. 2, the
spectropolarimetric observations of τ Sco used for probabilistic
spectropolarimetric inversion are introduced. Sect. 3 presents
a detailed description of the proposed Bayesian framework for
probabilistic ZDI. We propose several probabilistic models, some
of which aim to incorporate uncertainties in design parameters
corresponding to hyperparameters in the regularisation function
often used in conventional ZDI. Then, in Sect. 4, we present sum-
mary statistics of the magnetic field map distributions obtained
using our framework for probabilistic ZDI. Finally, in Sect. 5, we
discuss and summarise the results and conclusions.

2. Observational data and stellar parameters

We use the same observations of τ Sco as analysed by Kochukhov
& Wade (2016). The spectropolarimetric data available for this
star comprises 49 circular polarisation observations collected in
2004–2009 with the ESPaDOnS instrument (Donati et al. 2006a)
at the 3.6m Canada-France-Hawaii telescope. The spectra, pub-
licly available in the PolarBase archive1 (Petit et al. 2014), were
processed with the least-squares deconvolution (LSD, Kochukhov
et al. 2010) method, yielding high-quality mean Stokes I and V
profiles.

We refer the readers to Kochukhov & Wade (2016) for further
details on the data reduction and pre-processing. Following that
study, as well as the earlier work by Donati et al. (2006b), we
adopt a rotational period of Prot = 41.033 d, a projected rotational
velocity of ve sin i= 6 km s−1 and an inclination angle of i = 70◦
for the ZDI analysis, without accounting for possible errors in
these parameters.

The observational data used in our work includes uncertainties
for each velocity bin in the Stokes I and V parameter profiles.
For data with high signal-to-noise ratio, as considered here, the
errors are uncorrelated and follow a Gaussian distribution. For a
detailed discussion of how these errors are derived by the data
reduction pipelines from raw spectropolarimetric exposures and
then propagated through the derivation of LSD profiles, we refer
the readers to Donati et al. (1997) and Kochukhov et al. (2010).

3. Methods

3.1. Magnetic field map parameterisation

There are multiple ways of parameterising the magnetic field
distribution across the surface of a target star. Earlier ZDI in-
1 http://polarbase.irap.omp.eu/

versions have adopted direct parameterisation techniques (e.g.
Brown et al. 1991; Kochukhov et al. 2002), in which each mag-
netic field vector component map is represented by the nodes
of a discrete surface grid, and fitted to the data independently.
Since then, alternative parameterisations of the surface magnetic
field, employing spherical-harmonic expansions, have often been
preferred (e.g. Donati et al. 2006b; Kochukhov et al. 2014). In
contrast to the direct approach, this magnetic field parameterisa-
tion allows us to impose restrictions on the magnetic geometry
to follow Maxwell’s equations. Specifically, excluding the l = 0
harmonic component ensures no net signed magnetic flux through
the closed stellar surface. There are several other appealing prop-
erties of the spherical-harmonic field parameterisation, see e.g.
the discussion by Kochukhov & Wade (2016).

In this work, we use the spherical-harmonic representation of
the surface magnetic field defined as follows:

Br(θ, ϕ) = −
lmax∑
l=1

l∑
m=−l

αl,mYl,m(θ, ϕ),

Bθ(θ, ϕ) = −
lmax∑
l=1

l∑
m=−l

βl,mZl,m(θ, ϕ) + γl,mXl,m(θ, ϕ), (1)

Bϕ(θ, ϕ) = −
lmax∑
l=1

l∑
m=−l

βl,mXl,m(θ, ϕ) − γl,mZl,m(θ, ϕ).

Here, Br(θ, ϕ), Bθ(θ, ϕ), and Bϕ(θ, ϕ) denote the surface magnetic
field components in the radial, meridional, and azimuthal di-
rection, respectively, with θ and ϕ corresponding to the surface
colatitude and longitude. The spherical-harmonic functions and
their derivatives for each angular degree l and azimuthal order
m are denoted by Yl,m(θ, ϕ),Zl,m(θ, ϕ) and Xl,m(θ, ϕ). Finally, the
amplitudes of the spherical-harmonic modes, αl,m, βl,m and γl,m,
delineate characteristics of the poloidal and toroidal magnetic
field components. Together, these coefficients represent the free
parameters in the spectropolarimetric inversion problem. See
Kochukhov et al. (2014) for a more detailed description of the
field parameterisation and relevant notations. One difference com-
pared to Kochukhov et al. (2014) is that the constant Cl,m, defined
by their Eq. (7), was modified2 here to ensure that equal values
of the harmonic coefficients yield equal total magnetic energy,
independent of l and m.

3.2. Forward line profile model

In this study, we restrict our attention to stars for which the weak-
field assumption (Landi Degl’Innocenti & Landolfi 2004) is a
good approximation for the forward Stokes I and V profile model.
This approach is typically valid for sub-kG fields studied with
spectral lines at optical wavelengths and is applicable to a large
group of stars, including solar-like stars, the majority of low-mass
stars, and a few weak-field hot stars such as τ Sco.

In practice, we follow Petit & Wade (2012) in representing the
local Stokes I profile using a Gaussian function. Its strength (d =
0.115), position (radial velocity shift v0 = −0.48 km s−1), and
width (FWHM= 14.3 km s−1 corresponding to σ = 6.1 km s−1)
are adjusted to fit the observed LSD Stokes I spectrum. The
adopted Gaussian line width includes the effect of intrinsic stellar
line broadening as well as the smearing by the instrumental profile
of ESPaDOnS (R ≈ 68 000).

2 This was accomplished by multiplying Cl,m by
√

(l + 1)/l for m = 0
and by

√
2(l + 1)/l for m , 0 modes.

Article number, page 3 of 18

http://polarbase.irap.omp.eu/


A&A proofs: manuscript no. aa52299-24

The local Stokes V profile is derived from the velocity deriva-
tive of the Gaussian function

V(v) = −1.4 × 10−3λ0geffB∥
∂I
∂v

= 1.4 × 10−3λ0geffB∥
d(v − v0)
σ2 exp

[
−

(v − v0)2

2σ2

]
. (2)

Here, the central wavelength adopted for the LSD profile is
λ0 = 500 nm and the effective Landé factor is geff = 1.2 (see
Kochukhov & Wade 2016). The quantity B∥ denotes the line of
sight (longitudinal) component of the magnetic field (in kG) at the
θ, ϕ location on the stellar surface, as seen by the observer at the
rotational phase t, defined over the interval [0, 1). This magnetic
field projection can be calculated with

B∥ =
[
cos θ cos i + sin θ sin i cos (ϕ + 2πt)

]
Br

−
[
sin θ cos i − cos θ sin i cos (ϕ + 2πt)

]
Bθ (3)

− sin i sin (ϕ + 2πt)Bϕ.

