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ABSTRACT

Aims. We have completed an accurate investigation of the Ca isotopic composition and stratification in the atmospheres of 23 magnetic
chemically peculiar (Ap) stars of different temperature and magnetic field strength.
Methods. With the UVES spectrograph at the 8 m ESO VLT, we have obtained high-resolution spectra of Ap stars in the wavelength
range 3000–10 000 Å. Using a detailed spectrum synthesis calculations, we have reproduced a variety of Ca lines in the optical
and ultraviolet spectral regions, inferring the overall vertical distribution of Ca abundance, and have deduced the relative isotopic
composition and its dependence on height using the profile of the IR-triplet Ca ii line at λ8498 Å.
Results. In 22 out of 23 studied stars, we found that Ca is strongly stratified, being usually overabundant by 1.0–1.5 dex below
log τ5000 ≈ −1, and strongly depleted above log τ5000 = −1.5. The IR-triplet Ca ii line at λ8498 Å reveals a significant contribution
of the heavy isotopes 46Ca and 48Ca, which represent less than 1 % of the terrestrial Ca isotopic mixture. We confirm our previous
finding that the presence of heavy Ca isotopes is generally anticorrelated with the magnetic field strength. Moreover, we discover that
in Ap stars with relatively small surface magnetic fields (≤4–5 kG), the light isotope 40Ca is concentrated close to the photosphere,
while the heavy isotopes are dominant in the outer atmospheric layers. This vertical isotopic separation, observed for the first time for
any metal in a stellar atmosphere, disappears in stars with magnetic field strength above 6–7 kG.
Conclusions. We suggest that the overall Ca stratification and depth-dependent isotopic anomaly observed in Ap stars may be
attributed to a combined action of the radiatively-driven diffusion and light-induced drift.
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1. Introduction

After the pioneering work by Michaud (1970), atomic diffusion
in stellar envelopes and atmospheres has been recognized as the
main process responsible for the atmospheric abundance anoma-
lies in the peculiar stars of the upper main sequence. Due to
their unique characteristics, such as an extremely slow rotation,
strong, global magnetic fields, and the absence of convective
mixing, magnetic, chemically-peculiar (Ap and Bp) stars exhibit
the most clear manifestation of diffusion effects and thus repre-
sent privileged laboratories for investigation of chemical trans-
port processes and magnetohydrodynamics.

Detailed diffusion calculations performed for a set of chem-
ical elements in the atmospheres of magnetic peculiar stars
predict separation of chemical elements over the stellar sur-
face and with height in stellar atmosphere (abundance stratifica-
tion). These theoretical predictions can be directly tested through
the comparison with empirical maps of chemical elements in-
ferred from observations. For a small number of elements,
including Ca, an effect of the vertically-stratified element dis-
tribution on the spectral-line profiles was demonstrated in early
studies (Borsenberger et al. 1981). However, the absence of
high-resolution, high signal-to-noise spectroscopic observations
did not allow a robust comparison between observations and
theoretical diffusion modelling. This step was achieved by

� Based on observations collected at the European Southern
Observatory, Paranal, Chile (ESO program No. 68.D-0254).

Babel (1992), who calculated the Ca abundance distribution in
the atmosphere of magnetic Ap star 53 Cam and showed that the
unusual shape of Ca ii K line – a combination of the wide wings
and extremely narrow core (Babel 1994; Cowley et al. 2006) – is
a result of a step-like Ca distribution with an abundance decrease
at log τ5000 ≈ −1. Following Babel, the step-function approxi-
mation for the abundance distributions was employed in many
stratification studies based on the observed profiles of spectral
lines (Savanov et al. 2001; Bagnulo et al. 2001; Wade et al. 2003;
Ryabchikova et al. 2002, 2005, 2006; Glagolevskii et al. 2005;
Cowley et al. 2007).

Ca has been found to be stratified in almost the same way
as in 53 Cam (enhanced concentration of Ca below log τ5000 ≈
−1 and its depletion above this level) in all stars for which
stratification analyses have been performed: β CrB (Wade
et al. 2003), γ Equ (Ryabchikova et al. 2002), HD 204411
(Ryabchikova et al. 2005), HD 133792 (Kochukhov et al. 2006a)
and HD 144897 (Ryabchikova et al. 2006). In addition to re-
markable diffusion signatures, recently another Ca anomaly was
detected, first in the spectra of the Hg-Mn stars by Castelli &
Hubrig (2004) and then in Ap stars by Cowley & Hubrig (2005).
These authors found a displacement of the lines of Ca ii IR
triplet due to a significant contribution from the heavy Ca iso-
topes. Ryabchikova, Kochukhov & Bagnulo (see review paper
by Ryabchikova 2005) were the first to apply spectrum synthe-
sis calculations to investigate the effects of Ca isotopes on the
calcium-line profile shape in magnetic CP stars. In particular, we
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Table 1. Fundamental parameters of the program stars.

HD JD−2 450 000 Teff log g ve sin i 〈Bs〉 Br/Ba Reference
number (K) (km s−1) (kG)

Magnetic chemically peculiar stars
965 2190.632–2190.646 7500 4.00 3.0 4.4 3.2/3.2 RKP

24712∗ 1982.545–1982.561 7250 4.30 5.6 2.3 2.3/0.0 RLG97
29578 2213.805–2213.819 7800 4.20 2.5 5.6 4.5/3.4 RNW04
47103 2286.690–2286.719 8180 3.50 0.0 16.3 0.0/16.3 RKP
66318 2413.467–2413.477 9200 4.25 0.0 15.5 10.2/11.7 BLL03
75445 2236.837–2236.846 7650 4.00 3.0 3.0 2.8/1.0 RNW04

101065∗ 2280.849–2280.863 6600 4.20 3.5 2.3 2.3/0.0 CRK00
111133 2294.861–2294.866 9930 3.65 5.0 4.0 4.0/0.0 RKP
116114∗ 2296.864–2296.871 8000 4.10 2.5 6.2 4.6/3.9 RNW04
118022 2298.861–2298.865 9500 4.00 10.0 3.0 3.0/0.0 RKP
122970∗ 2295.862–2295.875 6930 4.10 5.5 2.5 2.5/0.0 RSH00
128898∗ 2320.870–2320.873 7900 4.20 12.5 1.5 1.5/0.0 KRW96
133792 2331.791–2331.797 9400 3.70 0.0 1.1 1.1/0.0 KTR06
134214∗ 2331.816–2331.826 7315 4.45 2.0 3.1 2.5/1.7 RKP
137909∗ 2331.892–2331.895 8000 4.30 2.5 5.4 5.0/2.0 RNW04
137949∗ 2331.803–2331.810 7550 4.30 1.0 5.0 2.2/4.5 RNW04
144897 2331.834–2331.851 11 250 3.70 3.0 8.8 6.3/6.2 RRK06
166473∗ 2189.508–2189.517 7700 4.20 0.0 8.6 5.0/7.0 GRW00
170973 2190.511–2190.518 10 750 3.50 8.0 0.0 K03
176232∗ 2190.522–2190.528 7650 4.00 2.0 1.5 1.5/0.0 RSH00
188041 2190.599–2190.605 8800 4.00 0.0 3.6 3.4/1.0 RLK04
203932∗ 2189.540–2189.557 7550 4.34 5.3 ≤1 GKW97
217522∗ 2189.567–2189.577 6750 4.30 2.5 ≤1.5 1.5/0.0 G98

