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ABSTRACT
Over the last decade, significant amounts of high-spectral and time-resolution spectroscopic
data have been acquired for a number of rapidly oscillating Ap stars (roAp). Progress in the
understanding of the information held by these data requires the development of theoretical
models that can be directly compared with them. In this work, we present a theoretical model
for the radial velocities of roAp stars that takes full account of the coupling between the
pulsations and the magnetic field. We explore the impact on the radial velocities of changing
the position of the observer, the mode frequency, and angular degree, as well as of changing
the region of the disc where the elements are concentrated. We find that for integrations
over the full disc, in the outermost layers the radial velocity is generally dominated by the
acoustic waves, showing a rapid increase in amplitude. The most significant depth-variations
in the radial velocity phase are seen for observers directed towards the equator and for even
degree modes with frequencies close to, or above the acoustic cutoff. Comparison between the
radial velocities obtained for spots of elements located around the magnetic poles and around
the magnetic equator, shows that these present distinct amplitude-phase relations, resembling
some of the differences seen in the observations. Finally, we discuss the conditions under
which one may expect to find false nodes in the pulsation radial velocity of roAp stars.
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1 IN T RO D U C T I O N

The rapidly oscillating Ap stars (roAp) are main-sequence classical
pulsators, with oscillations that can have periods between 6 and
24 min (Kurtz 1982; Alentiev et al. 2012). They are a subclass
of chemically peculiar stars, and have strong magnetic fields, with
mean magnitudes of a few kG (Mathys 2017). Up to this day, 61
pulsators of this type have been found (Smalley et al. 2015). The
pulsations are high-order p-modes that are modified in the surface
layers by the magnetic field. They are usually aligned with the
magnetic field, and, in turn, inclined with respect to the rotation
axis of the star, which makes the roAp stars oblique pulsators (Kurtz
1982).

Since the first detection of radial velocity variations in roAp stars
(Matthews et al. 1988), many high-resolution spectroscopic studies
have made possible the extraction of large amounts of information
about the pulsations through the inspection of these radial velocities.
A distinguishing feature of roAp pulsations demonstrated by these
studies is an unusually large difference in pulsation amplitudes and

� E-mail: Paola.Quitral@astro.up.pt

phases observed in spectral lines of different chemical elements
and even different ions of the same element. That is due to the
stratification of metals, in particular rare-Earth elements (REE), in
the atmosphere of peculiar stars, which gives us the opportunity of
observing different heights in the atmosphere of the star. Moreover,
the fact that some of these elements are not uniformly distributed,
but rather concentrated in spots, means that through high-resolution
spectroscopy one can probe different areas on the stellar disc.

Through fitting the observed radial velocity to a function of the
type Acos (ωt + φ), where A is an amplitude, φ a phase, ω the pul-
sation angular frequency, and t the time, these observational studies
provide information on amplitude and phase variations throughout
the atmospheric layers of the stars. Examples of this are provided
in the works by Kochukhov & Ryabchikova (2001), Mkrtichian,
Hatzes & Kanaan (2003), and Ryabchikova et al. (2007a). In some
other cases, radial velocity amplitude and phase shifts are derived
from the bisector analysis of the spectral lines (Baldry et al. 1998;
Kurtz et al. 2006).

A number of different theoretical non-perturbative analyses have
been developed over the years to address the coupling between
the magnetic field and pulsations in roAp stars (Dziembowski &
Goode 1996; Bigot et al. 2000; Cunha & Gough 2000; Saio &
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Table 1. Parameters of the stellar model considered in this work. Mass,
radius, effective temperature, temperature of the isothermal atmosphere,
and acoustic cutoff frequency.

Mass Radius Teff Tiso fcut-off

1.8 M� 1.57 R� 8363K 6822K 2.458 mHz

Gautschy 2004; Cunha 2006; Sousa & Cunha 2008a; Khomenko &
Kochukhov 2009; Sousa & Cunha 2011). Among these, the models
by Cunha (2006) and by Saio & Gautschy (2004) are particularly
relevant to the current study, as they consider a realist equilibrium
model, full coupling between the interior and atmosphere and allow
the probing of frequencies beyond the acoustic cutoff. Both models
show that the eigenfunctions are strongly distorted in the outer layers
by the presence of the magnetic field, which not only changes the
amplitude of the perturbations, but also adds a significant angular
component to the displacement. This type of distortion has been
detected also in observations by Kochukhov (2004).

The theoretical models also predict shifts in the frequencies that
increase smoothly due to the effect of the magnetic field up to a
point when they decrease suddenly, starting to increase again for
frequencies still larger. These sudden jumps repeat periodically as
the frequency increases, every time the coupling between the os-
cillations and the magnetic field is optimal. In both works, it was
found that around these frequency jumps the eigenfunctions are
most strongly perturbed, and their modelling becomes increasingly
difficult. In this work, we use the code developed by Cunha (2006)
to compute the radial velocities for roAp stars and compare the re-
sults with the typical amplitude and phase variations derived from
observational data. Due to the difficulty in modelling, the eigen-
functions close to the frequency jumps mentioned before, in this
work we will not consider such frequencies.

In Section 2, we describe the equilibrium model of the star and the
pulsation model, as well as the physical properties of the solutions.
We also describe the method to obtain the radial velocities in the
atmosphere of the star. In Section 3, we discuss seven different
cases illustrating different results. Finally, in Section 4 we discuss
our results in the light of the observational data and conclude.

2 TH E MO D EL

2.1 Equilibrium model

To model the radial velocities in the outer layers of the stars, we
consider small perturbations to an equilibrium model with global
properties within the range observed for this class of pulsators (see in
Table 1). The parameters of this model also sets it within the region
where the excitation mechanism of roAp stars can be theoretically
understood (Balmforth et al. 2001; Cunha 2002; Saio 2005; Cunha
et al. 2013).

As we are particularly interested in studying the pulsation proper-
ties in the atmosphere of the star, the equilibrium model, computed
with the CESAM code (Code d’Evolution Stellaire Adaptatif et Mod-
ulaire; Morel 1997), has had the atmosphere extended. In addition,
we added an isothermal atmosphere on the top of the model in or-
der to allow us to reach lower densities such as those found in the
self-consistent models of peculiar stars’ atmospheres (Shulyak et al.
2009). In the isothermal atmosphere, the pressure and density have
the form: p = pse−η/H and ρ = ρse−η/H, respectively, were η is the
height measured from the bottom of the isothermal atmosphere, ps

and ρs are the pressure and density at the top of the CESAM model

Figure 1. Illustration of the star, permeated by a dipolar magnetic field
with identification of the Cartesian coordinates (X, Y, Z), and the spherical
coordinates (r, θ , φ). Shown is also the vector magnetic field, B, at a co-
latitude θ and the angle αB between the radial direction and the direction of
the local magnetic field.

with values of 2 × 103 Ba and 4 × 10−9 g cm−3, respectively, and
H is the pressure scale height.