To obtain the disc-integrated Stokes I and V profiles, we
divide the stellar surface into ≈ 104 elements, pre-calculate the
areas S of these elements, and evaluate the magnetic field using
Eq. (1). Then, for each rotational phase t, we determine the cosine
µ of the angle between the observer’s line of sight and the surface
normal (the limb angle) using

µ = cos θ cos i + sin θ sin i cos (ϕ + 2πt) (4)

and locate visible surface elements with the condition µ > 0.
Eq. (3) is then applied to determine B∥ for visible surface elements.
Following this, the local Stokes I and V spectra are calculated as
described above. This calculation is carried out on the velocity
grid of observations, vobs, Doppler-shifted according to the local
component of the projected rotational velocity, ve sin i,

v = vobs − ve sin i sin θ sin (ϕ + 2πt). (5)

Finally, we add together all profiles from the visible stellar hemi-
sphere using the product of the projected surface area and a linear
continuum limb-darkening function with the coefficient u = 0.3
as an integration weight W

W = Sµ(1 − u + uµ) (6)

Due to the weak-field assumption expressed by Eq. (2), this
sequence of operations represents a linear transformation from a
set of the spherical harmonic coefficients, α, β and γ, to the phase-
dependent disk-integrated Stokes V profiles. We take advantage
of this linearity of the problem in this paper. At the same time, we
anticipate a generalisation to the strong-field situation in future
studies by replacing Eq. (2) with another relation, not limited to
weak fields.

While we have used the observed Stokes I LSD profiles to
adjust the Gaussian function parameters and determine a radial
velocity offset, the magnetic field does not impact Stokes I in
the weak-field limit. Consequently, the classical and probabilistic
ZDI analyses presented in this paper consider only the Stokes V
observations.

3.3. Standard ZDI

We define the vector z = (αl,m, βl,m, γl,m), where m ∈ {−l,−l +
1, . . . , l − 1, l} for each l ∈ {1, 2, . . . , lmax}, as a collection of the
amplitudes of the spherical-harmonic modes, αl,m, βl,m, and γl,m.
We truncate the expansion by lmax = 10, corresponding to 360

free parameters in the resulting magnetic field parameterisation.
In a nutshell, standard ZDI amounts to solving the weighted
least-squares (LS) problem

ẑ = arg min
z

(
∥Λ

1
2 (y − f(z))∥22 + η r(z)

)
, (7)

with respect to the spherical-harmonic coefficients z. In the above
formulation, f(z) denotes the forward mapping function (corre-
sponding to the computations described in Sect. 3.2) between
z and the observed Stokes V spectra denoted y. Moreover, Λ
denotes the inverse covariance matrix of the measurement noise
(i.e. the precision matrix). Another important component is the
regulariser

r(z) =
lmax∑
l=1

l∑
m=−l

l2(α2
l,m + β

2
l,m + γ

2
l,m), (8)

with regularisation strength η. The regulariser ensures that, de-
spite the ill-posedness of the Stokes V-only ZDI inversion
(Piskunov & Kochukhov 2002), a unique solution exists, that
avoids the introduction of higher-order modes unless the added
flexibility is motivated by the data. The regularisation structure
presented in Eq. (8), where the regularisation objective is to mini-
mize the l2-weighted magnetic energies of the spherical-harmonic
coefficients, is commonly used in some ZDI studies (e.g. Hussain
et al. 2000; Kochukhov et al. 2014; Kochukhov 2016) while oth-
ers adopt the l-weight for this regularisation (Morin et al. 2008,
2010).

The first part of the optimisation objective in Eq. (7) is hereon
referred to as the weighted LS objective, and the second part is
referred to as the regularisation objective. Since η determines the
trade-off between these two optimisation objectives, the choice of
η has a significant impact on the properties of the solution. Larger
η may result in information loss by favouring the generation of
smoother magnetic field maps. On the other hand, small η may
introduce spurious high-order modes, resulting in magnetic field
maps containing unjustified surface details. To choose the regular-
isation parameter, we follow the empirical approach of choosing
η such that the quotient between the weighted LS objective value
and the regularisation objective value at the optimum is between
2 and 4. To briefly summarise the underlying motivation, this re-
gion defines a breaking point after which the fit quality improves
slowly as the regularisation strength decreases. This approach to
choosing the regularisation parameter is discussed in more detail
by Kochukhov (2017).

This classical ZDI framework views the model parameters
z as fixed quantities to infer. To express uncertainty about the
resulting point estimates ẑ of these quantities, the distribution of
possible datasets can be considered. However, data collection in
the context of ZDI is very costly and stellar magnetic fields often
evolve between different observing runs, rendering this approach
impractical. Moreover, due to the ill-posedness of the problem,
formal error bars on ẑ become strongly dependent on the regular-
isation strength η. For these reasons, and due to computational
limitations of previous ZDI approaches, such error bars have gen-
erally not been presented in previous ZDI studies. In the following
section, we describe a procedure for quantifying uncertainty in
the parameters z according to the Bayesian viewpoint.

3.4. Probabilistic ZDI

In this section, we propose several statistical models to extend
the standard ZDI framework, discussed in Sect. 3.3, into a fully
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Bayesian setting. The Bayesian setting (e.g. Gelman et al. 2020)
provides a framework for updating prior beliefs about the un-
certainty in the spherical-harmonic coefficients, represented as a
probability distribution over z, as new data becomes available. To
this end, we treat the spherical-harmonic coefficients z as latent
random variables. Given a set of spectropolarimetric observa-
tions y, the resulting posterior distribution, p(z|y), captures our
informed state of knowledge about the parameters z conditioned
on y. Conveniently, this framework brings inherent regularisation
into the inversion process; an especially attractive property in
light of the ill-posedness of the problem at hand. We begin by
constructing a probabilistic model and describing how to calcu-
late the posterior distribution in the context of probabilistic ZDI.
At the end of the section, we dive deeper into the choice of prior
distribution, aiming to capture uncertainty propagated through its
hyperparameters.

3.4.1. Model formulation

To model the likelihood, the observational noise is assumed to
be Gaussian with diagonal covariance (see Sect. 2), such that
p(y|z) = N(y; f(z),Λ−1)3. Then, given a prior distribution p(z),
the posterior distribution p(z|y) can be obtained following Bayes’
theorem, according to

p(z|y) =
p(y|z)p(z)

p(y)
. (9)

Given p(z|y), the posterior magnetic field distribution can then
be obtained by applying the transformation in Eq. (1). In general,
exact determination of the posterior distribution according to
Eq. (9) is challenging since the marginal likelihood p(y) is often
intractable. When the posterior distribution has been inferred, the
predictive distribution over the modelled Stokes V profiles y∗ can
be obtained by marginalisation:

p(y∗|y) =
∫

p(y∗|z)p(z|y)dz. (10)

We model the prior distribution by a Gaussian distribution,
p(z) = N(z; 0,Ω−1), where Ω−1 is a diagonal covariance matrix.
Despite the Gaussian likelihood and Gaussian prior distribution,
Eq. (9) is in general intractable if the forward mapping function
f(z) is non-linear.