Comparison stars
27411 2501.937–2501.946 7650 4.00 18.5 0.0 RKP
61421 2555.906–2555.909 6510 3.96 3.5 0.0 AAG02
73666 3745.063–3745.082 9382 3.78 10.0 0.0 FBM07

The columns give the target HD number, range of Julian dates of its observation with UVES, effective temperature, surface gravity, projected
rotational velocity, estimate of the mean magnetic field modulus and the ratio of radial to azimuthal field strength adopted in spectrum synthesis.
Rapidly oscillating Ap (roAp) stars are identified by asterisk.
References. RKP – this paper; RLG97 – Ryabchikova et al. (1997); RNW04 – Ryabchikova et al. (2004b); BLL03 – Bagnulo et al. (2003b);
CRK00 – Cowley et al. (2000); RSH00 – Ryabchikova et al. (2000); KRW96 – Kupka et al. (1996); KTR06 – Kochukhov et al. (2006a); RRK06
– Ryabchikova et al. (2006); GRW00 – Gelbmann et al. (2000); K03 – Kato (2003); RLK04 – Ryabchikova et al. (2004a); GKW97 – Gelbmann
et al. (1997); G98 – Gelbmann (1998); AAG02 – Allende Prieto et al. (2002); FBM07 – Fossati et al. (2007).

have demonstrated the general anticorrelation between the pres-
ence of heavy Ca and magnetic field strength: in Ap stars the
contribution of heavy Ca isotopes decreases with the increase
of the field modulus, and disappears when the field strength ex-
ceeds ∼3 kG. Cowley et al. (2007) have come to a similar con-
clusion, but with reservations.

In the present paper we summarise our detailed analysis of
the vertical stratification of Ca abundance in the atmospheres of
magnetic Ap stars of different temperatures and magnetic field
strengths. We combine this vertical Ca mapping with the anal-
ysis of the Ca isotopic anomaly and its dependence on height,
based on the spectrum synthesis modelling of the IR triplet Ca ii
line at λ8498 Å. Our study is the first to present a homogeneous
and systematic determination of the vertical stratification of a
given element in the atmospheres of a large number of stars, en-
abling us to study the signatures of atmospheric atomic diffusion
in the presence of strong magnetic field as a function of stellar
parameters and magnetic field intensity.

Our paper is organized as follows. In Sect. 2 we de-
scribe spectroscopic observations and the data reduction.
Determination of the stellar atmospheric parameters is detailed
in Sect. 3. Sections 4–6 present our methodological approach to
magnetic spectrum synthesis, determination of Ca stratification
and the study of Ca isotopic composition. Our findings are sum-
marised in Sect. 7 and are discussed in Sect. 8.

2. Observations and data reduction

Twenty-three slowly rotating Ap stars were chosen for the Ca
stratification analysis. The list of program stars is given in
Table 1. In addition, three stars, Procyon (=HD 61421, spec-
tral type F5), HD 27411 (=HIP 20106, spectral type A3m), and
HD 73666 (=40 Cnc, spectral type A1 V) were used as standards
for the Ca isotopic study. Of the 23 magnetic Ap stars included
in our study, 12 stars show high-overtone acoustic p-mode pul-
sations and thus belong to the group of rapidly oscillating Ap
(roAp) stars.

We note that metallic-line stars show signatures of strong tur-
bulence and convection in their atmospheres (Landstreet 1998;
Kochukhov et al. 2006b). Theoretical diffusion models for Am
stars (e.g. Michaud et al. 2005) achieve reasonable success in
reproducing the surface abundance patterns assuming full mix-
ing of the outer envelope. Thus, despite non-solar abundances,
strong mixing inhibits development of the vertical chemical gra-
dients in the line-forming region and for this reason Am star
HD 27411 can be considered as a comparison object in the con-
text of the present investigation.

For the majority of our targets, high-resolution, high signal-
to-noise-ratio spectra were obtained with the UVES instrument
(Dekker et al. 2000) at the ESO VLT in the context of pro-
gram 68.D-0254. The observations were carried out using both
available dichroic modes (standard settings 346 + 580 nm and
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437 + 860 nm). In both the blue arm and the red arm the slit
width was set to 0.5′′, for a spectral resolution of about 80 000.
The slit was oriented along the parallactic angle, in order to mini-
mize losses due to atmospheric dispersion. Almost the full wave-
length interval from 3030 to 10 400 Å was studied except for a
few small gaps, the largest of which was at 5760–5835Å and
8550–8650 Å. In addition, there are several gaps, approximately
1 nm wide, due to the lack of overlap between the échelle orders
in the 860U setting.

Spectra of HD 24712 and HD 61421 (Procyon) were ac-
quired with the UVES at VLT as part of the UVESpop project1

(Bagnulo et al. 2003a). The UVES observations of the magnetic
Ap star HD 66318 employed in our paper were described by
Bagnulo et al. (2003b). All three stars were observed using the
same instrumental settings as the Ap targets from our main data
set. A spectrum of HD 73666 was obtained with the ESPaDOnS
spectropolarimeter at the Canada-France-Hawaii Telescope and
analysed to determine chemical abundances by Fossati et al.
(2007). A reduced spectrum was kindly provided to us by these
authors.

The UVES spectra have been reduced with the automatic
pipeline described in Ballester et al. (2000). For all settings, sci-
ence frames are bias-subtracted and divided by the extracted flat-
field, except for the 860 nm setting where 2D (pixel-to-pixel)
flat-fielding was applied to better correct for the fringing ef-
fects. Because of the high flux of the spectra, we used the UVES
pipeline average extraction method.

Due to the gaps in spectral coverage, only one line of the
Ca ii IR triplet, λ8498 Å, was observable for all stars and can
be used for modelling. This line is generally the weakest of the
three IR triplet transitions, which facilitates quantitative analy-
sis, especially in cooler stars where the triplet Ca ii lines become
particularly strong.

All three lines of the Ca ii IR triplet overlap with the hydro-
gen Paschen lines, which become very prominent in the spectra
of hotter Ap stars (see Fig. 1). The 8498 Å line is located fur-
ther away from the centre of the nearest Paschen line (P16) than
the other two lines of the IR triplet. The hydrogen line blend-
ing for this Ca ii transition is also weaker than for the other two
Ca ii lines. Moreover, being the weakest among three IR triplet
lines the 8498 Å line is less dependent on the accuracy of Stark
and Van der Waals broadening parameters. These circumstances
suggest that the Ca ii 8498 Å line is most suitable for detailed
modelling.

The studied Ca ii line is close to the gap in the wavelength
coverage of the UVES setting employed. An additional difficulty
arises due to the broad overlapping absorption produced by the
Paschen lines. These properties of the data complicate contin-
uum normalization in the region around Ca ii 8498 Å. In fact,
with the available data, we are generally unable to rectify the
spectra in the usual manner. For each star, observations were in-
stead adjusted to match calculated Paschen line spectrum in a
small region close to the P16 line. This procedure was completed
in two stages. First, a high-order spline function was employed
to trace the wings of the hydrogen line, and observations were
divided by this fit. Secondly, observed spectra were multiplied
by the theoretical hydrogen line spectrum calculated using indi-
vidual stellar atmospheric parameters and hydrogen line opacity
described in Sect. 4.