The atmospheric structure of roAp stars is very complex, show-
ing horizontal and vertical variations of chemical elements and
possible gradients of the magnetic field intensity. These properties
have been studied in a number of works (Nesvacil, Hubrig & Jehin
2004; Kochukhov, Shulyak & Ryabchikova 2009; Shulyak et al.
2009, 2010; Kudryavtsev & Romanyuk 2012; Nesvacil et al. 2013).
In general, these studies showed that, although the atmospheric
structure deviates systematically from that of normal stars, it is not
particularly anomalous in the sense that it can still be approximated
by a steep temperature decline followed by roughly isothermal up-
per layers. That justifies the model adopted here. The exception is
a small temperature inversion associated with the high-lying REE
cloud (see illustrations in Shulyak et al. 2009; Nesvacil et al. 2013),
which we have not considered in our model and that may have
implications to the reflection of the waves. This will be referred in
Section 4.2.

Furthermore, we assume that the magnetic field is force-free, and
neglect the effect of rotation both on the equilibrium structure and
on the pulsations. In practice, we will consider in this work a dipolar
magnetic field with a polar magnitude Bp.

In Fig. 1, we illustrate the magnetic field in the equilibrium. The
magnetic field axis is along the Z direction in the Cartesian coordi-
nate system (X, Y, Z), while (r, θ , φ) are the spherical coordinates.
We show the magnetic field B at the co-latitude θ and define the
angle between the position vector r and the magnetic field B as αB.

2.2 Pulsation model

The pulsation model is based on that adopted for the MAPPA code
(MAgnetic Perturbations to Pulsations in Ap stars; Cunha 2006).
In that model, two regions are considered, namely, the interior of
the star where the magnetic pressure is neglected and the outer
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layers, named by the author the magnetic boundary layer, where
the magnetic pressure is comparable or larger than the gas pressure.
In the interior, the standard oscillation model is used to describe
the p-modes. In the magnetic boundary layer, with a characteristic
depth of only a few per cent of the radius, the author considers the
direct effect of the magnetic field on the pulsations, and describes
them by the following system of magnetohydrodynamic equations:

∂ B
∂t

= � × (v × B), (1)

Dρ

Dt
+ ρ� · v = 0, (2)

ρ
Dv

Dt
= −�p + j × B + ρg, (3)

Dp

Dt
= γp

ρ

Dρ

Dt
, (4)

where the current density is j = 1/μ0 ∇ × B, μ0 is the permeability
in the vacuum, ρ is the density of the gas, p is the pressure, g is the
gravitational field, ξ is the displacement vector and v = ∂ξ/∂t is
the velocity. The system represents adiabatic motions, in the limit
of perfect conductivity and is solved for small perturbations to the
equilibrium structure and under the Cowling approximation.

Since the magnetic boundary layer is thin and the magnetic field
varies on large scales only, the equations in this region of the star are
solved by performing a plane-parallel approximation and assuming
a local constant magnetic field, at each latitude. Consequently, at
each latitude a local-coordinate system (x, y, z) is defined with the z
component pointing outwards of the star, and such that the magnetic
field is zero in the y direction. The local magnetic field at a given
co-latitude θ is then given by

B =
(

Bp

2
sin(θ ), 0, Bp cos(θ )

)
, (5)

where Bp is assumed to be constant, which is a good approximation
given that the layer is thin.

Furthermore, since the system is solved under a linear approxi-
mation it does not inform about the amplitude of the displacement.

In what follows, we will consider only solutions corresponding
to the azimuthal order m = 0, thus, the solution for the displacement
at each latitude, in the local coordinate system, will be written as
ξ = (ξx, 0, ξz). Moreover, a second coordinate system will be used
in the local approximation, namely, one that has axes parallel and
perpendicular to the magnetic field. The latter coordinate system is
obtained from the first through a rotation of αB around the y-axis.
We denote it by (u�, y, u⊥). In the second coordinate system, the
solutions are written in the form ξ = (ξ‖, 0, ξ⊥).

In order to understand the solutions given by the MAPPA code
(Cunha 2006), we need to consider separately the two different
regions mentioned before, namely the magnetic boundary layer of
the star, and the interior. In the latter, dominated by the pressure
of the gas, we find two decoupled solutions, an acoustic wave,
which is displacing the gas in the radial direction, and a transverse
Alfvén wave that is displacing the gas in a local horizontal direction
(Dziembowski & Goode 1996; Cunha & Gough 2000). Moreover, in
the magnetic boundary layer the solutions can be best understood by
further dividing this layer into two different regions (Cunha 2007),
namely, the region where the pressure of the gas is of the same order
of magnitude as the magnetic pressure and the outermost layers,
where the magnetic pressure dominates. In the former, we have

magnetoacoustic waves, while in the latter the waves decouple once
again in the form of acoustic waves that are displacing the gas in the
direction parallel of the magnetic field, and of compressional Alfvén
waves that are displacing the gas in the direction perpendicular to
the magnetic field (Sousa & Cunha 2008b).

2.3 Decoupling of the waves

The system of equations (1)–(4) is solved up to a normalizing con-
stant by applying adequate boundary conditions. At the surface, the
magnetic field is matched continuously onto a vacuum field. The
remaining boundary conditions are obtained by matching the nu-
merical solutions to approximate analytical solutions in the regions
where the magnetic and acoustic waves are decoupled, as described
below.

In the interior of the star, the acoustic component corresponds to
the solution obtained when B = 0 and the magnetic component is
assumed to be a wave that dissipates inside the star. Then, there the
numerical solution for the magnetic component is matched onto an
analytical asymptotic solution for an Alfvén wave propagating to-
wards the interior of the star (see Cunha & Gough 2000 for details).

The final boundary condition consists in matching the numerical
solution for the parallel component of the displacement to its ana-
lytical counterpart in the isothermal atmosphere. In the isothermal
atmosphere, the analytical solutions are those derived in the work
of Sousa & Cunha (2011). There the magnetoacoustic waves are
already decoupled into a (slow) acoustic wave and a (fast) com-
pressional Alfvén wave that move in the directions parallel and
perpendicular to the magnetic field, respectively, and have the form

ξ‖ = |As|
p1/2

exp i(±k‖η + ωt + φs), (6)

ξ⊥ = |Af|J0(2
√

χρ) exp i(ωt + φf), (7)

where ω is the angular oscillation frequency, As, φs, Af, φf are
the amplitudes (A) and phases (φ) of the acoustic and magnetic
waves, respectively, at the bottom of the isothermal atmosphere,
which depend on the latitude, J0 is the Bessel function, and χ is
a constant χ = H 2ω2μ0/B

2
p . Moreover, the parallel component of

the wavenumber is defined by

k‖ =
√

ω2ρ

γp cos2 αB

− 1

4H 2
, (8)

where γ is the first adiabatic exponent. k� can be real or imaginary.
In the former case, the parallel component of the solution (acoustic
wave) is oscillatory, while in the latter case it is exponential.