In the initial analysis, we use the parameters Ωi,i = ηl2i in the
marginal prior distribution for each spherical-harmonic coeffi-
cient zi. While it is difficult to construct a fully physics-informed
prior distribution over the spherical-harmonic coefficients,
this choice of prior distribution captures our prior belief that
spherical-harmonic coefficients of high degree l are less prevalent
in the solution. In addition, the prior variance adds implicit
regularisation to the solution, and with the proposed likelihood
model and prior distribution, the resulting maximum a posteriori
probability (MAP) estimate, ẑMAP = arg max z log p(z|y), can
be shown to solve the regularised weighted LS problem arising
in the standard ZDI formulation given by Eq. (7). In that sense,
the proposed probabilistic model allows us to generalise the
regularisation structure often used in standard ZDI inversion
(see Eq. (8)), with the hyperparameter η in the prior distribution
corresponding to the regularisation strength in the standard ZDI
formulation. This means that, if the mean of the full posterior
distribution coincides with the MAP estimate, the Bayesian
formulation results in an uncertainty quantification centred
around the point estimate obtained from standard ZDI.
3 The notation p(x) = N(x; µ,Σ) represents a Gaussian distribution
over the random variable x, with mean vector µ and covariance matrix Σ.

3.4.2. Posterior inference

In the weak-field regime, adopted in this paper, the forward model
can be approximated by a function linear in the parameters z
such that f(z) = Az, where A is the transformation matrix. This
linearity follows from the set of equations presented in Sect. 3.2.
In this case, the Gaussian prior in our probabilistic model is
conjugate to the likelihood, and a closed-form expression for the
posterior distribution exists (e.g. Murphy 2022; Bishop 2007;
Sjölund et al. 2018). In fact, following the derivation in Murphy
(2022, Sect. 3.3.2), it can be shown that the posterior distribution
is also a Gaussian p(z|y) = N(z; µ,Σ) with Σ−1 = Ω + ATΛA
and µ = ΣATΛy. Since p(z|y) is Gaussian and, according to
Eq. (1), the magnetic field B is a linear function of the spherical-
harmonic coefficients z, the posterior magnetic field distribution is
also Gaussian. This distribution can be expressed in closed form
according to the linear transformation theorem for the multivariate
Gaussian distribution: if z ∼ p(z|y) = N(z; µ,Σ), then Br = B̃rz ∼
N(B̃rµ, B̃rΣB̃r

T ), Bθ = B̃θz ∼ N(B̃θµ, B̃θΣB̃θ
T ) and Bϕ = B̃ϕz ∼

N(B̃ϕµ, B̃ϕΣB̃ϕ
T ). Here, B̃r, B̃θ and B̃ϕ are defined according to

the linear transformations in Eq. (1).

In this setting, the predictive distribution, see Eq. (10), is also
available in closed form. We use y∗ to denote the vector repre-
senting the modelled LSD Stokes V profiles, whereas y continues
to denote the specific observations used to fit the probabilistic
model. The corresponding transformation matrix used to make
predictions is then denoted by A∗. This transformation matrix
can be different from the transformation matrix A used to fit the
model, for example if we wish to increase the discretisation of
the predicted Stokes V profiles compared to the observations y.
Given the transformation matrix A∗, the predictive distribution
over y∗ is then given by p(y∗|y) = N(y∗; µ∗,Σ∗), where µ∗ = A∗µ
and Σ∗ = A∗Σ(A∗)T + Λ∗

−1. Here, Λ∗−1 is a diagonal matrix
containing the estimated observational noise corresponding to y∗.
This result follows from Eq. 2.115 in Bishop (2007).

3.4.3. Prior hyperparameter selection

In the statistical model described in the previous subsections, a
specific set of hyperparameters Ωi,i is assumed to parameterise
the variance in the prior distribution. In our initial analysis, we
use the hyperparameters Ωi,i = ηl2i with η = 100. Here, η is deter-
mined according to the empirical approach described in Sect. 3.3,
motivated by the connection to the regularisation strength in the
standard ZDI formulation. However, there is no consensus regard-
ing the choice of regularisation in existing ZDI literature. Other
authors favour a regularisation function that, in the probabilistic
model formulation, corresponds to the hyperparameters Ωi,i = ηli
(without the square) in the prior variance (Morin et al. 2008). Pre-
vious studies also adopt different approaches to choosing the hy-
perparameter η or use an entirely different form of regularisation
altogether (Folsom et al. 2018). Even using a single approach, like
the empirical approach described in Sect. 3.3, there is an inherent
uncertainty in the choice of η. Since the proposed framework
for probabilistic ZDI quantifies uncertainty within the chosen
model class, the uncertainty estimate can become more reliable
by broadening the class of models under consideration. This can
be achieved by modifying the prior distribution. In Sect. 3.4.4-
3.4.6, we describe three ways of selecting hyperparameters in the
prior distribution; either as a point estimate or by incorporating
prior uncertainty over these parameters.
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3.4.4. Empirical Bayes

One method for determining hyperparameters in the prior dis-
tribution of a probabilistic model is called empirical Bayes, or
evidence maximisation (e.g. Bishop 2007). With this approach, a
point estimate η̂ of the hyperparameter η is determined by max-
imising the marginal likelihood p(y|η) =

∫
p(y|z)p(z|η)dz, i.e.

η̂ = arg max
η

log p(y|η). (11)

To make the dependence on the hyperparameter η explicit here,
p(z|η) denotes the prior distribution over the model parameters
z, parameterised by η. The marginal likelihood quantifies how
well the model using the hyperparameter η, with latent variables
z governed by the prior distribution p(z|η), explains the observed
data y. The empirical Bayes hyperparameter estimate can then
be viewed as a maximum likelihood estimate given a likelihood
function defined over a specified model space, from which the
random variables z have been marginalised out. In relation to
the fully Bayesian approach to hyperparameter optimisation, we
can view the empirical Bayes approach as an approximation of
the posterior distribution p(η|y) by a point function at its mode.
This point estimate is equivalent to the point estimate obtained
assuming an improper prior distribution according to

η̂ = arg max
η

p(η|y) = arg max
η

p(y|η)p(η) = arg max
η

p(y|η),

(12)

where, in the last step, we let p(η) = 1. As we can see, the point
estimates in Eq. (11) and Eq. (12) are identical.

We determine the hyperparameter η given the probabilis-
tic model described in Sect. 3.4.1 by solving the maximi-
sation problem in Eq. (11). Given the conjugacy between
the likelihood and our choice of prior, a closed-form expres-
sion for the marginal likelihood exists in this case, namely
p(y|η) = N(y; 0,Λ−1 + AΩ−1(η)AT ). This result is derived
using Eq. 2.115 in Bishop (2007).

Using a prior distribution with parameters Ωi,i = ηl2i in the
statistical model described in Sect. 3.4.1, the empirical Bayes
estimate η̂ is in the order of 10−3, yielding a quotient exceeding
a magnitude of 15 between the weighted LS objective value and
the regularisation objective value. Fig. 1 shows the log evidence
as a function of η near the maximum. In other words, the result-
ing quotient is far outside the interval [2, 4] at the mean of the
posterior distribution p(z|y). The resulting magnetic field strength
becomes too large, violating the weak-field assumption on the
magnetic field used to model the likelihood. Thus, estimating
η̂ using empirical Bayes gives a magnetic field with properties
inconsistent with the underlying physical assumptions even at the
mean of the posterior distribution, suggesting that the marginal
likelihood, and by extension empirical Bayes, is not useful in
this particular context. We conclude that maximum likelihood
estimation of this hyperparameter is ill-posed in this case, and we
observe that the marginal likelihood is sensitive to small varia-
tions in η. Analysing the well-posedness of maximum likelihood
estimation in the regression setting is non-trivial (see, e.g., Kar-
vonen & Oates 2024, for a deeper exposition). Consequently,
maximum likelihood estimates in such settings may not reliably
respect underlying assumptions.