For most program stars spectral coverage of our UVES
spectra precluded analysis of the two stronger lines of the IR

1 http://www.eso.org/uvespop/

Fig. 1. Synthetic spectra calculated with different treatment of the
overlapping hydrogen-line opacity. Usual calculation (HLINOP routine,
dashed line) is compared with spectrum synthesis based on the occu-
pation probability formalism (HBOP routine, solid line). In both cases,
ATLAS9 model atmosphere with Teff = 8500 K, and log g= 4.0 was
adopted. The vertical bars show position of the Ca ii IR triplet lines.

triplet, Ca ii 8542 and 8662 Å. However, for one of the tar-
gets, HD 24712, we have investigated these lines using com-
plementary observations obtained with the ESPaDOnS instru-
ment at CFHT. The ESPaDOnS spectrum HD 24712 is the
average of 81 time-resolved observations of this star analyzed
by Kochukhov & Wade (2007). We refer to this paper for the
details of reduction of these data. Unlike the UVES spectrum of
HD 24712, the ESPaDOnS data were collected close to the phase
of magnetic maximum (JD 2 453 744.71–2 453 744.83).

3. Fundamental stellar parameters

Fundamental parameters of the program stars are provided in
Table 1. For most stars effective temperatures Teff and surface
gravities log g were taken from the most recent studies (refer-
ences are provided in the last column of Table 1). For HD 965,
HD 47103, HD 118022 and HD 134214 atmospheric parameters
were derived using the Strömgren photometric indices extracted
from the catalogue of Hauck & Mermilliod (1998). We used
calibrations by Moon & Dworetsky (1985) and by Napiwotzki
et al. (1993) as implemented in the TEMPLOGG code (Rogers
1995). For HD 111133 the effective temperature was taken from
Kochukhov & Bagnulo (2006), while other parameters were
derived in the present study. For HD 75445, HD 176232 and
HD 203932 effective temperatures were further refined by fitting
the Hα profile. This resulted in a small correction relative to the
published Teff values.

The mean surface magnetic fields 〈Bs〉 were derived us-
ing spectral lines which exhibit resolved and partially-resolved
Zeeman splitting patterns. In all stars, rotational velocities were
estimated by modelling profiles of the magnetically-insensitive
Fe i lines at λλ5434.5 and 5576.1 Å. Model atmospheres for all
program stars were calculated with the ATLAS9 code (Kurucz
1993), employing opacity distribution functions (ODFs) with an
enhanced metallicity. For stars with especially strong magnetic
fields we used ODFs with a non-zero pseudo-microturbulence
velocity in order to simulate the modification of the line opacity
due to magnetic intensification of spectral lines. All spectrum
synthesis for magnetic stars employed zero microturbulence.
For comparison stars, we have adopted the following values:
ξt = 1.8 km s−1 for Procyon (Allende Prieto et al. 2002),
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1.9 km s−1 for HD 73666 (Fossati et al. 2007) and 2.5 km s−1

for HD 24711 (determined in this paper).

4. Spectrum synthesis calculations

Analysis of the Ca stratification and isotopic composition was
based on detailed magnetic spectrum synthesis calculations
with the SYNTHMAG code (Kochukhov 2007a). This program
allows the polarized, radiative-transfer equation to be solved,
and theoretical stellar spectra to be calculated in four Stokes pa-
rameters, for the prescribed model atmosphere and vertical dis-
tribution of any number of chemical elements. The SYNTHMAG
calculations performed in this paper are based on a simplified
model of the stellar magnetic field topology, characterized by a
single value of the field modulus and a homogeneous field dis-
tribution over the surface of the star. When rotation-broadening
is significant or the field is too weak, we assume purely radial-
field orientation. In other cases the effective field orientation is
inferred from the profiles of magnetically-sensitive lines and is
parameterized with the ratio of the radial to azimuthal field com-
ponents (see Table 1). Although undoubtedly rather simplified,
this magnetic model is quite successful in explaining the shapes
of resolved Zeeman split lines in the Stokes I spectra of many
Ap stars (Kochukhov et al. 2002; Nielsen & Wahlgren 2002;
Leone et al. 2003; Ryabchikova et al. 2006) and, in some cases,
performs even better than low-order multipolar field geometries
(Kochukhov 2007b).

In all spectrum synthesis calculations in this paper, we use
zero microturbulence because the SYNTHMAG code models mag-
netic intensification by directly including magnetic-field effects
in the solution of the polarized radiative transfer equation. The
true microturbulence is thought be absent in Ap stars because
kG-strength magnetic field is quite efficient in suppressing con-
vective motions.

Here we analyse the target stars assuming a homogeneous
distribution of Ca over their surfaces. This assumptions appears
to be reasonable given a slow rotation of the majority of the tar-
gets. Moreover, no evidence of substantial horizontal Ca abun-
dance gradients exist for any of the studied stars, although many
of them were observed at high resolution more than once (e.g.,
Mathys et al. 1997; Ryabchikova et al. 2004b). The only star
from our sample for which the Ca surface inhomogeneity was
investigated previously, is HD 24712 (Lüftinger et al. 2007). The
full range of the horizontal Ca abundance variation in this star is
only 0.2 dex. The resulting effect on the Ca line profiles is neg-
ligible compared to the vertical abundance jump of more than
3 dex (see below). We also note that, even if hypothetical high-
contrast Ca spots exist on the surface of some of our stars, their
effect will be to weight our modelling results to specific surface
areas. But none of the potential horizontal inhomogeneity effects
can possibly mimic the stratification or isotopic anomaly studied
here.

An important modification to the SYNTHMAG treatment of
the hydrogen-line opacity was introduced to improve analysis
of the IR Ca ii triplet lines. These Ca ii transitions blend with
the high members of the Paschen series, which become promi-
nent in Ap stars with Teff ≥ 8000 K. The usual calculation
of the overlapping hydrogen line wings, which adds linearly
opacities due to bound-free and bound-bound hydrogen opac-
ity, becomes increasingly inaccurate as one approaches the series
limit. As illustrated in Fig. 1, this leads to a spurious reduction
in calculated fluxes. The correct treatment of the overlapping
hydrogen-line and continuous opacity should be done according
to the occupation probability formalism (Daeppen et al. 1987;

Hubeny et al. 1994). This technique was implemented in
SYNTHMAG with the help of HBOP procedure, developed by P.
Barklem at Uppsala Observatory2. This hydrogen opacity code,
which also incorporates previous developments in the hydrogen-
line broadening theory (Stehlé & Hutcheon 1999; Barklem et al.
2000), was applied for the spectrum synthesis of all stars in our
sample. Figure 1 shows that correct treatment of the hydrogen
opacity significantly reduces predicted Paschen-line absorption
at the position of the Ca ii 8498 Å line analysed here.

Magnetic spectrum synthesis with SYNTHMAG was cou-
pled with the vertical abundance mapping procedure DDAFIT,
described by Kochukhov (2007a) and used previously by
Ryabchikova et al. (2005, 2006). This routine provides a graphi-
cal and optimization interface to SYNTHMAG, allowing the user to
find parameters of a simple stratification model by fitting a large
number of spectral lines of a given element.