Inspecting the parallel component of the wave number k�, we can
see that it depends on latitude through the angle αB. Therefore, even
when the frequency of the oscillation is below the acoustic cutoff
frequency for a non-magnetic star, in the presence of a magnetic
field k� will become real and the solutions will become oscillatory
when the co-latitude is larger than a given critical value. The critical
frequency,

ωc =
√

γp cos2 αB

4H 2ρ
, (9)

defines the co-latitude at which the parallel component of the so-
lution changes its behaviour from exponential to oscillatory in the
presence of the magnetic field. We shall call that co-latitude the
critical angle, αcr.
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Figure 2. Dimensionless displacement ξ at the co-latitude of 37◦, as a
function of the normalized radius (bottom x-axis) in the outer 2 per cent
of the stellar model, for a frequency 1.7 mHz with a magnetic field of
2 kG. The left-hand panels show the components of the displacement in
the local vertical (top) and local horizontal (bottom) directions. The right-
hand panels show the displacement in the direction parallel to the magnetic
field (top), and perpendicular to the magnetic field (bottom). The different
curves represent different times, the yellow shadow marks the isothermal
atmosphere, and the red vertical line represents the bottom of the photosphere
of the star. The top x-axis indicates the atmospheric height measured from
the bottom of the photosphere in units of the (constant) pressure scale height
of the isothermal atmosphere.

For a dipolar magnetic field, the critical frequency has its maxi-
mum value at the magnetic pole, corresponding to the critical fre-
quency in the absence of a magnetic field (i.e. to the acoustic cutoff
frequency). But it decreases as the magnetic equator is approached.
As a consequence, even if the oscillation frequency is below the
acoustic cutoff frequency, it will always be above the local critical
frequency for co-latitudes larger than a critical value and, thus, there
will always going to be wave energy losses in the equatorial zone
when the magnetic field is considered.

2.4 Displacement solutions

Due to the structure of the magnetic field, at each latitude the dis-
tortion of the oscillation is different. In particular, the magnitude
and direction of the magnetic field is different at different latitudes,
affecting differently both the amplitude and characteristic scale of
the displacement. To illustrate this, we discuss below a particular
case, at two different latitudes.

The displacement as a function of the radius at two different
latitudes is shown for a cyclic frequency (f = ω/2π) of 1.7 mHz
and a magnetic field, Bp, of 2 kG, in Figs 2 and 3. On the left-hand
panels, we show the components of the solution in the innermost
part of the magnetic boundary layer, using the local coordinate
system (x, y, z), and on the right-hand panels the local parallel and
perpendicular components of the solution in the outermost part of
the magnetic boundary layer, using the coordinate system (u�, y,
u⊥).

In Fig. 2, the displacement is shown for a co-latitude of 37◦.
At this latitude, the frequency is below the critical frequency and,
thus, in the isothermal atmosphere, marked by the yellow-shaded

Figure 3. The same as in Fig. 2 but for a co-latitude of 87◦.

region on the right-hand panels, the acoustic wave (component of
the displacement parallel to the magnetic field) shows a standing
behaviour as does the compressional Alfvén wave (perpendicular
component), which shows, in addition, a constant amplitude in that
part of the atmosphere, as expected from equation (7).

In the inner layers shown on the left-hand panels, the acous-
tic wave (vertical component ξ z in these layers), also presents an
almost standing behaviour while the Alfvén wave (the horizontal
component ξ x) has a clear running behaviour, dissipating towards
the interior of the star as expected from the boundary conditions.

Fig. 3 illustrates a case of a co-latitude of 87◦. As expected, closer
to the equator, where the frequency of the wave is larger than the
critical frequency, the acoustic wave will, instead, have a running
behaviour in the atmosphere. As a consequence, at this co-latitude
the exponential growth of the wave amplitude is larger than at the
co-latitude of 37◦. Because the energy carried by the acoustic wave
is conserved, the wave amplitude thus increases as the inverse of the
root square of the density (or, equivalently in these layers, of the root
square of the pressure – cf. equation 6). We note, for comparison,
that for the co-latitude of 37◦, the exponential term in equation (6)
partially compensates the exponential increase associated with the
decrease of the pressure, leading to a smaller increasing rate of the
amplitude, consistent with a decrease in the energy content of the
acoustic wave.

2.5 Radial velocities

To obtain the radial velocity as a function of the radius in the outer
layers of a roAp star, we need to integrate the velocity field at
each specific radius over the area of interest, which may be the full
visible disc, or a subsection of it, when the elements contributing
to the radial velocity measurement are concentrated in a particular
region only. We compute the integrated velocity field, considering a
liner limb-darkening law, using the expression (Dziembowski 1977)

Vint =
ϕ′

f∫
ϕ′

i

θ ′
f∫

θ ′
i

[vrXr + vθXθ ] × C−1
n (1 − a(1 − cos θ ′)) cos θ ′ sin θ ′dθ ′dϕ′,(10)

where (r, θ , φ) is the spherical coordinate system, described in
Fig. 1, (r, θ

′
, φ

′
) is a spherical coordinate system with the polar

axis, here named Z
′
, aligned with the direction of the observer, a is
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Figure 4. Representation of a spot in the code to calculate the radial veloc-
ity, considering the star at different rotational phases.

the limb-darkening coefficient, for which we adopt a value of 0.46
(Claret & Hauschildt 2003), and Cn is a normalization constant
from the integration of the limb-darkening in the visible disc. ϕ′

i ,
ϕ′

f and θ ′
i , θ ′

f are the integration limits that represent a given area
of the visible disc. Xr and Xθ are the projections of the unit vector
along the radial direction r̂ and along the polar direction, θ̂ onto the
direction of the observer ẑ′, respectively. Moreover, vr and vθ are

the velocity components derived from the displacement, v = d

dt
δr ,

where,

δr =
(
ξr (r, θ )Y 0

l r̂ + ξθ (r, θ )Y 0
l θ̂

)
eiωt . (11)

Here, ξ r and ξ θ are obtained by combining the local solutions
ξ z and ξ x, respectively, at each latitude. Their θ dependence is a
consequence of the presence of the magnetic field that, as discussed
before, influences the eigenfunction differently at different latitudes
distorting the eigenfunctions from the pure spherical harmonic solu-
tions obtained in the non-magnetic case. Moreover, since the system
loses energy both from the running magnetic waves at the bottom of
the magnetic boundary layer and from the acoustic running waves in
the atmosphere, the eigenfrequencies and eigenfunctions are com-
plex.

When considering the integration only in a certain region of the
disc, corresponding to a chemical overabundance spot, the spot can
be studied from different viewing angles, as illustrated in Fig. 4.
We can, thus, study the changes in the radial velocity associated to
a spot throughout the rotation of the star.