3.4.5. Hierarchical model

In a fully Bayesian setting, we treat hyperparameters in the prior
distribution p(z) as latent random variables in an extended proba-
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Fig. 1. The unnormalised log evidence as a function of η on a region
close to η = 0. The log evidence is maximised for η ≈ 0.002. As η grows
outside of the displayed region, the log evidence continues to decrease.

bilistic model. Let’s consider the case in which we treat the prior
hyperparameter η, corresponding to the regularisation strength in
the standard ZDI framework, as a random variable. Prior knowl-
edge of the distribution over η can then be incorporated into the
joint prior distribution, p(z, η). The posterior distribution p(z, η|y)
is then

p(z, η|y) =
p(y|z)p(z, η)

p(y)
=

p(y|z)p(z|η)p(η)
p(y)

. (13)

Here, p(η) is referred to as the hyperprior distribution. Treating
hyperparameters of the prior distribution as random variables
results in a so-called hierarchical probabilistic model. The sought
posterior distribution is then given by marginalising over η ac-
cording to

p(z|y) =
∫

p(z, η|y)dη, (14)

which is equivalent to assuming the prior distribution

p(z) =
∫

p(z, η)dη =
∫

p(z|η)p(η)dη (15)

in Eq. (9). Defining a suitable prior distribution p(η) can be chal-
lenging, and this distribution will also be defined in terms of its
own set of hyperparameters that need to be chosen. We can extend
the probabilistic model with another hierarchical layer by treat-
ing the hyperparameters in the hyperprior distribution as random
variables, but the hyperparameters in the final hierarchical layer
eventually need to be fixed. The limiting distribution, however,
often becomes invariant to the specific form of the hyperprior
distributions, and the specific hyperparameters in the hyperprior
distributions therefore become less and less important as the num-
ber of hierarchical layers grows, as long as the distributions are
sufficiently broad (see, e.g. Roberts & Rosenthal 2001).

We restrict our attention to the one-layer hierarchical model in
Eq. (13), and begin by modelling the hyperprior distribution p(η).
Its exact form is a modelling choice, and one possible approach
is to let the hyperprior distribution be informed by the empirical
approach to selecting η described in Sect. 3.3. Recall that this
approach suggests that a reasonable point estimate of η can be
obtained in the range within which the quotient between the
weighted LS objective value and the regularisation objective value
is between 2 and 4 using standard ZDI. For τ Sco, this region
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Fig. 2. The trade-off between the least-squares fit and the regularisation
objective as a function of η. The region where η ∈ [16, 421] is shaded in
purple.

is illustrated in Fig. 2. The figure shows the two components of
the objective function in Eq. (7), i.e. the weighted LS objective
and the regularisation objective, evaluated at the solution of the
optimisation problem for a range of η−values. Specifically, for
each η, we solve the optimisation problem given in Eq. (7), and
plot the resulting weighted LS (data fidelity) terms ∥Λ

1
2 (y−f(ẑ))∥22

and regularisation terms η r(ẑ) at the solutions ẑ as a function of
η. The region over η where the regularisation term is between 2
and 4 times smaller than the LS objective is shaded in purple, and
corresponds to η ∈ [16, 421]. As can be seen, the improvement in
fit quality (reflected by a decreasing weighted LS objective value)
begins to slow down in the vicinity of this region, as η decreases
from the right in the plot. Moreover, the difference in magnitude
between the weighted LS objective value and the regularisation
term increases. Informed by this approach to hyperparameter
selection in standard ZDI, we can model p(η) as a distribution
with non-zero probability on the interval η ∈ [16, 421].

However, exactly inferring the posterior distribution as de-
fined in Eq. (13) is generally intractable, as it is rare to have
conjugacy in a hierarchical model even with a single hyperprior
distribution. Thus, adopting a hierarchical modelling approach
to incorporating uncertainty over the hyperparameters in our
prior distribution requires approximate solution methods, such as
Markov chain Monte Carlo (MCMC) methods (see, e.g. Meyn &
Tweedie 2009; Cotter et al. 2013). While MCMC methods can
provide statistically exact sample approximations of the poste-
rior distribution, the computational demand can be prohibitive,
especially in high-dimensional settings such as those arising from
high-order spherical-harmonic magnetic field parameterisations.
This challenge is further compounded when the forward model is
even mildly computationally intensive (Brooks et al. 2011). Since
we are operating in the weak-field regime in our analysis of τ Sco,
under which our probabilistic model formulation conveniently
allows for a closed-form expression of the posterior distribution
in Eq. (9), we are interested in finding an alternative probabilistic
model incorporating uncertainty in the hyperparameter η, allow-
ing for a closed-form expression of the posterior distribution in
Eq. (14). This can be achieved by approximating the continuous
hyperprior distribution over η by a discrete distribution, obtained
by evenly discretising the interval of non-zero hyperprior prob-
ability, i.e. η ∈ [16, 421], in C components, and assigning each
component a prior probability, or weight, ωc. This is equivalent to
modelling p(z) as a mixture prior to incorporate our prior belief

about η directly into the prior distribution, in place of explic-
itly extending the model with a hyperprior distribution p(η). A
detailed account of this approach is provided in the following
section.

3.4.6. Mixture priors

In this section, we extend the probabilistic model in two ways
compared to the initial model described in Sect. 3.4.1, both of
which adjusts the prior distribution to incorporate prior uncer-
tainty over hyperparameters in the prior variance using mixture
priors. A mixture prior can be constructed according to

p(z) =
C∑

c=1

ωc pc(z), (16)

where C is the number of mixture components and pc(z) denotes
the c−th prior component. In this formulation, each prior com-
ponent is a properly normalised probability density function and∑C

c=1 ωc = 1, such that the mixture prior p(z) is also properly
normalised. With this notation, the posterior distribution can be
expressed as

p(z|y) ∝
C∑

c=1

ωc pc(z)p(y|z), (17)

where p(y|z) is the likelihood. Now, we define the marginal likeli-
hood for each component c according to pc(y) =

∫
pc(z)p(y|z)dz.

We can then rewrite Eq. (17) according to

p(z|y) ∝
C∑

c=1

ωc pc(y)
pc(z)p(y|z)

pc(y)
, (18)

where pc(z)p(y|z)/pc(y) is the posterior distribution obtained us-
ing the prior distribution component pc(z). Thus, using a mixture
prior in the form of Eq. (16), the posterior distribution is a mix-
ture of the posterior distributions obtained from each component
in the mixture prior distribution. The unnormalised weights in
the posterior mixture are given by ωc pc(y) for each component c,
where ωc are the weights of the components in the mixture prior
distribution. Properly normalised, the mixture posterior distribu-
tion becomes

p(z|y) =

 C∑
c=1

ωc pc(y)

−1 C∑
c=1

ωc pc(y)
pc(z)p(y|z)

pc(y)
. (19)

The connection between this model and the hierarchical
model with a prior defined according to Eq. (15) is now clear.
The mixture prior can be viewed as a discretisation of the integral
arising when marginalising out η, with the mixture weights ωc
forming a discrete hyperprior distribution p(η). Equal weights
for each prior component then corresponds to a discrete uniform
hyperprior distribution over η. We can also view each mixture
component as a separate model, and interpret the prior weights as
an expression of our prior belief in each model. With this view,
our approach to incorporating uncertainty of prior hyperparame-
ters into the probabilistic model is equivalent to Bayesian model
averaging (see, e.g Hoeting et al. (1999)).