5. Ca stratification analysis

Before completing a detailed study of the IR Ca ii λ8498 Å line
profile, one has to derive the vertical distribution of Ca abun-
dance in the atmospheres of Ap stars. Without this step, a quan-
titative analysis of the isotopic anomaly is practically impossible
because profiles of all strong Ca lines, including the IR triplet,
are dramatically affected by the vertical stratification of this el-
ement. In all program stars Ca stratification was derived using a
set of spectral lines in the optical region, for which no indication
of the significant isotopic shifts exists. In this way, we are able
to decouple the stratification analysis from the study of isotopic
shifts. At this stage, we avoid using the Ca ii 8498 Å line be-
cause of the sensitivity to effective temperature error due to the
normalization method used (see Sect. 2).

Atomic parameters of the Ca lines are given in Table 2.
Stratification analysis requires high accuracy not only for the os-
cillator strengths but also for the damping parameters, because
Ca has a tendency to be concentrated close to the photospheric
layers where the electron density is high. Accurate treatment of
damping wings is particularly important for the lines of ionized
Ca. For the Ca ii lines at λλ3158, 3933, 8248, 8254, 8498, 8912,
8927 Å the Stark damping constants were taken from the paper
by Dimitrijević & Sahal-Bréchot (1993), where semi-classical
calculations as well as a compilation of the experimental data
was presented. For the rest of Ca lines the Stark damping con-
stants calculated by Kurucz (1993) were adopted. The oscillator
strengths were taken mostly from the laboratory experiments –
these data were thoroughly verified by the recent NLTE analysis
of calcium in late-type stars (Mashonkina et al. 2007). Because
of the large range in effective temperatures and magnetic field
strengths, we could not use the same set of lines for all stars.

The Ca stratification analysis was performed using the step-
function approximation of the abundance distribution (for details
see, e.g., Ryabchikova et al. 2005). This parameterized model of
the vertical stratification is characterized by the upper and lower
abundance values, as well as by the position and width of abun-
dance jump. In each star these parameters are constrained by si-
multaneous fit to the profiles of many lines. These observational
data are sufficient to constrain stratification parameters with a
good precision.

We begin the stratification analysis of Ca by computing
the optimal homogeneous Ca abundance for a chosen set of
spectral lines. In the DDAFIT procedure, we then allow the pa-
rameters of the step-function to vary until a suitable fit of the

2 http://www.astro.uu.se/˜barklem/hlinop.html
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Fig. 2. Comparison between the observed line profiles (symbols) of HD 176232 (10 Aql) and theoretical spectra calculated with the best-fitting
stratified Ca abundance distribution (solid line) and with the homogeneous Ca abundance (dashed line). The plotted spectral windows show
segments of the HD 176232 spectra used for determination of Ca stratification; symbols show actual observed points.

Table 2. Atomic parameters of the spectral lines employed in the Ca
stratification analysis.

Ion λ (Å) Ei (eV) log g f log γSt Reference
Ca ii 3158.869 3.123 0.241 −4.90 T
Ca ii 3933.655 0.000 0.105 −5.73 T
Ca i 4226.728 0.000 0.244 −6.03 SG
Ca ii 5021.138 7.515 −1.207 −4.61 SMP
Ca ii 5339.188 8.438 −0.079 −3.70 SMP
Ca i 5857.451 2.933 0.240 −5.42 S
Ca i 5867.562 2.933 −1.570 −4.70 S
Ca i 6122.217 1.896 −0.316 −5.32 SO
Ca i 6162.173 1.899 −0.090 −5.32 SO
Ca i 6163.755 2.521 −1.286 −5.00 SR
Ca i 6166.439 2.521 −1.142 −5.00 SR
Ca i 6169.042 2.253 −0.797 −5.00 SR
Ca i 6169.563 2.256 −0.478 −4.99 SR
Ca i 6449.808 2.521 −0.502 −6.07 SR
Ca i 6455.598 2.523 −1.340 −6.07 S
Ca ii 6456.875 8.438 0.410 −3.70 SMP
Ca i 6462.567 2.523 0.262 −6.07 SR
Ca i 6471.662 2.526 −0.686 −6.07 SR
Ca ii 8248.796 7.515 0.556 −4.60 SMP
Ca ii 8254.721 7.515 −0.398 −4.60 SMP
Ca ii 8498.023 1.692 −1.416 −5.70 T
Ca ii 8912.068 7.047 0.637 −5.10 SMP
Ca ii 8927.356 7.050 0.811 −5.10 SMP

The columns give the ion designation, central wavelength of the transi-
tion, the excitation potential of the lower level, oscillator strength, the
Stark damping constant, and the reference for the oscillator strength.
References. T – Teodosiou (1989); SG – Smith & Gallagher (1966);
SMP – Seaton et al. (1994); S – Smith (1988); SO – Smith & O’Neil
(1975); SR – Smith & Raggett (1981).

observed line-profiles is achieved. The outcome of this proce-
dure is illustrated in Fig. 2, where results of the stratification
analysis for the set of optical lines in HD 176232 (10 Aql)
are displayed. Figure 3 shows that stratified Ca distributions
obtained for HD 176232 and other cool Ap stars also dramati-
cally improve the fit to the strongest Ca ii 3933 Å line compared
to the spectrum synthesis with a homogeneous Ca distribution.
In Figs. 2 and 3 synthetic profiles calculated with the uniform
Ca distribution log(Ca/Ntot) = −5.14 are shown by dashed
lines while those calculated with the best-fitting stratified Ca

distribution are shown by the solid lines. Clearly, even the
schematic Ca stratification model used here provides a substan-
tial improvement in the agreement between observations and
theoretical calculations. We use a measure of standard deviation
to characterize the quality of the fit. This parameter is defined
as the root-mean-square of the observed minus calculated spec-
trum, evaluated on the wavelength grid of observations within
the spectral windows covering lines of interest (see Fig. 2). For
HD 176232 and most other stars the stratified Ca abundance
yields roughly two times smaller value of standard deviation
than the homogeneous Ca distribution. The final Ca stratifica-
tion model inferred for HD 176232 is illustrated in Fig. 4.

To verify that the step-function approximation provides a re-
alistic description of the Ca distribution, we performed, for a
few stars with weak magnetic fields (HD 133792, HD 176232,
HD 203932), a stratification analysis using the Vertical Inverse
Problem code, VIP. This program does not use any a priori as-
sumptions about the shape of the vertical element abundance
profile but currently cannot be applied to stars with a strong mag-
netic field (Kochukhov et al. 2006a). A comparison between the
Ca distributions derived for HD 176232 with DDAFIT and with
VIP is shown in Fig. 4. The same level of agreement was ob-
tained for the two other stars.

However, despite general success of the DDAFIT modelling,
in a few stars the step-function approximation could not provide
an adequate description of the full set of spectral lines. The ob-
vious reason is the use of normal non-magnetic stellar model
atmosphere with a homogeneous element distribution for a star
with abundance stratification, and a deviation of the Ca abun-
dance distribution from the simple step-function form.

