next up previous contents index

5.1.2 Godunov versus Strang operator splitting

The Godunov operator splitting from Eq. (212) where all operators are applied cyclically and with the same time-step might be improved in some cases by Strang operator splitting

$\displaystyle q_{A/2}^{n,*}$ $\textstyle =$ $\displaystyle q^{n} + \frac{\Delta t}{2}   A(q^{n})$  
$\displaystyle q_{A/2+B}^{n,**}$ $\textstyle =$ $\displaystyle q_{A/2}^{n,*} + \Delta t  B(q_{A/2}^{n,*})$  
$\displaystyle q_{A+B}^{n+1}$ $\textstyle =$ $\displaystyle q_{A/2+B}^{n,**} + \frac{\Delta t}{2}   A(q_{A/2+B}^{n,**}) \enspace .$ (213)