We begin by using a mixture prior to capture our prior uncer-
tainty over the hyperparameter η in the prior variance term. The
contribution of each component c to the prior distribution is mod-
elled as a Gaussian according to pc(z) = N(0,Ω−1

c ), where Ω−1
c

is a diagonal covariance matrix. We use the parameterΩci,i = ηcl2i
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in the marginal prior distribution for each spherical-harmonic
coefficient zi, but now the prior variance depends on c. We use
a mixture prior with C = 1000 components, where the parame-
ters ηc ∈ [η1, ηC] are evenly distributed on the interval [16, 421],
according to the earlier motivation.

It remains to determine the weights ωc ∈ [ω1, ωC]. Accord-
ing to Eq. (19), the weights in the mixture posterior distribution
are scaled by the corresponding marginal likelihoods pc(y) com-
pared to the weights in the mixture prior. The component-wise
marginal likelihood is heavily dependent on η, and varies signifi-
cantly in magnitude depending on the value of ηc. In fact, using
equal prior weights ωc for all components c ∈ [1, 1000] results
in negligible weights for all components in the mixture posterior,
except the component c = 1. This prior component uses η1, the
lowest possible value of η within our prior interval of non-zero
probability. In light of this reflection, we note that the use of a
mixture prior with equal weights in this case gives a result that
is approximately equivalent to selecting η using empirical Bayes
as discussed in Sect. 3.4.4, with an additional requirement con-
straining η to the region [16, 421] when solving the optimisation
problem in Eq. (11). Thus, the choice of using uniform weights
may not provide a sufficiently informative uncertainty quantifi-
cation. Here, we choose a slightly different way of selecting the
weights, where we instead incorporate a prior belief that, within
the given interval of non-zero prior probability, the prior prob-
ability of choosing a model with a larger value of η is higher,
reflecting our prior belief of to what extent parameters drawn
from each prior component increases the risk of overfitting in
the predictive model. To model this prior distribution, the unnor-
malised weights in the mixture prior are set to the inverse of the
corresponding marginal likelihood:

ωc =
pc(y)−1∑C

c=1 pc(y)−1 . (20)

We are also interested in incorporating prior uncertainty over
the exponent of the angular degree l in the prior variance term. To
do this, we use a mixture prior with two components. These
components, p1(z) and p2(z), are both Gaussian, with a spe-
cific set of hyperparameters. Specifically, p1(z) = N(0,Ω−1

1 ) and
p2(z) = N(0,Ω−1

2 ). Each covariance matrix, Ω−1
1 and Ω−1

2 , is di-
agonal with parameters Ω1i,i = η1li and Ω2i,i = η2l2i , respectively.
We fix the prior variance of each component using η1 = 275.47
and η2 = 100.00, respectively. These values are chosen using the
empirical approach discussed previously, based on independent
fits using two separate models with priors adopting each set of
hyperparameters, respectively. They provide comparable fits to
the data in terms of mean deviation from observed values at the
mean of the component-wise posterior distributions. We use the
weights ω1 = ω2 = 0.5 in the mixture prior.

4. Results

In this section, we present the magnetic field distributions and
corresponding uncertainty quantifications obtained using a) fixed
prior hyperparameters chosen based on the empirical approach
commonly used in standard ZDI, and b) the two probabilistic
models extended by a mixture prior, as described in the previous
section. For code and additional implementation details, we refer
the reader to Appendix A.
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Fig. 3. Comparison between the mean LSD Stokes V profiles (red) of the
predictive distribution and the observed LSD Stokes V profiles (black),
for a subset of the rotational phases. The profiles are offset vertically
according to the rotational phase, as indicated in blue. The marginal
predictive uncertainty is shaded in light grey and depicts three standard
deviations. The corresponding posterior predictive uncertainty is shaded
in light blue, and the blue bars represent the corresponding observational
uncertainties.

4.1. Fixed hyperparameters

This section presents the posterior magnetic field distribution
obtained using the statistical model described in Sect. 3.4.1 with
fixed prior hyperparameters. Specifically, η is determined accord-
ing to Sect. 3.3. We use the prior parameters Ωi,i = ηl2i with
η = 100. At the mean of the posterior distribution, this value of
η yields a quotient of 2.9 between the optimised weighted LS
objective value and the regularisation objective value, evaluated
according to the objective function in Eq. (7). A comparison
between the observed and modelled LSD Stokes V profiles is
illustrated in Fig. 3, which shows the best fit at the mean of the
predictive distribution, along with the predictive uncertainty in
terms of the marginal standard deviation of the predictive distribu-
tion. These quantities are derived from the predictive distribution
given by Eq. (10), with closed form expressions for the mean
vector and covariance matrix as detailed in Sect. 3.4.2. Note that
the predictive uncertainty arises from two sources: the posterior
uncertainty in the latent variables and the observational noise.
As expected, the contribution from the posterior predictive un-
certainty is generally larger towards the centre of the Stokes V
profile at each rotational phase. See Appendix B for the corre-
sponding results for all rotational phases. The mean marginal
standard deviation, derived from the predictive distribution, is
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Fig. 4. Rectangular maps of the reconstructed magnetic field and the
corresponding uncertainty quantification. The left column shows the
mean of the posterior magnetic field distribution across the stellar surface,
in terms of the radial (top), meridional (middle) and azimuthal (bottom)
magnetic field components. The field strength is given in kG. The grey
transparent rectangle indicates the part of the stellar surface that is
obscured from view. The right column shows the corresponding standard
deviation maps. The results are obtained using a statistical model with
hyperparameters Ωi,i = ηl2

i and η = 100 in the marginal prior distribution
for each spherical-harmonic coefficient zi. Note that the contour plots
in this paper consistently use the same number of levels between the
minimum and maximum values in all figures.

4.98 · 10−5 and the fit quality, in terms of mean deviation between
the best fit and the observed Stokes V profiles at the mean of the
predictive distribution, is 9.17 · 10−5. These results account for
all rotational phases.

The maps of the mean and standard deviation of the posterior
magnetic field distribution are displayed in Fig. 4. As evident
from these images, the surface distribution of the ZDI uncertain-
ties exhibits a distinct latitudinal pattern, reflecting the different
sensitivity of the disc-integrated Stokes V profiles to the three
components of the magnetic field vector. Specifically, the radial
and azimuthal fields are determined most precisely around the
sub-observer latitude whereas the meridional field has the least
error at the visible rotational pole. At the same time, the preci-
sion of the azimuthal field drops off towards the visible pole less
sharply than for the radial field. The lack of longitudinal varia-
tion of the standard deviation maps is due to a dense rotational
phase sampling of the particular observational data set analysed
in our paper. In other situations, for example when large phase
gaps exist in the data, we would expect our method to yield a
noticeable longitudinal variation of uncertainties corresponding
to this uneven phase coverage.