In cooler stars we do not systematically use the strongest
Ca ii 3933 Å line in the stratification analysis due to the diffi-
culties of treating blends in the extended wings and establishing
continuum. The range of the formation depths of the remaining
weaker optical lines is different from the IR triplet lines of in-
terest, therefore Ca abundance in the upper atmospheric layers
is poorly-constrained by the optical lines and may not be accu-
rate enough for the description of the cores of the IR Ca ii triplet
lines. This is often reflected by a rather large formal error of the
abundance in the upper layers compared with the corresponding
error of the abundance in the lower layers. For several stars (see
Table 4) a less than 3σ change of the Ca abundance in the upper
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Fig. 3. Comparison between the observed profiles (symbols) of the Ca ii
3933 Å line and calculations with the stratified (solid line) and homoge-
neous (dashed line) Ca distributions for 3 program stars. The spectra of
HD 24712 and HD 176232 are shifted downwards for display purpose.

layers was introduced to fit the overall intensity of the IR triplet
line cores. In addition, for a few other stars further improvement
of the fit quality was possible by introducing a more compli-
cated stratification profile starting from the results obtained with
DDAFIT. This step was performed manually for 5 out of 23 Ap
stars. In all the cases, when we have modified Ca stratification
determined with DDAFIT, the consistency of the altered vertical
abundance profile with all Ca diagnostic lines was verified.

The formal stratification analysis of the Am star HD 27411
(whose Teff is identical to that of HD 176232) and normal star
HD 73666 (Teff = 9382 K) yields a 0.2 dex abundance jump,
which we consider to be insignificant. The average Ca abun-
dance log(Ca/Ntot) = −5.63 in both stars represents very well
most of the lines, including the resonance Ca ii 3933 Å line.
In both stars 0.1 dex lower abundance is required to fit the
Ca ii 3933 Å profile compared to Ca ii 8498 Å line. This inter-
nal agreement is excellent considering difficulties in continuum
normalization. It confirms that the Ca abundance variation by
several dex over the vertical span of the Ap-star atmospheres is
real.

6. The Ca isotopic anomaly

Ca has six stable isotopes with atomic numbers 40, 42, 43,
44, 46, 48. In the terrestrial matter Ca mixture consists mainly
of 40Ca (96.9 % according Anders & Grevesse 1989). Table 3
provides wavelengths of all Ca isotopes in the Ca ii 8498 Å

Fig. 4. Vertical stratification and isotopic separation of Ca derived for
HD 176232. The overall Ca abundance profile, inferred from the stratifi-
cation analysis of optical lines, is shown with the solid line. The hatched
areas demonstrate vertical separation of the light and heavy Ca isotopes
required to fit the Ca ii 8498 Å line. The dashed line shows the Ca dis-
tribution derived the with VIP code using the same set of lines.

Table 3. Atomic data for the isotopic components of Ca ii λ8498 Å.

λ (Å) isotope log g f ε
8498.023 40 −1.43
8498.079 42 −3.60
8498.106 43 −4.29
8498.131 44 −3.10
8498.179 46 −5.81
8498.223 48 −4.14

The fractional abundance of Ca isotopes, ε, corresponds to the compo-
sition of the terrestrial matter.

transition based on the isotopic shifts measured by Nörtershäuser
et al. (1998). We list fractional oscillator strengths correspond-
ing to the terrestrial isotopic mixture.

Isotopic shifts were also measured for the Ca ii resonance
lines at λλ3933 and 3968 Å (Mårtensson-Pendrill et al. 1992).
The wavelength shift between the 48Ca and 40Ca isotopes is
−0.009 Å, and can be observed only for the Ca ii 3933 Å line
core in hot stars with an especially significant contribution from
the 48Ca isotope. One star from our sample, HD 133792, shows
an isotopic shift in the Ca ii 3933 Å line.

Using the terrestrial isotopic mixture, we calculated the pro-
file of the Ca ii 8498 line in the spectra of our reference stars,
Procyon, HD 27411 and HD 73666. Comparison of the theoret-
ical spectra and observations is illustrated in Fig. 5. Although
in the Procyon spectrum our LTE calculations cannot provide a
very good fit to the deepest part of the core, no wavelength shifts
are detected in either star. At the same time, the observed pro-
file of the Ca ii line in the spectrum of one of our program stars,
HD 217522, presented in Fig. 5 exhibits a complex structure and
is clearly redshifted, with the strongest component coinciding in
wavelength with the expected position of the heaviest Ca iso-
tope. This is a signature of the Ca isotopic anomaly and, as we
will show below, of the vertical separation of Ca isotopes.

The core of the IR Ca ii 8498 Å line is formed higher than
any of the optical lines, except Ca ii 3933 Å. For most stars the
Ca ii 3933 Å line was not modelled in our stratification calcula-
tions. Therefore, Ca abundance in the upper atmosphere of some
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Fig. 5. Comparison between the observed line profiles (symbols) of the
Ca ii 8498 Å line and calculations for the normal Ca isotopic mixture
(solid line) in the spectra of Procyon, Am star HD 27411, and A1 V
star HD 73666. The observed spectrum of the cool (HD 217522) and
tepid (HD 133792) Ap stars, presented in the middle and bottom, clearly
shows a displaced Ca ii line core. The spectra are shifted downwards for
display purpose.

stars may be somewhat uncertain, as all other optical lines are
not sensitive to the abundance variations above log τ5000 = −2.0
to −2.5. However, for the majority of our targets the Ca abun-
dance in the upper atmosphere, responsible for the strength of
the Ca ii 8498 Å line core, is defined by the slope of the abun-
dance gradient in the jump region. If the Ap atmospheric struc-
ture is close to the normal ATLAS9 atmosphere adopted in our
analysis, then the Ca ii 8498 Å line should be well-described by
the Ca abundance distribution derived from optical lines. Our
calculations show that while it is correct for the observed total in-
tensity, in many of the program stars we cannot fit the line cores,
which are often redshifted. This situation is illustrated in Fig. 6a,
where we compare the observed spectrum of HD 176232 with
the synthetic spectrum calculated for the terrestrial Ca isotopic
mixture and Ca abundance distribution (Fig. 4) derived from op-
tical lines. One immediately notices that while the line wings are
explained by our calculations, the line core cannot be fitted with
the terrestrial Ca isotopic mixture.

Cowley & Hubrig (2005) showed that the red-shift of the
Ca IR line core arises due to the heavy Ca isotopes and claimed
that “in extreme cases the dominant isotope is the exotic 48Ca”.
A simple interpretation of the anomaly observed in the Ca ii
8498 Å line core is to suggest that heavy Ca isotopes are strongly
enhanced and even dominant throughout the atmospheres of
some magnetic Ap stars. However, our magnetic spectrum

Fig. 6. Derivation of the isotopic composition and its height dependence
for the Ca ii 8498 Å line in HD 176232 (10 Aql). The three panels show
the UVES observations (full circles) compared to various modelling at-
tempts, as follows. a) Dashed line: theoretical spectrum obtained with
a homogeneous Ca distribution. Solid line: theoretical spectrum calcu-
lated for a stratified Ca abundance. A terrestrial mixture of Ca isotopes
is adopted for these computations. b) Solid line: theoretical spectrum
obtained for a terrestrial Ca isotopic composition (same as panel a);
Dashed line: theoretical spectrum obtained for a 50:50 ratio of 40Ca to
46Ca+48Ca. c) Solid line: the Ca ii line profile computed for the best-
fitting model of vertical isotopic separation (see Fig. 4). Dashed and
dash-dotted lines show contributions of 40Ca and 46Ca+48Ca, respec-
tively. The wavelength position of 40Ca and 48Ca is indicated in each
panel. These plots show that an acceptable fit to the observations can
only be achieved with a depth-dependent Ca isotopic mixture.

synthesis calculations demonstrate that this hypothesis is incor-
rect. On the example of HD 176232 we can show that using a
model with stratified Ca distribution found previously and as-
suming a depth-independent enhancement of 46Ca and 48Ca rel-
ative to 40Ca, the centre-of-gravity of the Ca ii 8498 Å line core
is shifted to the red, but the overall fit to the line profile does not
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improve considerably (Fig. 6b). In disagreement with observa-
tions, a constant overabundance of the heavy Ca isotopes gives
rise to the red-shifted long-wavelength wing of the Ca ii line.