We also computed the integral for the radial velocity considering,
instead, the limb-darkening and line-weighting proposed by (Land-
street & Mathys (2000)). However, using their main values for the
coefficients proposed, we did not find a significant difference when
comparing to the results obtained with equation (10).

To facilitate the physical interpretation of the radial velocity Vint,
the code allows us to separate the contributions to Vint of the dif-
ferent components of the velocity perturbation. This is done by
performing an integral that is in all equal to that defined in equa-
tion (10), except that the total velocity projected in the direction of
the observer that enters that integral is substituted by the projection
of a single component of the velocity. This facilitates the physical
interpretation because in the outer atmospheric layers the acoustic
waves correspond to displacements parallel to the magnetic field
while the magnetic waves correspond to displacements perpendicu-
lar to the magnetic field. When the velocity field component aligned
with the magnetic field alone is considered in that integral, we de-
nominate the result of that integral V�. Similarly, when the integral
is based on the velocity field component perpendicular to the mag-
netic field alone, we denominate the result of the integral by V⊥.
Moreover, we compute similar integrals considering the radial and

Table 2. Properties and parameters of the cases explored in this work.
The columns are: frequency, f; polar magnetic field, Bp; observer’s view;
integration area, which can be of the full visible disc (F. V. D.), or of a belt
in the equatorial zone (E. Z.); and the critical angle, αcr.

f Bp Obs. l Int. αcr

mHz kG from area

Case 1 1.7 2.0 pole 1 F. V. D. 50◦
Case 2 2.2 2.0 pole 1 F. V. D. 33◦
Case 3 2.7 2.0 pole 1 F. V. D. 0◦
Case 4 1.7 2.0 equator 0 F. V. D. 50◦
Case 5 2.2 2.0 equator 0 F. V. D. 33◦
Case 6 2.7 2.0 equator 0 F. V. D. 0◦
Case 7 2.7 2.0 pole 0 E. Z. 0◦

polar components of the velocity denominating the results by Vr

and Vθ , respectively.
In summary, the code allows us to compute the radial velocity

associated to the stellar pulsations, either for the full visible disc
or for part of it. Being able to define any area in the surface of
the sphere, which can represent a spot or a belt of elements in the
atmosphere of the star, and redefining the limits of integration, ϕ′

i ,
ϕ′

f , θ ′
i , and θ ′

f , so that these always remain in the visible disc, the
code makes it possible to study the pulsations for different positions
of the observer, for a single spot or the full visible disc. In addition,
it allows us to study the contributions to the radial velocity of the
different components of the velocity field.

3 R ESULTS

To analyze different possible solutions, we fix the magnetic field in
2 kG and explore three different pulsation frequencies. For the first
three cases, we consider that the observer is pole-on and that the
mode degree is l = 1. In addition, we analyze three cases in which
the observer’s position is equator-on and the mode degree is l = 0.
In doing so, in particular by fixing the frequencies, we intentionally
ignore the difference in frequency that would result from solving
the eigenvalue problem for modes of different degrees. We note that
we did not consider an odd degree mode for the equator-on view
because of the strong cancellation effect that would be present when
performing the disc integration. These cases correspond to the first
six entries in Table 2.

For a 2 kG magnetic field, the magnetoacoustic region in our stel-
lar model is placed fully in the interior of the star. This is illustrated
in Fig. 5 where the gas and magnetic pressures are compared. This
means that in the atmospheric region the acoustic and magnetic
waves are completely decoupled and, as noted in the Section 2, the
acoustic waves move in the direction of the local magnetic field,
and the magnetic waves move perpendicularly to it.

In addition, we consider a case in which an apparent node in the
isothermal atmosphere can be seen. This corresponds to the last
entry in Table 2.

To compare the amplitude, Ar, and phase, φr, variations of the
theoretical radial velocity with those derived from observations (e.g.
Ryabchikova et al. 2007a), we match the numerical solutions in the
atmosphere to a function of the type,

Vint = Ar cos(ωt + φr ). (12)
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Figure 5. Comparison between the gas pressure (thick red line) and the
magnetic pressure (grey line) in the outer 2 per cent of the star for a magnetic
field of 2 kG. The thin vertical red line marks the bottom of the photosphere.

3.1 Case 1

The first case we discuss is one in which the phase is found to
be nearly constant. To find a solution with a constant phase, it is
necessary to choose a frequency well below the acoustic cutoff.
Here, we take a frequency of 1.7 mHz. As we mentioned earlier, we
fix the magnetic field at Bp = 2 kG, and consider a mode of degree
l = 1 with an observer pole-on. At this particular frequency, the
acoustic waves change from having a standing character to having
a running character at a critical angle αcr = 50◦ (see Table 2),
meaning that for co-latitudes larger than this angle the local critical
frequency is smaller than 1.7 mHz.

The radial velocity is shown in the left-hand panel of Fig. 6. The
contributions of the components of the velocity parallel and perpen-
dicular to the magnetic field to the integral that defines the radial
velocity (equation 10) are presented in the top- and bottom-right
panels, respectively. In each panel, the vertical red line indicates the
bottom of the photosphere of the star and the shaded-yellow area
represents the isothermal atmosphere. The same notation is used for
all other cases.

Looking at the contribution of the parallel and perpendicular ve-
locity components in the atmosphere of the star, we can verify that
the acoustic and magnetic waves are already decoupled, since, as
predicted analytically by equations (6)–(7), we see an exponential
behaviour for the parallel component, and a constant behaviour for
the perpendicular component. Their contribution to the radial ve-
locity integral is of similar magnitude, although the acoustic waves
become progressively dominant with increasing atmospheric height.

The amplitude and phase of the radial velocity for this case are
shown in Fig. 7. The left-hand panel shows the amplitude variation
during one period of the oscillation at different heights in the atmo-
sphere. We recall that the amplitude of the oscillation is only known
up to a normalizing constant. In this particular plot (and in similar
plots for the other cases), we chose that constant in such a way as
to make the oscillation visible to the reader. The right-hand side
panels show the amplitude (top panel) and phase (bottom panel) of
the radial velocity as a function of the height in the atmosphere.