In terms of the average standard deviation, we find values in
the 0.056–0.067 kG range. This corresponds to 10.4–14.0% of
the peak (95 percentile) values of the respective mean magnetic
maps. If we instead consider maximum errors (95 percentile
for the visible part of the surface), we obtain 0.065–0.074 kG
corresponding to 12.9–15.7% of the magnetic field amplitudes.
These two fractional error estimates illustrate the average (most
representative) and maximum (conservative) errors of the ZDI
inversion for τ Sco with fixed hyperparameters.

−20 −10 0 10 20
Velocity (km/s)

V/
Ic

 (%
)

0.058

0.156

0.261

0.356

0.456

0.551

0.646

0.766

0.862

0.961

Fig. 5. Comparison of predicted (mean) LSD Stokes V profiles from
independent inversions using η = 16 (blue) and η = 421 (red) for a
subset of the rotational phases. The mean deviations between the means
of the predictive distributions and the observed Stokes V profiles (black)
is 7.87 · 10−5 and 1.05 · 10−4, respectively, across all rotational phases.

4.2. Mixture priors

We analyse the resulting posterior magnetic field distributions
obtained using two different mixture priors, capturing prior uncer-
tainty over the exponent of the angular degree l and η, respectively,
in the parameterisation of the prior variance.

First, we present the posterior magnetic field distribution us-
ing a mixture prior with 1000 components capturing the prior
uncertainty over η. According to Sect. 3.4.6, each prior compo-
nent pc(z) = N(0,Ω−1

c ) has η-dependent parameters Ωci,i = ηcl2i ,
with parameters ηc evenly distributed on the interval [16, 421].
To illustrate the impact of η on the predicted LSD Stokes V pro-
files, the computed means based on independent inversions using
η = 16 and η = 421, respectively, are presented in Fig. 5. Using
the prior weights given in Eq. (20), we obtain equal posterior
weights for all components in the mixture posterior distribution
according to Eq. (19). The final inversion results in a mean devia-
tion of 9.6 · 10−5 between the mean of the predictive distribution
and the observed LSD Stokes V profiles, similar in magnitude to
the fixed hyperparameter case. The mean marginal standard devia-
tion derived from the predictive distribution has increased slightly,
reaching 5.16 · 10−5. Appendix B shows a comparison between
the observed LSD Stokes V profiles and the prediction at the
mean of the predictive distribution, together with the predictive
uncertainty.

The mean and standard deviation of the posterior magnetic
field distribution is calculated as that of the mixture distribution
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Fig. 6. Same as Fig. 4 but for results obtained using a statistical model
with a mixture prior consisting of 1000 η-dependent components pc(z).

obtained by calculating the posterior magnetic field distribution
corresponding to each component in the mixture posterior
distribution given in Eq. (19). Fig. 6 shows the mean of the
resulting mixture posterior magnetic field distribution across
the stellar surface, together with the corresponding standard
deviation maps. Four samples from the resulting distribution
are displayed in Fig. 7. It can be noted that with C = 1000
components, the obtained mean magnetic field maps and
corresponding uncertainty maps do not change significantly
when the number of components increases. Thus, the obtained
results closely correspond to using the corresponding continuous
hyperprior p(η) in a hierarchical model.

As one can see in Fig. 6, the surface pattern of the standard
deviation changes drastically compared to the results presented
in the previous section. Instead of the smooth latitudinal variation
seen in Fig. 4, we find a highly structured standard deviation map,
with the largest scatter roughly corresponding to the strongest
(by absolute value) features in the mean magnetic maps. This
is to be expected since decreasing η generally leads to an in-
crease in the contrast of each map, with sharper details and more
prominent small-scale features. Quantifying the standard devia-
tion distribution, we derive the average values 0.063–0.088 kG
and maximum values 0.087–0.139 kG. This corresponds to 15.9–
18.0% and 22.2–28.8.0% of the 95 percentile mean magnetic map
amplitudes, respectively – significantly larger than in the fixed-η
case.

Next, we present the magnetic field distribution corre-
sponding to the two-component mixture prior. Recall that
p1(z) = N(0,Ω−1

1 ) and p2(z) = N(0,Ω−1
2 ), with pa-

rameters Ω1i,i = η1li and Ω2i,i = η2l2i . With the spe-
cific choice of hyperparameters defined in Sect. 3.4.6, and
prior weights ω1 = ω2 = 0.5, the marginal likeli-
hoods coincide, i.e. p1(y) = p2(y). Consequently, the nor-
malised weights in the resulting mixture posterior becomes(∑2

c=1 ωc pc(y)
)−1
ω1 p1(y) =

(∑2
c=1 ωc pc(y)

)−1
ω2 p2(y) = 0.5.

The mean deviation between the mean of the resulting predictive
distribution and the observed LSD Stokes V profiles is 9.09 · 10−5.
In this case, the mean marginal standard deviation of the predic-
tive distribution corresponding to the computed LSD Stokes V
profiles is 5.00 · 10−5. See Appendix B for a comparison between
the observed LSD Stokes V profiles and the prediction at the

mean of the predictive distribution. Fig. 8 shows the mean of
the posterior magnetic field distribution across the stellar surface,
together with the corresponding standard deviation maps. Four
samples from the resulting distribution are displayed in Fig. 9.
In this case, the standard deviation maps retain some of the small-
scale structures highlighted in the discussion of Fig. 6, but these
structures are no longer closely associated with the strongest
features in the magnetic maps. The representative amplitude of
the standard deviation is comparable to the previous test: 0.072–
0.098 kG on average and 0.082–0.137 kG if one considers the
95 percentiles, i.e. 15.3–19.5% and 19.7–27.4% of the magnetic
map amplitudes, respectively.

4.3. Magnetic energy spectrum

Using our spherical-harmonic field parameterisation, it is straight-
forward to assess the strength of the axisymmetric vs. non-
axisymmetric field, as well as the strength of the poloidal vs.
toroidal field components. Specifically, the γl,m coefficients spec-
ify the strength of the toroidal field component, whereas the
αl,m and βl,m coefficients specify the vertical and horizontal com-
ponents of the poloidal field, respectively. Given the posterior
distribution obtained from each independent choice of prior dis-
tribution, we have analysed the numerical distribution of the mag-
netic field energy contributions over different harmonic modes
(l-modes). These distributions, together with a comparison of the
distributions of the magnetic energy of the poloidal and toroidal
field components over the harmonic modes, are illustrated in
Fig. 10–12. Fig. 10 shows the distributions corresponding to the
fixed hyperparameter case, with Ωi,i = ηl2i and η = 100. These
magnetic energies correspond to the posterior magnetic field dis-
tribution in Fig. 4. As we can see, the total magnetic energy is
spread over modes l ∈ [1, 5], with a clear peak at l = 1. Consid-
ering the poloidal and toroidal field components separately, we
note a significant peak in the poloidal field component at l = 1,
followed by a smaller peak at l = 4. In contrast, the peak of the
toroidal field component ranges over l ∈ [1, 2], whereafter the
contribution decreases with l. Fig. 11 shows the distribution of
magnetic energy over the harmonic modes corresponding to the
posterior magnetic field distribution presented in Fig. 6, obtained
from a mixture prior with with 1000 η-dependent components
pc(z). Finally, Fig. 12 shows the corresponding results for the
posterior magnetic field distribution given in Fig. 8, obtained
from a mixture prior with components p1(z) and p2(z).