Here we propose a different explanation of the Ca ii 8498 Å
line shape. Observations of HD 176232 and other stars with dis-
placed Ca line core show a shallow line with wide wings at the
position of 40Ca isotope, which means that this line component
is formed in the lower atmospheric layers. On the other hand, at
the position of 48Ca we see a sharp deep line, which is responsi-
ble for a characteristic steep intensity gradient in the red wing of
the Ca ii 8498 Å line. We derive the same result for all cool Ap
stars with significant isotopic shifts of the Ca ii line core. Given
the Ca stratification inferred for all Ap stars, this deep compo-
nent lacking developed wings can be explained by the absorption
in the upper atmosphere, above the Ca abundance jump or in the
outermost part of the transition region. Thus, observations of the
Ca ii 8498 Å line in Ap stars should be interpreted in terms of
vertical separation of Ca isotopes in the stellar atmosphere.

If we separate 40Ca and the sum of 46Ca and 48Ca isotopes in
the atmosphere of HD 176232 as indicated in Fig. 4 (the bound-
ary between heavy and light Ca is at log τ5000 = −1.2), a satis-
factory agreement between the observed and calculated spectra
is obtained (see Fig. 6c). The dominant atmospheric constituent
is still the normal isotope 40Ca, but the shape of the Ca ii 8498 Å
line core is influenced by the high-lying cloud of heavy Ca, in
which 46Ca and 48Ca contribute 35% and 65%, respectively.

Thus, in our modelling of the Ca isotopic anomaly in Ap
stars we adopt an initial model in which the total element abun-
dance is given by the stratification profile obtained previously,
while the vertical separation of the light and heavy Ca isotopes
occurs nearly instantaneously and is characterized by a single
transition depth, deduced from the Ca ii 8498 Å line. Relative
contributions of 46Ca and 48Ca to the heavy Ca layer in the up-
per atmosphere are also adjusted based on the Ca ii IR triplet
line.

Parameterization of the vertical separation of Ca isotopes
that we adopt here is just one of several models possible. For
instance, we find that an acceptable fit to the Ca ii 8498 Å line in
some of the target stars could be obtained with a model where
48Ca is homogeneously distributed while 40Ca is stratified. Such
a model is achieved by placing the border between Ca isotopes
horizontally rather than vertically in Fig. 4. We note that for-
mally 48Ca is not anomalous: its relative-to-hydrogen abundance
in all stars does not exceed an abundance in the normal so-
lar Ca mixture. This model turns out to be nearly equivalent
to the one we use because the boundary between the heavy
and light Ca layers is usually located very close to the po-
sition of the Ca abundance jump. The 40Ca contribution still
dominates in the lower atmosphere, whereas 48Ca contributes
to the light absorption in the upper layers. However, for several
stars where we need Ca enhancement in the uppermost layers,
the model with homogeneously-distributed, heavy Ca isotopes
clearly yields worse agreement with observations in comparison
with the vertical separation model adopted in here.

Our isotopic stratification model is based upon only one of
the IR triplet lines. High-quality observations of the two other
IR triplet lines are unavailable for the majority of our targets.
For one of the cool Ap stars, HD 24712, we assessed the qual-
ity of the fit to all three Ca ii lines using the spectrum obtained
with ESPaDOnS at CFHT. These data were collected at the ro-
tational phase different from that of UVES observations, there-
fore we have performed an independent Ca stratification and iso-
topic analysis for HD 24712 based on the ESPaDOnS spectrum

Fig. 7. Comparison of the observed IR triplet lines (symbols) in the
ESPaDOnS spectrum of HD 24712 and theoretical spectrum synthe-
sis for the best-fitting stratified Ca abundance distribution (solid line)
with Ca isotopic separation and with the stratified distribution of 48Ca
only (dashed line).

alone. Figure 7 compares calculated and observed Ca ii 8498 Å
and 8662 Å line profiles. Because the Ca ii 8542 Å line is close
to the beginning of the spectral order, creating uncertainty in the
continuum normalization, we did not include this line in the plot.

Of course, the proposed model of Ca isotopic separation is
at best a crude approximation of potentially much more complex
isotopic stratifications. However, we find that, for many stars,
introducing a combination of stratification and isotopic segrega-
tion noticeably improves the fit to the IR triplet lines and pro-
vides direct evidence for the Ca isotopic separation in the atmo-
spheres of Ap stars.

Finally, we note that the continuum normalization in the
region around IRT lines is indirectly based on the adopted ef-
fective temperatures, which may introduce an additional un-
certainty and sometimes lead to a poor fit in the line wings.
However, we have verified that even considerable errors in Teff
lead only to a small change in the overall depth of the Ca ii
8498 Å line computed for a given Ca stratification. Since this
line is located sufficiently far from the H line core, its profile,
especially the shape of the inner core region used in the isotopic
analysis, is generally not affected by the Teff errors.

7. Results

7.1. Ca stratification

The Ca stratification analysis described in Sect. 5 was applied
to all Ap stars included in our sample. The presence of a strat-
ified Ca distribution is inferred for all stars except the hot Ap
star HD 170973, where stratification appears to be negligible.
Table 4 provides parameters of the step-function model distri-
butions of Ca abundance. These vertical abundance profiles are
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Fig. 8. Ca stratification in the atmospheres of selected program stars.
Upper panel: distribution of Ca in HD 66318, HD 75445, HD 134214,
HD 166473 and HD 111133. For stars enriched in heavy Ca the filled
circle indicates the bottom of the heavy Ca isotope layer. Lower panel:
same for stars with complex distribution of Ca abundance with height
(HD 965, HD 116114, HD 137909, HD 137949, HD 217522).

characterized by an abundance jump in the atmospheric region
−1.3 ≤ log τ5000 ≤ −0.5, a 1–1.5 dex overabundance deep in the
atmosphere and a strong Ca depletion above log τ5000 ≈ −1.5.
The formal uncertainty of the stratification parameters is typi-
cally 0.3–0.7 dex, 0.1–0.3 dex and < 0.1 dex for the upper abun-
dance, lower abundance and the position of the Ca abundance
jump, respectively. The Ca stratification in the atmospheres of
selected program stars is shown in Fig. 8.

For several stars, we had to consider a more complex ver-
tical distributions of Ca abundance. Observations of HD 965,
HD 137909, HD 137949 are better reproduced with an increase
of Ca concentration in the upper atmospheric layers above
log τ5000 = −5. Although seemingly complicated, this picture
does not contradict theoretical Ca diffusion calculations. Both
Borsenberger et al. (1981, Fig. 6) and Babel (1992) inferred an
increase in Ca abundance in the uppermost layers that are above
the main abundance jump. However, NLTE treatment of the Ca
lines formation is needed to investigate stratification of Ca in
the upper atmospheric layers in more detail. For two other stars,
HD 116114 and HD 217522, a structure of the transition zone
somewhat more complex than a linear transition between two
constant values is required to fit observations. Figure 8 (lower
panel) illustrates the final chemical stratification profiles adopted
for the five stars where Ca stratification deviates from a step-
function profile.