As we can see from the top-right panel, the total amplitude (i.e.
the amplitude derived from fitting the radial velocity – black line)

Figure 6. Dimensionless and normalized radial velocity. This case is for
integration over the visible disc, a magnetic field of 2 kG, a mode of fre-
quency 1.7 mHz and degree l = 1, and an observer pole-on. Shown in the
left-hand panel is the radial velocity as a function of the radius, at differ-
ent times within the oscillatory period represented by curves of different
colours. The upper-right panel shows the contribution to the radial velocity
of the velocity component parallel to the magnetic field. The bottom-right
panel shows the contribution to the radial velocity of the velocity component
perpendicular to the magnetic field. The labels on the top horizontal axes
show the height measured from the bottom of the photosphere in units of
the (constant) pressure scale height of the isothermal atmosphere. The red
vertical line represents the bottom of the photosphere and the yellow shadow
region represents the isothermal atmosphere.

follows the behaviour of the parallel amplitude, derived from the fit-
ting of V� and related to the contribution of acoustic waves (red line).
It is, however, always smaller than the parallel amplitude because
of the contribution from the magnetic waves, whose amplitude is
derived from the fitting of V⊥ (grey line). In the bottom-right panel,
we see that the total phase (black line) follows relatively closely
the parallel (acoustic) phase (red line) in the outermost layers, but
diverges from it in the lower atmospheric region due to the increas-
ing impact of the perpendicular (magnetic) phase. Despite this, the
phase variation across the whole atmosphere is small. The left-hand
panel of Fig. 7 gives us also an idea of the behaviour of the phase.
In this case, we can confirm the small variation of the phase with
height, seen in the slight shift of the zeros to the right, as we move
towards higher atmospheric layers.

This is a clear case in which the phase variation in the radial veloc-
ity results from the competition between the acoustic and magnetic
components that enter the integral, rather than from an actual phase
variation in either of them.

The perpendicular phase is always constant, due to the standing
nature of the magnetic waves, while the parallel phase, related with
the acoustic component, is constant due to the pole-on view, which
favours the area where the standing waves are located, and the low
value of the frequency that guarantees that the standing acoustic
waves occupy a larger area in the visible disc of the star than the
acoustic running waves.

3.2 Case 2

For the second case, we consider a frequency below the acoustic
cutoff, but close to it. We have chosen a mode with a frequency of
2.2 mHz, degree l = 1, and an observer pole-on. The angle at which
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Figure 7. The left-hand panel shows the amplitude of the radial velocity
at different heights in the atmosphere, as a function of the fraction of time
within an oscillation period T. The right-hand panels show the amplitude
(top) and the phase (bottom) of the radial velocity fitted to the function given
by equation (12). The radial velocity amplitude and phase are in black, the
amplitude and phase derived from V� in red, and the amplitude and phase
derived from V⊥ in grey. The horizontal red line on the left-hand panel
and the vertical red line on the right-hand panel mark the bottom of the
photosphere.

Figure 8. The same as Fig. 6 but for a mode of frequency 2.2 mHz and
degree l = 1, a magnetic field of 2 kG, and an observer pole-on.

the critical frequency becomes smaller than 2.2 mHz is αcr = 33◦

(cf. Table 2). The radial velocity is shown on the left-hand panel
of Fig. 8, and the contributions to it from the components of the
velocity parallel and perpendicular to the magnetic field are shown
on the right-hand panels, in the same way as for the previous case.
We see, from the right-hand panels, the exponential behaviour of
the acoustic wave’s contribution (top) in the atmosphere of the star,
and the constant amplitude of the magnetic wave’s contribution
(bottom), but this time the amplitudes of the two contributions
differ more significantly in the high atmosphere. This is because
in this case the fraction of the visible disc covered with acoustic
running waves is larger than in case 1. Since the amplitude of
the displacement, hence also of the velocity, increases faster with
height for running acoustic waves than for standing acoustic waves

Figure 9. The same as Fig. 7 but for a mode of frequency 2.2 mHz and
degree l = 1, a magnetic field of 2 kG, and an observer pole-on. The close-up
shows the behaviour of the amplitudes near the photosphere.

(as discussed in Section 2.4), in this case the acoustic contribution
to the integral of the radial velocity becomes more dominant in the
high atmosphere.

The amplitude and phase of the radial velocity are shown in
Fig. 9, in the same manner as in the previous case. In the outermost
layers, the total amplitude (black line, top-right panel) follows the
acoustic wave’s contribution (red line), but, when moving towards
lower atmospheric layers the magnetic wave’s contribution (grey
line) becomes increasingly important. This behaviour can be seen
also in the phase (bottom-right panel), as the total phase (black line)
follows the phase from the acoustic wave’s contribution (red line)
in the outer layers, but approaches the phase of the magnetic wave’s
(grey line) contribution deeper in. Unlike in the previous case, here
we can see a very small variation in the phase of the acoustic con-
tribution (red line) that is due to the higher frequency of the mode
considered that results in a more significant contribution of acoustic
running waves to the integral of the parallel component. Never-
theless, the dominant phase variation in the radial velocity (black
line) results from the competition between the contributions to the
radial velocity integral of the parallel (acoustic) and perpendicular
(magnetic) velocity components, as in the previous case.

Due to the small variations in the phase, a small shift in the zeros
can also be seen in Fig. 9, left-hand panel, when looking at different
atmospheric heights.

3.3 Case 3

The third case is one in which the phase is found to be more signifi-
cantly variable. It is the last one we present with a pole-on observer
and it concerns a mode with a frequency of 2.7 mHz, which is
above the acoustic cutoff (cutoff frequency of the star in Table 1),
and a degree of l = 1 (Table 2). The radial velocity for this case
is shown in Fig. 10, left-hand panel. Since the mode frequency is
above the acoustic cutoff, the acoustic running waves are present in
the full visible disc. Due to the faster increase with height of acoustic
running waves, the amplitudes of the acoustic wave’s contribution
(top-right panel) and magnetic wave’s contribution (bottom-right
panel) differ by two orders of magnitude in the outermost layers,
leading to a total dominance of the acoustic waves in that part of
the atmosphere.
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Figure 10. The same as Fig. 6 but for a mode of frequency 2.7 mHz and
degree l = 1, a magnetic field of 2 kG, and an observer pole-on.

Figure 11. The same as Fig. 7 but for a mode of frequency 2.7 mHz and
degree l = 1, a magnetic field of 2 kG, and an observer pole-on. The close-up
shows the behaviour of the amplitudes near the photosphere.

The variations in the amplitude and phase for this case are shown
in Fig. 11, top- and bottom-right panels, respectively. The variations
in the total amplitude and the total phase (black lines) show the
dominance of the acoustic wave’s contribution (red line) throughout
the isothermal atmosphere. In that region, we can see a significant
variation of the parallel phase caused by the running acoustic waves.

In the inner atmosphere, where the magnetic and acoustic con-
tributions have the same order of magnitude, we can identify a
crossing between the acoustic (red line) and the magnetic wave’s
contributions (grey line). Together with the abrupt variation in the
total phase (black line), this marks the transition between the dom-
inance of the two types of waves in the radial velocity integral.
Because they are out of phase, this crossing generates an apparent
node in the inner atmosphere.

Looking at Fig. 11, left-hand panel, the variation in the phase
can be clearly seen, as a shift in the zeros of the oscillations when
comparing different atmospheric heights.

Figure 12. The same as Fig. 6 but for a mode of frequency 1.7 mHz and
degree l = 0, a magnetic field of 2 kG, and an observer equator-on.

Figure 13. The same as Fig. 7 but for a mode of frequency 1.7 mHz and
degree l = 0, a magnetic field of 2 kG, and an observer equator-on.