The magnetic energy distributions over harmonic modes illus-
trated in Fig. 11–12 are qualitatively similar to the distributions in
the fixed hyperparameter case illustrated in Fig. 10. Considering
the comparatively large scatter in the resulting magnetic energy
based on statistical models with mixture priors, our results indi-
cate high uncertainty in the relative magnetic energies recovered
in the ZDI analysis of τ Sco.

In addition to analysing the magnetic energy distribution for
poloidal vs toroidal field components, we divide the spherical-
harmonic modes into two other groups: those with |m| < l/2 and
those with |m| ≥ l/2 (Fares et al. 2009). A statistical summary
of the magnetic energy distributions in terms of a) the total con-
tribution from the poloidal field component across all harmonic
modes, and b) the isolated contribution from the |m| < l/2 field
component, is presented in Table 1 for each of the three cases.

While the magnetic energy, as discussed here, is more in-
terpretable and comparable between studies, we have included
additional visualisations of the posterior distribution over z in
Appendix C for completeness.
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Fig. 7. Four samples of surface magnetic field vector maps drawn from the posterior distribution. The distribution is obtained through posterior
inference using a statistical model with a mixture prior consisting of 1000 η-dependent components pc(z). From the left, the samples are drawn from
components of the mixture posterior distribution with parameters η ≈ 34, η ≈ 123, η ≈ 62 and η ≈ 258, respectively.
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Fig. 8. Same as Fig. 4 but for results obtained using a statistical model
with a mixture prior consisting of the two components p1(z) and p2(z).

Table 1. Quantiles of the posterior magnetic energy fractions.

Poloidal field |m| < l/2

quantile 0.05 0.50 0.95 0.05 0.50 0.95
Case 1 0.38 0.42 0.46 0.09 0.12 0.15
Case 2 0.38 0.50 0.61 0.09 0.13 0.16
Case 3 0.39 0.46 0.53 0.09 0.15 0.19

Notes. Quantiles of the posterior distribution of the fraction of the total
magnetic energy for a) the poloidal field components across harmonic
modes and b) the |m| < l/2 field component. Case 1 refers to the fixed
hyperparameter case, Case 2 refers to the distribution obtained from
a mixture prior with 1000 η-dependent components pc(z), and Case 3
refers to the distribution obtained from a mixture prior with components
p1(z) and p2(z).

5. Conclusions and discussion

In this study, we have presented magnetic field distributions and
corresponding uncertainty maps resulting from a probabilistic
ZDI analysis of the early-type star τ Sco. We considered three dis-
tinct prior distributions over the latent variables in the spherical-
harmonic field parameterisation. When the hyperparameters in
the proposed prior distribution were chosen using the empirical
Bayes approach, our investigation showed that the amplitude in
the posterior magnetic field distribution violated the weak-field
approximation motivating our choice of forward mapping
function f(z). We concluded that maximum likelihood estimation
of the hyperparameter η is ill-posed in this case. The uncertainty
maps obtained with empirically fixed hyperparameters exhibited
a smooth latitudinal variation across the stellar surface. By in-
troducing mixture priors, we accounted for prior uncertainty over
two hyperparameters in the original prior distribution, capturing
the sensitivity of the magnetic field distribution to the specific
choice of prior and, by extension, to the hyperparameters used
in the classical ZDI framework. A mixture prior over η increased
the structure in the uncertainty maps and raised the overall uncer-
tainty level, particularly around the features in the mean magnetic
map with the strongest amplitudes. A similar uncertainty
level was observed when introducing a mixture prior over the
exponent on the angular degree l. Although small-scale structures
remained, the correlation with the strongest magnetic features
in the mean magnetic field distribution was less prominent.

We also analysed the magnetic energy spectrum, with empha-
sis on the posterior magnetic energy distribution across l−modes.
Compared to previous ZDI inversions targeting τ Sco, a star as-
sumed to exhibit a complex, non-dipolar surface magnetic field,
the fact that the magnetic energy contribution is dominated by
l = 1 is unexpected. This result alone would indicate a predom-
inantly dipolar field geometry, in line with the majority of hot,
magnetic stars, but in contrast to previous studies of τ Sco. We
investigated this issue by an in-depth comparison between our re-
sults and the magnetic field map obtained by Kochukhov & Wade
(2016) with the same harmonic parameterisation (“model 2” in
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Fig. 9. Same as Fig. 7 but the four samples are drawn from the posterior magnetic field distribution obtained through posterior inference using a
statistical model with a mixture prior consisting of the two components p1(z) and p2(z). From the left, the first and third column represent samples
drawn from the first component of the mixture posterior distribution, and the second and fourth column represent samples drawn from the second
component.

Fig. 10. Violin plots illustrating the distribution of magnetic energy over
different harmonic modes. In these plots the widths of the coloured
regions represent the smoothed probability density of the fraction of
the total magnetic energy, numerically obtained by sampling from the
posterior distribution p(z|y) corresponding to the results illustrated in
Fig. 4. Horizontal lines mark the 0.05-, 0.50- and 0.95-quantiles of the
distribution at each mode, respectively. The left panel compares the
energy of the toroidal contribution (blue) and the poloidal components
(red) as a function of angular degree l, with values normalised by the
total energy, i.e., (Et, Ep)/Etot. The right panel shows the total magnetic
energy of the poloidal and toroidal field components as a function of
angular degree l, also normalised by the total energy, i.e. (Ep + Et)/Etot.

that paper). It turns out that the overall morphology of the surface
distributions of the three vector magnetic components is qualita-
tively similar in the two studies. However, their relative strengths
differ. Here we recover about 20–30% less relative energy in the
radial and azimuthal components, which are dominated by higher
l modes. Conversely, our meridional field contributes more than
twice the relative energy to the total field compared to the results
by Kochukhov & Wade (2016). This meridional field component
features a simpler, dipolar-like geometry (see Fig. 4). Conse-
quently, the contribution of the l = 1 harmonics is significantly
higher in our results. This modification of the outcome of the ZDI
analysis is sufficient to noticeably alter the resulting harmonic
energy spectrum. While Kochukhov & Wade (2016) found the
poloidal field energy to be spread over l ∈ [1, 4] and observed a

Fig. 11. Same as Fig. 10 but for the results obtained from the posterior
distribution p(z|y) corresponding to the magnetic field in Fig. 6.

Fig. 12. Same as Fig. 10 but for the results obtained from the posterior
distribution p(z|y) corresponding to the magnetic field in Fig. 8.

peak in the toroidal field contribution at l ∈ [2, 3], we recover a
stronger toroidal component peaking at l = 1 with a less important
poloidal field peaking at both l = 1 and l = 4.