We note that for all stars the DDAFIT inversion was per-
formed on the original column mass (logρx) depth grids of

the ATLAS9 models. Table 4 provides the vertical stratification
parameters converted to the log τ5000 scale. In the cases when
the transition zone is wide, extending to the lower atmospheric
layers, transformation between the column mass and the stan-
dard optical depth scale becomes non-linear, which leads to a
distortion of the step-function shape (e.g., Ca distribution for
HD 137949 in Fig. 8). For the same reason in some of the
stars where this problem was encountered (e.g., HD 137949,
HD 188041) the formal solution for the Ca distribution yields
an unrealistically high Ca abundance in the lower atmosphere.
However, we find that in these objects the actual inferred strat-
ification profile often has a plateau with log(Ca/Ntot) ≈ −3.5
in the layers around log τ5000 ≈ 0. This value of the abundance
gives the actual element concentration that influences the Ca line
formation. The formal high Ca abundance occurs far below the
photosphere (e.g., the bottom panel of Fig. 8 shows this situa-
tion for HD 137949). It does not influence the observed Ca line
profiles. Therefore, for all stars marked by a letter “c” in Table 4
we assumed the Ca abundance at log τ5000 ≈ 0 as log(Ca/Ntot)lo,
modifying the position and the width of the abundance jump cor-
respondingly.

Homogeneous determination of the calcium vertical distribu-
tion in a large number of magnetic Ap stars allows us to search
for possible dependence of diffusion signatures on the stellar at-
mospheric parameters and magnetic field strength. However, ex-
cept for the marginal tendency of the Ca abundance in the upper
layers to be higher in hotter stars, we found no clear correla-
tions between each of the four stratification parameters on the
one hand, and Teff and 〈Bs〉 on the other. Although the qualitative
form of the Ca stratification is the same in all stars, indicative of
a universal radiative diffusion process, the observed star-to-star
variation in stratification profiles appears to be irregular and un-
related to any other stellar characteristic.

7.2. The Ca isotopic anomaly

The Ca isotopic analysis procedure outlined in Sect. 6 was ap-
plied to all stars included in our paper. Table 4 lists the lower
boundary (uncertain to within ≈0.1 dex) of the heavy Ca layer in
the atmospheres of magnetic Ap stars for which the Ca ii 8498 Å
line could not be reproduced with the terrestrial isotopic mixture.
Our estimate of the dominant contributor among different heavy
Ca isotopes is also given. Out of 23 program stars, the presence
of heavy isotopes is established in 17 objects.

For three stars, HD 965, HD 137909, HD 137949, the mod-
elling of the IR triplet line requires an increase of the Ca abun-
dance in the upper atmosphere, above the abundance jump given
by the simple stratification analysis. In these cases we attribute
the high-lying cloud to heavy Ca.

Figure 9 compares theoretical spectrum synthesis calcula-
tions with observations for a subset of 12 cooler (Teff ≤ 9000 K)
stars with different effective temperatures and different magnetic
field intensity. The stars are arranged in order of increasing mag-
netic field strength. It is evident that the presence of heavy Ca
isotopes inversely correlates with magnetic field strength. This
effect is further illustrated in Fig. 11a, where we quantify the de-
tection of heavy Ca by the ratio of calculated equivalent widths
of the 44Ca +46Ca +48Ca to 40Ca line components. In the stars
with small to moderate magnetic fields we clearly see a signif-
icant contribution of the heavy isotopes 46Ca and 48Ca (large
equivalent width ratio). This contribution decreases with the in-
crease in magnetic field strength. Even in HD 137909 (β CrB),
with a mean magnetic field modulus of 〈Bs〉= 5.4 kG, one still
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Table 4. Parameters of the Ca stratification and isotopic anomaly determined for magnetic CP stars.

HD Stratification parameters Ca isotopic anomaly Comment
number log(Ca/Ntot)up log(Ca/Ntot)lo log τ5000(step) ∆ log τ5000(step) log τ5000(isot) isotope

965 −8.4 −4.9 −0.7 0.1 −4.9 46Ca a, d
24712 −8.7 −5.1 −1.2 2.5 −1.4 46Ca c, d
29578 −8.9 −4.3 −1.2 0.7
47103 −7.7 −4.6 −0.8 0.3
66318 −8.0 −5.0 −0.6 1.1
75445 −8.9 −4.9 −0.9 0.2 −2.0 48Ca

101065 −8.9 −5.3 −0.4 0.4 −0.2 48Ca
111133 −10.0 −6.3 −2.0 0.4 −1.5 44Ca
116114 −7.4 −4.7 −1.3 0.2 −3.8 48Ca b
118022 −7.0 −2.0 −0.1 0.3 −1.5 48Ca
122970 −7.7 −5.1 −1.5 2.8 −1.6 46Ca c, d
128898 −8.5 −4.0 −1.0 2.0 −1.9 48Ca c, d
133792 −8.1 −5.6 −0.6 0.1 −1.0 48Ca
134214 −8.4 −4.8 −0.9 0.9 −1.5 48Ca
137909 −8.2 −4.4 −1.0 0.4 −4.4 48Ca a
137949 −9.6 −3.5 −1.0 1.8 −4.9 48Ca a, c
144897 −8.5 −5.2 −1.9 0.5
166473 −8.5 −3.8 −1.0 1.1 d
170973 −5.3 −5.0 −1.1 0.1
176232 −9.0 −4.1 −1.2 1.8 −1.2 48Ca d
188041 −7.4 −3.1 −1.2 2.5 −3.7 46Ca c, d
203932 −8.7 −4.5 −1.2 2.6 −2.1 48Ca c, d
217522 −8.8 −4.8 −0.3 0.7 −0.6 48Ca b

The columns give HD number of stars, step-function parameters of the vertical Ca distributions (abundance in upper atmosphere, abundance in
the lower layers, position of the abundance jump and the width of the transition zone), parameters of the Ca isotopic separation if applicable (the
optical depth of the boundary between the heavy and light Ca layers, the dominant isotopic component of the heavy Ca cloud). The last column
indicates deviation of the final Ca stratification profile from a simple step-function.
Comments. a – abundance increase in the upper layers; b – complex transition zone; c – distortion of the step-function after log ρx to log τ5000

transformation; d – a change in the upper abundance value.
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Fig. 9. Comparison of the observed (full circles) and calculated (lines) profiles of the Ca ii 8498 Å line in a subset of program stars. Solid line
shows theoretical calculations for the terrestrial Ca isotopic mixture and the Ca stratification derived from optical lines. The dashed line presents
spectrum synthesis for the models with vertical separation of the Ca isotopes. The stars are arranged in order of increasing magnetic field strength.
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Fig. 10. Same as in Fig. 9 but for the stars with Teff > 9000 K.

needs a small contribution of 48Ca, but under the assumption of
a specific Ca distribution shown in Fig. 8. No evidence for the
presence of heavy Ca is found in cool Ap stars with 〈Bs〉>∼ 6 kG.