3.4 Case 4

The case 4 corresponds to an observer located equator-on and a
mode with a frequency of 1.7 mHz and degree l = 0 (Table 2). The
radial velocity for this case is shown in Fig. 12, left-hand panel.
The amplitudes of the acoustic and magnetic waves’ contributions
(Fig. 12, right-hand panels) are of the same order of magnitude
in the lower part of the atmosphere, just as was found for case 1,
although here the two contributions become comparable near the
photosphere, as seen from Fig. 13, right upper panel. But the main
difference with respect to case 1 is the behaviour of the phase.

Looking at Fig. 13, lower right panel, we see that similarly to case
1 the total phase (black line) follows the parallel phase (red line) in
the outermost layers, and diverges from it as one approaches deeper
regions of the atmosphere, due to the influence of the magnetic
waves. However, contrary to case 1, the parallel phase (red line) now
varies with depth, due to the contribution of the acoustic running
waves that are concentrated towards the equator, where the observer
is positioned. As a result, the total phase varies also in the outer
atmospheric region. The phase variation can be seen also in the
left-hand panel of Fig. 13.
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Figure 14. The same as Fig. 6 but for a mode of frequency 2.2 mHz and
degree l = 0, a magnetic field of 2 kG, and an observer equator-on.

Figure 15. The same as Fig. 7 but for a mode of frequency 2.2 mHz and
degree l = 0, a magnetic field of 2 kG, and an observer equator-on. The
close-up shows the behaviour of the amplitudes near the photosphere.

3.5 Case 5

The second case with an observer equator-on is for a mode with a
frequency of 2.2 mHz and degree l = 0 (cf. Table 2).

The radial velocity is shown in Fig. 14, left-hand panel, and the
acoustic and magnetic waves’ contributions are shown in Fig. 14,
top- and bottom-right panels, respectively. In the outer atmospheric
layers, the two contributions differ by one order of magnitude, just as
in case 2, with the same frequency but a pole-on observer. Thus, the
acoustic waves are dominant in those layers. While this is similar to
case 2, here we can see a modulation with height of the exponential
behaviour in the atmosphere. This is due to the fact that in this case
the observer is looking more directly at the acoustic running waves.

The amplitude and phase variations of the radial velocity are
shown in Fig. 15, right-hand panels, where again we have the total
amplitude (black line, top panel) dominated by the amplitude de-
rived from the acoustic wave’s contribution (red line, same panel)
in the high atmosphere, and a total phase (black line, bottom panel)
that changes from following the phase derived from the acoustic
wave’s contribution in the high atmosphere (red line, same panel)

Figure 16. The same as Fig. 6 but for a mode of frequency 2.7 mHz and
degree l = 0, a magnetic field of 2 kG, and an observer equator-on.

to following the phase derived from the magnetic wave’s contribu-
tion (grey line, same panel) in the inner layers of the atmosphere.

Considering Fig. 15, left-hand panel, the change in the phase
is evident and much greater than the phase variation seen in the
case 2. This is again because with the pole-on view the observer is
looking directly at the acoustic standing waves at the pole, but with
the equator-on view the observer is looking directly at the acoustic
running waves in the equator.

3.6 Case 6

This case is for a mode with a frequency of 2.7 mHz, above the
acoustic cutoff, and a degree l = 0, and an equator-on observer
(cf. Table 2). The radial velocity, seen in Fig. 16, left-hand panel,
shows a fast exponential growth, which is modulated with height,
since the acoustic running waves are present in the full visible disc.
From inspection of Fig. 16, right-hand panels, we can see, as in the
previous cases, that the contribution from the acoustic wave to the
radial velocity dominates throughout most of the atmosphere, with
the exception of the innermost layers.

Fig. 17, right-hand panels, shows the amplitude and phase varia-
tions for this case. We see a very significant phase variation (black
line, bottom panel) in the isothermal atmosphere, which is mainly
due to the contribution of the acoustic running waves (red line, same
panel). A significant phase variation was already seen in case 3, for
the same frequency, with a pole-on observer, but it is even more sig-
nificant here. This is because the acoustic running waves near the
equator are propagating almost perpendicularly to the equator-on
observer. Therefore, their wavenumber projection into the line-of-
sight direction is very large, resulting in rapid height-variations in
the centre of the visible disc, which contribute significantly to the
radial velocity integral. As before, in these layers the total ampli-
tude (black line, top panel) is dominated by the acoustic wave’s
contribution (red line, same panel). In the inner atmosphere, we
can identify a jump of π , caused by the change in the dominant
contribution, from acoustic in the outer layers to magnetic in the
inner layers. A phase jump had already been seen in case 3, but in
this case the change is sharper. This is because here the magnetic
and acoustic contributions are completely out of phase.

Although we do not illustrate it here, we have verified that this
particular apparent node for a mode of this frequency and degree
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Figure 17. The same as Fig. 7 but for a mode of frequency 2.7 mHz and
degree l = 0, a magnetic field of 2 kG, and an observer equator-on. The
close-up shows the behaviour of the amplitudes near the photosphere.

Figure 18. The same as Fig. 6 but for a mode of frequency 2.7 mHz and
degree l = 0, a magnetic field of 2 kG, and an observer equator-on. The
integration, for this case only, is in the region defined by 53o < θ < 127o.

l=0 can be seen from any observation angle, although its exact
position changes with the observer’s view.

The variation in the phase in the upper atmosphere is also very
clear in Fig. 17 (left-hand panel).

3.7 Case 7

The last case that we will consider is selected to illustrate an apparent
node in the middle of the isothermal atmosphere, as first discussed
by Sousa & Cunha (2011) for a toy model of a full isothermal
atmosphere. This case considers a mode with a frequency of 2.7
mHz, which is above the acoustic cutoff, and degree l = 0, and a
magnetic field of Bp = 2 kG (cf. Table 2). Moreover, the observer
is pole-on, and we assume the elements are concentrated around
the equator, in the region defined by 53o < θ < 127o, which are,
thus, considered as limit angles, θ i and θ f, for the integration in
equation (10).

The radial velocity for this case is shown in Fig. 18, left-hand
panel. In the middle of the isothermal atmosphere, we can see a

Figure 19. The same as Fig. 7 but for a mode of frequency 2.7 mHz
and degree l = 0, a magnetic field of 2 kG, and an observer pole-on. The
integration, for this case only, is in the region defined by 53o < θ < 127o.

sudden change in the radial velocity that looks somewhat similar to
what one would expect in the presence of a node.

From the inspection of the right-hand panels of the same figure,
we notice that in this case the acoustic and magnetic waves’ contri-
butions are overall of the same order of magnitude. Thus, we can
recognize in the radial velocity shown in the left-hand panel, the ex-
ponential behaviour of the acoustic waves in the upper atmosphere,
but also, the constant behaviour of the magnetic waves in the inner
atmosphere. And like in case 6, we can see that the acoustic and
magnetic waves’ contributions are out of phase, as seen by the fact
that for a given time (given colour line in the right-hand panels),
the acoustic (top panel) and magnetic (bottom panel) contributions
have opposite sign. This leads again to a cancellation in the integral
defining the radial velocity and is the cause of the apparent node.