Since there are differences in modelling choices between the
ZDI reconstructions, we do not expect to exactly reproduce the
results at the mean of the posterior magnetic field distribution in
this case. In general, it is worth remarking that the uncertainty
quantification obtained from the proposed framework for proba-
bilistic ZDI is conditioned on our choice of probabilistic model,
i.e. p(y|z) and p(z), and the information content in the observa-
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tions y. As noted in Sect. 1, earlier studies of the surface magnetic
field of τ Sco have compared the field geometries obtained using
different spherical-harmonic magnetic field parameterisations,
ultimately concluding that the topological details in the surface
magnetic field, as well as the average magnetic field strengths,
vary significantly depending on the parameterisation (Kochukhov
& Wade 2016). Since the Bayesian framework naturally extends
to Bayesian model selection and Bayesian model averaging, an
interesting avenue for future work is to perform probabilistic
ZDI analyses of τ Sco using competing field parameterisations to
model the likelihood.

While this study has focused on ZDI inversion in the weak-
field limit, another important direction for future research is to
investigate the feasibility of employing probabilistic ZDI to gen-
erate reliable uncertainty maps when the line-profile response
cannot be modelled under this assumption. Addressing this chal-
lenge will require advanced computational techniques, such as
MCMC methods or variational Bayes (Blei et al. 2017), since the
posterior distribution p(z|y) cannot be expressed in closed form
for non-linear response profiles under standard model assump-
tions. Additionally, the proposed framework for probabilistic ZDI
can be expanded by extending the hierarchy in the statistical
model (see Sect. 3.4.5) to account for prior uncertainty in stellar
parameters beyond the spherical-harmonic coefficients. Such an
extension would enable quantification of uncertainty in the sur-
face magnetic field of more complex ZDI targets, including stars
in eclipsing binary systems and equator-on hosts of transiting
exoplanets, where degeneracy in the latent variables within the
spherical-harmonic formulation is likely to occur. Both of these
avenues will be pursued in future work.

To summarise our study, we have proposed a Bayesian frame-
work for probabilistic ZDI allowing for formal uncertainty quan-
tification of the obtained stellar magnetic field maps, given a
single set of spectropolarimetric observations. Coupling the mag-
netic field distributions with interpretable uncertainty maps makes
it possible to reason about the uncertainty in the obtained mag-
netic field distributions in a meaningful way. This is something
that has not previously been possible, as classical ZDI has gen-
erally been restricted to point estimates. We have demonstrated
that, for stars exhibiting relatively weak surface magnetic fields
such that the weak-field approximation can be used to model
the line-profile response, a closed-form solution for the posterior
distribution over the spherical-harmonic coefficients exists under
specific model assumptions. Our choice of probabilistic model
is convenient in the sense that it makes it easy to quickly con-
duct Bayesian analyses of the surface magnetic fields of a large
group of stars, despite the high-dimensional spherical-harmonic
magnetic field parameterisation. Since we obtain an uncertainty
quantification centered around the point estimate obtained us-
ing standard ZDI, our probabilistic ZDI formulation essentially
provides uncertainty quantification as a byproduct compared to
standard ZDI, without loss of information.
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Appendix A: Implementation details

Our probabilistic ZDI framework is implemented in Python, utilizing NumPy for general numerical computations and JAX for
efficient linear algebra and automatic differentiation. In particular, JAX’s automatic differentiation functionality is employed to
compute the design matrix A in the forward model, a key component in the Bayesian formulation. For further implementation details,
see our probabilistic ZDI code made available on GitHub4.

Appendix B: Predictive distribution

In Fig. 3, we showed a comparison between the observed LSD Stokes V profiles and the reconstruction at the mean of the predictive
distribution for a subset of the rotational phases, together with the posterior and predictive uncertainties. Fig. B.1 shows the
corresponding results for all rotational phases.

−20 0 20
Velocity (km/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V/
Ic

 (%
)

0.010

0.058

0.132

0.156

0.162

0.179

0.188

0.204

0.212

0.225

0.237

0.261

0.310

0.334

0.356

0.431

0.456

0.476

0.500

0.515

0.525

0.539

0.551

0.573

0.588

−20 0 20
Velocity (km/s)

0.0

0.5

1.0

1.5

2.0

2.5

0.597

0.613

0.621

0.637

0.644

0.646

0.661

0.668

0.672

0.685

0.693

0.716

0.717

0.740

0.740

0.741

0.766

0.820

0.838

0.844

0.862

0.868

0.961

0.967

Fig. B.1. Same as Fig. 3 but for all rotational phases. Recall that the observed profiles are depicted in black, and the reconstruction at the mean is
depicted in red. The shaded light grey area shows the marginal predictive uncertainty, whereas the shaded light blue area shows the corresponding
posterior predictive uncertainty.

Fig. B.2 and Fig. B.3 show the corresponding results obtained from statistical models using the two different mixture priors
explored in this paper (referred to as Case 2 and Case 3). We observe that the posterior predictive uncertainty is significantly larger
using the mixture prior with 1000 η−dependent components (Case 2).

4 https://github.com/jenan007/ProbabilisticZDI/
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Fig. B.2. Same as Fig. B.1 but for results obtained using a statistical model with a) a mixture prior consisting of 1000 η-dependent components
pc(z). and b) a mixture prior consisting of the two components p1(z) and p2(z).
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Fig. B.3. Same as Fig. 3 but for results obtained using a statistical model with a) a mixture prior consisting of 1000 η-dependent components pc(z).
and b) a mixture prior consisting of the two components p1(z) and p2(z).
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Appendix C: Results for spherical harmonic coefficients

In the main paper, we focus on the posterior magnetic field distribution and the magnetic energy distributions as a function of l. The
posterior distribution over the spherical harmonic coefficients z is also readily available but more difficult to interpret. In addition,
the values of the coefficients are generally not comparable between studies due to different formulations in terms of e.g. real and
imaginary representations of spherical harmonic expansions and different normalisation approaches. For completeness, we present
the covariance matrices and triangular plots for the three posterior distributions p(z|y) presented in this paper. These results can
be found in Fig. C.1, Fig. C.2 and Fig. C.3, corresponding to Case 1, Case 2 and Case 3, respectively. The uncertainties over the
coefficients are dominated by the trend with l. The apparent trends with m (e.g. a higher uncertainty for the odd-m toroidal modes for
l = 1 but a lower uncertainty for the same modes for l = 2) reflect the amplitude of recovered harmonic coefficients and disappear
when one considers uncertainties normalised by the absolute value of the coefficients.
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Fig. C.1. Graphical representation of the spherical harmonic coefficients and their covariances. This plot corresponds to the magnetic field
reconstruction results in Fig. 4. a) Covariance matrix with the three groups of spherical harmonic coefficients, α, β, γ, stored sequentially in the
order of increasing l and m numbers. Dashed lines highlight parts of the covariance matrix corresponding to each group of harmonic coefficients. b)
Mean value of the spherical harmonic coefficients. c) Standard deviation of the spherical harmonic coefficients.
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Fig. C.2. Same as Fig. C.1 but for the spherical harmonic coefficients corresponding to the magnetic field reconstruction in Fig. 6.
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Fig. C.3. Same as Fig. C.1 but for the spherical harmonic coefficients corresponding to the magnetic field reconstruction in Fig. 8.
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