Due to the temperature dependence of the Ca line intensity,
we used a smaller number of lines for stratification analysis of
hot Ap stars (Teff > 9000 K). In these stars stratification is de-
fined mainly by the Ca ii lines. Among the neutral Ca lines only
the resonance Ca i 4227 Å line could be utilized. The agreement
of calculated and observed line profiles is poorer for hot stars.
However, the general anticorrelation between the presence of the
heavy Ca isotopes and magnetic field strength is still apparent
(see Fig. 10). As in cool stars, no evidence for the presence of
heavy Ca is found in hot Ap stars with 〈Bs〉>∼ 6 kG. The only ex-
ception is HD 170973, which has no observable magnetic field
and shows no contribution of the heavy Ca isotopes. We note
that HD 170973 is also the only star for which we find no evi-
dence of Ca stratification. This star also possesses the highest Ca
abundance among the hot Ap stars in our sample.

Thus, it appears that the mechanism responsible for the accu-
mulation of heavy Ca isotopes in the line-forming atmospheric
region works more efficiently in stars with a small magnetic field
strength. Figure 11 illustrates several other interesting relations
between the Ca isotopic anomaly and stellar parameters that we
have revealed in this study. The optical depth of the layer sep-
arating the heavy and light Ca clouds depends on the magnetic
field strength. In stars with more intense fields heavy Ca iso-
topes tend to accumulate much higher in the stellar atmospheres
(Fig. 11b). There is also an anticorrelation of the heavy Ca con-
tribution and the total equivalent width of the Ca ii 8498 Å tran-
sition (Fig. 11c), which implies that the efficiency of the isotope
separation process depends on the total line intensity in cases
where such separation exists.

We find no difference between roAp and non-pulsating Ap
stars (shown with different symbols in Fig. 11) regarding the

presence of heavy Ca excess in their atmospheres and its cor-
relation with the magnetic field strength and line intensity.

8. Discussion and conclusions

In this paper we have investigated the vertical stratification and
isotopic anomaly of Ca in a large sample of cool magnetic Ap
stars. Our study is the first to address the interesting problem of
the presence of heavy Ca isotopes in chemically-peculiar stars
with detailed polarized radiative-transfer calculations, which
take into account the effects of the magnetic field and chemi-
cal separation in stellar atmospheres. We derive stratification of
Ca for 23 Ap stars using a sample of Ca i and Ca ii lines dis-
tributed over a broad spectral range. All but one program star
clearly show signatures of the Ca stratification, whereas com-
parison stars reveal no inhomogeneities in the vertical Ca dis-
tribution when analysed with the same techniques and atomic
data. Although our stratification modelling was based on a sim-
plified step-function approximation and adopted a simplified ho-
mogeneous model for the magnetic field geometry, the inferred
parameters of the vertical Ca distributions impose important ob-
servational constraints on radiation-diffusion process theory in
stellar atmospheres.

Analysis of the IR Ca triplet line Ca ii 8498 Å provided in-
formation on the relative contribution of different Ca isotopes.
Spectrum synthesis calculations show that significant isotopic
shifts observed in the core of Ca ii 8498 Å cannot be attributed
to the overabundance of heavy Ca isotopes throughout the whole
stellar atmosphere. Instead, we show that the Ca line profile
shape is consistent with the vertical separation of different Ca
isotopes, with heavy Ca located in a cloud above the most abun-
dant isotope 40Ca. Even though the presence of heavy Ca is
prominent in the line core, the normal Ca isotope dominates the
line wings and is more abundant in the lower atmosphere where
the total Ca abundance is also much larger. Thus, our tentative
model calls for a less extreme heavy Ca enrichment than was
suspected in previous investigations limited to the centroid mea-
surements of the Ca ii 8498 Å line core.

Recently different stratification of He isotopes was found by
Bohlender (2005) in the analysis of 3He and related stars. That
paper used a similar approach to modelling chemical stratifi-
cation, but addressed He vertical distribution only in hot non-
magnetic, chemically-peculiar stars.

We have successfully used the model with Ca stratification
and vertical isotopic separation to explain the appearance of the
Ca ii 8498 Å in all stars showing an excess of heavy Ca isotopes.
The prominent anticorrelation between the presence of heavy
Ca and magnetic field strength, first reported by Ryabchikova
(2005), is confirmed and strengthened in the present paper. We
find that only stars with sufficiently weak fields show traces of
heavy Ca. According to our knowledge, this interesting relation
is the only case when definite dependence of the chemical abun-
dance characteristic on the magnetic field strength is found for
Ap stars. Furthermore, we find that in stars with stronger fields
the heavy Ca isotopes tend to accumulate higher in the atmo-
sphere.

According to the results of our study, pulsating (roAp) and
non-pulsating Ap stars are not distinguished by the characteris-
tics of their Ca isotopic anomaly. Both groups of stars are equally
likely to show an excess of heavy Ca, and follow the same trend
of the heavy isotope contribution versus magnetic field strength
and Ca ii 8498 Å line intensity.
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Fig. 11. Results of the analysis of Ca isotopic composition in Ap stars. a) Ratio of calculated equivalent width of the heavy and light Ca components
of the 8498 Å line vs. magnetic field strength. b) Position of the boundary between the light and heavy Ca layers vs. magnetic field strength. c) The
equivalent width ratio vs. the total equivalent width of the Ca ii 8498 Å line. d) The equivalent width ratio vs. the optical depth of the boundary
between the light and heavy Ca layers. In all plots different symbols correspond to Ap stars with detected presence of heavy Ca (filled symbols)
and those showing no heavy Ca isotopes (open symbols), as well as to roAp (circles) and non-pulsating Ap (triangles) stars.

If the overall distribution of Ca abundance in the atmo-
spheres of Ap stars follows the predictions of radiatively-driven
diffusion, our results on the isotopic separation favour the light-
induced drift (LID) as the main process responsible for this sepa-
ration. According to Atutov & Shalagin (1988), LID arises when
the radiation field is anisotropic inside the line profile. Such an
anisotropy takes place for a line of the trace isotope, for instance
46Ca and 48Ca in the terrestrial calcium mixture, which is located
in the wing of a strong line of the main isotope 40Ca. The main
isotope induces the drift velocity for other isotopes. If the trace
isotope’s line is located in the red wing of the line due to the
main isotope, the drift velocity is directed towards the upper at-
mosphere and the trace isotopes are pushed upwards. This is in
agreement with the observed vertical distribution of Ca isotopes.
The Zeeman splitting changes the line shape and decreases the
flux anisotropy for the line of trace isotope. When magnetic field
becomes sufficiently strong, ∼5–6 kG, the flux anisotropy disap-
pears and the isotopic separation is ceasing. Therefore, the ob-
served Ca isotopic anomaly in magnetic stars may be qualita-
tively explained by the combined action of the radiatively-driven
diffusion and the light-induced drift. For He, a theoretical study
of both radiatively-driven diffusion and LID was presented by
LeBlanc & Michaud (1993). These authors showed that LID ac-
celerates separation of 3He from 4He in hotter CP stars. Detailed
theoretical chemical diffusion calculations (LeBlanc & Monin
2004) should incorporate LID in order to test our hypothesis that
this effect may be important for the chemical transport processes
in cool Ap-star atmospheres.
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