For the stellar model used in this paper, we find this type of
apparent nodes in the higher atmospheric layers when considering
elements distributed around the equator. They are seen from any
position, and, more commonly, for even-degree l modes.

The amplitude and phase variations are shown in Fig. 19, right-
hand panels. We see the total amplitude (black line, top panel)
changing from behaving similarly to the amplitude of the acoustic
wave’s contribution (red line, same panel) in the upper atmosphere
to behaving like the amplitude of the magnetic wave’s contribu-
tion (grey line, same panel) in the inner atmosphere. Moreover,
because the magnetic and acoustic waves’ contributions are similar
in magnitude but with opposite sign, at some point in the isother-
mal atmosphere the total amplitude decreases, going through a local
minimum. At the same location, we see the total phase varying by π

(black line, bottom panel). These variations in amplitude and phase,
as well as those found in cases 3 and 6 in the inner atmospheric lay-
ers, would, in an observational context, be interpreted as a presence
of a node. However, this behaviour is not caused by a node in a
standing wave. It is simply a visual cancellation effect between the
acoustic and magnetic contributions to the radial velocity.
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4 D ISCUSSION AND CONCLUSION

4.1 General behaviour of the amplitude and phase

Our results show that in general the amplitude increases rapidly
with height, due to the rapid increase of the amplitude of the acous-
tic component. How significant the increase is depends also on the
frequency. As larger frequencies are considered, the radial velocity
can reach greater amplitudes due to the increased presence of acous-
tic running waves in the atmosphere of the star. As for the phase
behaviour, for frequencies below the acoustic cutoff the phase may
vary due to a change in the type of waves that dominate the radial
velocity integral. Moreover, depending on the position of the ob-
server, the contribution of the acoustic waves in regions where the
frequency is above the critical frequency, ωc, may become domi-
nant, resulting in a change of the phase due to the running acoustic
waves. When the frequency is above the acoustic cutoff, the phase
is found to vary regardless of the position of the observer. Finally,
we note that the position of the observer influences the phase be-
haviour not only because it determines the fraction of observed area
where running waves are present, but also because the direction of
the magnetic field around the equator makes the sound waves travel
inclined to an observer that has an equator-on view, making the
projection of that component of the velocity field in the direction of
the observer vary on short scales.

Concerning the contributions from the acoustic and magnetic
components of the wave where these are decoupled, after inspecting
the six cases with integration of the entire visible disc, we can note
that the acoustic waves dominate the behaviour of the radial velocity
in the upper atmosphere for most of the cases. This is explained
by the difference in the amplitude behaviour of the acoustic and
magnetic waves. While the first has an exponential behaviour in
the atmosphere, the second has a constant behaviour, making the
acoustic waves’ contributions dominant in the outer layers of the
atmosphere.

In the inner layers of the atmosphere, we see a different sce-
nario, as the magnetic waves start to have an influence, changing
the amplitude and the total phase of the radial velocity. This is the
region where the change of dominance from acoustic to magnetic
waves’ contribution occurs in our model, giving rise to a phase
variation that in some cases may be abrupt enough to form an
apparent node. The position of this node, found when integrat-
ing the whole visible disc, is expected to depend on the place
where the magnetic and acoustic waves decouple (illustrated in
Fig. 5 for the current model), since that decoupling determines
the relative amplitude of the two components, which beyond that
point have a different dependence on atmospheric height. For that
reason, it is expected that the position of the node will be dif-
ferent for models with different global properties (e.g., different
temperature).

Finally, we find that apparent nodes in the higher atmospheric
layers appear often for spots or belts of elements in the equato-
rial area, when acoustic running waves are present. Exploring sev-
eral frequencies and mode degrees we found that this phenomena
can occur for any position of the observer. Also, for the node dis-
cussed in case 7, we have explored further configurations, changing
the width of the belt and also the symmetry of the limits of inte-
gration, and found that the apparent node remains present, show-
ing only slight changes either in the minimum amplitude, or in
the atmospheric height position. However, it disappears when the
interval over which the integration is performed is greater than
49o < θ < 139o.

4.2 Comparison with the observations

Our model shows that the radial velocity amplitude increases signif-
icantly (can reach one to two orders of magnitude) throughout the
atmosphere. This increase is a direct consequence of the decrease
in the density, as discussed in Sousa & Cunha (2011), and it is most
significant when the integral defining the radial velocity is domi-
nated by the running acoustic waves. This is in agreement with the
behaviour of the radial velocity amplitudes inferred from the obser-
vations, derived from absorption lines that are formed at different
depths in the atmosphere (Ryabchikova et al. 2007a,b; Kochukhov
et al. 2008; Freyhammer et al. 2009).

In addition, our model shows that the phase variations through-
out the atmosphere can take a variety of forms, which depend crit-
ically on the position of the observer and on the frequency of the
modes. While in most cases the phase varies smoothly with height
in the atmosphere, in some cases the variations are sharper, taking
place over relatively short distances. These sharper variations can be
found both in the low and high atmospheric regions, in our model,
depending on the conditions. The latter case (e.g. Figs 18 and 19,
with sharp phase variations seen at densities between ≈10−9 and
10−11 g cm−3) is of particular interest when comparing with the
observations. Smooth, as well as sharp radial velocity phase varia-
tions are also commonly inferred from the spectroscopic time-series
of roAp stars, particularly in the strongest pulsating lines that form
high in the atmosphere, between optical depths of about log tau=−4
and −6 (Saio, Ryabchikova & Sachkov 2010; Saio et al. 2012), cor-
responding to regions of low densities similar to that mentioned
above.

A common way found in the literature to analyze the observations
is to combine the amplitude and phase variations in an amplitude-
phase diagram. Here, we perform a similar diagram based on the
model results, for a chemical spot in the pole and a chemical spot
in the equator. For simplicity, we shall consider that the chemical
contrast is maximum, i.e. that only the regions inside the spot of a
given element contribute to the radial velocity measured from that
element. As we can see in Fig. 20, top panel, in the poles the variation
in phase is smaller than in the equator, and also the amplitude can
reach higher values. This difference between the polar spot and the
equatorial spot can be seen also in the observations. As an example,
in the case of the element Yttrium, Y, that is found to be more
significantly shifted from the magnetic pole than, e.g. Nd and Pr
(Lüftinger et al. 2010), the radial velocities are found to have a small
amplitude but to show a greater variation in phase (Ryabchikova
et al. 2007b), following the same behaviour as the equator spot
in Fig. 20. That is in contrast with the behaviour found for other
elements, concentrated in the polar regions, whose amplitude-phase
variation behaves more like the polar spot in the same figure.

A claim found in several observational papers is that a node can
sometimes be seen in the outer parts of the atmosphere of roAp
stars. Based on physical grounds, in a model atmosphere like the
one adopted here we do not expect a node anywhere in the outer
atmosphere of the star. Even for relatively low magnetic fields, the
magnetic and acoustic waves are decoupled throughout most of the
atmosphere. The amplitude of the magnetic waves is constant and
has a characteristic scale that is larger than the atmosphere, thus,
it cannot show a node. Moreover, the amplitude of the acoustic
waves, with an exponential growth, is either non-oscillatory, when
the frequency is below the critical cutoff frequency ωc, or has an
oscillatory behaviour that changes with time, when the frequency is
above ωc. Therefore, in such a model, any node detected in the outer
atmosphere must be only apparent, resulting from the projection
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Figure 20. Amplitude versus phase variation for a magnetic field of 2 kG.
Top panel, for a mode with a frequency of 2.5 mHz and a degree l = 0, and
an observer pole-on. Bottom panel, for a mode with a frequency of 2.7 mHz
and a degree l = 0, and an observer pole-on. The solid red line shows the
amplitude-phase variation for integration over the full visible disc, while the
long dashed dark-red line shows the result for a spot around the pole and
the short dashed grey line the result for an equatorial belt. The yellow part
of the curves marks the region from the bottom of the photosphere to the
bottom of the isothermal atmosphere. We use the negative of φr in this figure
to facilitate the comparison with the observational works (e.g. Ryabchikova
et al. 2007b), where the fit is often done to a function of the form Arcos (ωt
− φr), rather than the one used in our definition (cf. equation 12).

and integration of the velocity field over the visible disc or part of
it. We have shown an example of how that observational illusion
can occur in the case 7. In Fig. 20, bottom panel, we can see the
amplitude versus phase variation diagram for this case. The node
is evident in the grey dashed line, as we can see that the amplitude
first decreases, then goes through a minimum of almost a pi long
over a short variation of radius, and grows back again. This kind of
behaviour can be seen in the amplitude versus phases diagram of
33 Lib and 10 Aql (Ryabchikova et al. 2007b; Sachkov et al. 2008).

On the other hand, true node-like features may be physically
expected if sharp structural variations, capable of reflecting par-
tially the acoustic waves, are present in the atmosphere. That kind
of phenomena has been discussed in different contexts, including
in the transition between the chromosphere and corona in the sun
(Balmforth & Gough 1990) and has been found in models of roAp
stars presented by Saio et al. (2010, 2012). In the latter, the au-
thors compare the phase and amplitude variations of models that
best fit two particular roAp stars. Of particular relevance, in the
first of these studies the authors discuss the impact on the phase
and amplitude variations of using different atmospheric models,
by comparing the results obtained with a standard Ap atmosphere,
adopted from Shibahashi & Saio (1985), with those obtained with
a model atmosphere that accounts for the stratification of chemi-
cal elements observed in roAp stars, adopted from Shulyak et al.
(2009). The authors show that the latter model, characterized by a
temperature inversion around the atmospheric layers where Nd and

Pr accumulate, provides a better agreement with the observations,
emphasizing the importance of using an empirical, self-consistent
model atmosphere, derived specifically for the star under consid-
eration, when attempting to perform detailed modelling of a given
star. We invite the reader to have a look at the interesting discussion
presented by these authors for further details.

Evidence for non-standard temperature gradients, including tem-
perature inversions, has been found in a number of Ap stars. These
abnormal temperature gradients are linked to a chemical stratifica-
tion of elements, in particular a significant accumulation of REEs
in the outer atmospheric layers (e.g. Shulyak et al. 2009, 2010).
Moreover, possible vertical magnetic field gradients have been in-
vestigated by several studies (e.g. Nesvacil et al. 2004; Kudryavtsev
& Romanyuk 2012; Rusomarov et al. 2013; Hubrig et al. 2018). The
complexity of the element distribution in the atmospheres of Ap
stars and the simultaneous radial and horizontal inhomogeneities,
however, render some difficulty to the interpretation of the detected
magnetic field variation with height, leading, at times, to contradic-
tory statements. For example, the presence of a radial magnetic field
gradient has been corroborated by a recent study of the strongly pe-
culiar roAp star HD 101065 (Przybylski’s star; Hubrig et al. 2018).
However, no such gradient was found for another roAp star HD
24712 (Rusomarov et al. 2013). In any case, the main impact on
pulsations of this complexity of the Ap stars’ atmospheric structure
is expected to come from the possible sharp temperature gradients,
which, as mentioned above, will induce partial reflection of the
acoustic waves. In particular, that partial reflection is likely in the
origin of the quasi-nodes discussed in Saio’s work.

Two stars have been argued to show a node in the atmosphere,
33 Lib and 10 Aql (Mkrtichian et al. 2003; Elkin, Kurtz & Mathys
2008; Sachkov et al. 2008). These two stars have a main frequency
above the acoustic cutoff frequency and very long rotational pe-
riods. Because of the latter, the magnetic field structure and the
surface distribution of elements cannot be derived making it diffi-
cult a direct comparison with our model. Nevertheless, in the light
of the understanding of the problem provided by this work, we can
confidently conclude that either we are in the presence of an appar-
ent node, resulting from the cancellation effect of the acoustic and
magnetic waves’ contributions to the integral, or sharp variations in
the atmospheric structure of these roAp stars are capable of signifi-
cantly reflecting the acoustic waves. Checking the latter possibility
requires adopting a more realistic atmospheric model, which we
will do in a future work.

In conclusion, we find that the behaviour of the radial velocity
in our magnetic model resembles that inferred from high-resolution
spectroscopic time-series of roAp stars, both in what concerns the
amplitude and phase variations throughout the atmosphere. Quanti-
tative comparisons and further test to the model shall be carried out
in a follow up work directed at the modelling of particular stars, in
which the atmospheric structure to adopt will be one derived from
empirical self-consistent modelling of the stellar spectra.
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L., 2018, MNRAS, 477, 3791
Khomenko E., Kochukhov O., 2009, ApJ, 704, 1218
Kochukhov O., 2004, ApJ, 615, L149
Kochukhov O., Ryabchikova T., 2001, A&A, 374, 615
Kochukhov O., Ryabchikova T., Bagnulo S., Curto G. L., 2008, A&A, 479,

L29
Kochukhov O., Shulyak D., Ryabchikova T., 2009, A&A, 499, 851
Kudryavtsev D., Romanyuk I., 2012, Astron. Nachr., 333, 41
Kurtz D., 1982, MNRAS, 200, 807

Kurtz D., Elkin V., Cunha M., Mathys G., Hubrig S., Wolff B., Savanov I.,
2006, MNRAS, 372, 286

Landstreet J., Mathys G., 2000, A&A, 359, 213
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