
Physics of Galaxies 2018 Lecture 7: Groups, clusters and lensing

Outline: Galaxy groups & clusters

- Basic characteristics
- •Gas and galaxy content
- •Clusters in our vicinity
- •The Sunyaev-Zeldovich effect

Outline: Gravitational lensing

- Basic principles
- Different types of lensing: Strong, weak and micro
- Multiply-imaged quasars
- Cluster lensing

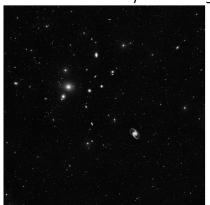
Galaxy groups and clusters I

- Around 50% of all galaxies at low redshift are located in groups and clusters - the rest are in "the field"
- Characteristic group/cluster sizes: 1—10 Mpc
- Clusters: More than 30—50 giant galaxies
- Groups: Less than 30—50 giant galaxies

Galaxy groups and clusters II

- - σ_r ~500—1200 km/s
 - Masses 10¹⁴—10¹5 M_☉
- Groups:
 - •σ,~100—500 km/s
 - Masses 1013 solar masses
- •Typical M/L ≈ 100—500
 - •10 times higher than in individual galaxies
 - Most dark matter is located between the galaxies

Cluster classification


- Abell richness class:
 - •Class o: 30-49 galaxies
 - •Class 1: 50-79
 - •Class 2: 80-129 •Class 3: 130-199 •Class 4: 200-299 •Class 5: ≥300

- Many other schemes in use:
 Zwicky (Based on compactness)
 Rood and Sastry (Based on dominant galaxy)
 Bautz-Morgan (Based on projected distribution of 10 brightest members)

Increasing

rareness

Intermission: What are you looking at?

Brightest Cluster Galaxies

- Limited luminosity range:
 M_V≈-22.8±0.28 →Possibly useful as standard candles
- Some, but not all, are cD galaxies

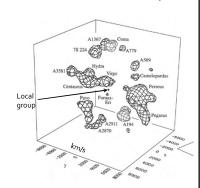
Galaxy content

- Fraction of E/So galaxies depends on local galaxy density
- Groups and outskirts of clusters: Many S / SB
- Cluster cores: Many E / So
- Mass segregation (in analogy with stars in star clusters):
 - Massive galaxies close to centre
 - Light-weight galaxies further out

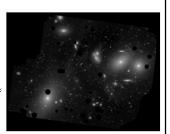
The Butcher-Oemler effect

- More blue galaxies in high-z clusters than in low-z ones
- •Blue galaxies: Irr / S / SB
- •Red galaxies: E / So
- Possible interpretation: Mergers
 - Irr / S / SB \rightarrow E / So over time

+

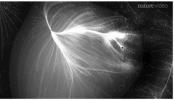


=


Galaxy groups & clusters in our backyard

- **Groups:** Sculptur, Fornax, Centaurus A...
- Clusters: Virgo, Coma, Hydra, Centaurus, Perseus...
 Superclusters:
- Virgo supercluster, Hydra-Centaurus supercluster... (but the definitions of superclusters are messy)

Galaxy groups & clusters in our backyard II


- Virgo cluster
 - Nearest large galaxy cluster with more than 2000 galaxies brighter than M_B≈-14
 - •Extent ~ 3 Mpc
 - Velocity dispersion $\sigma_R \approx$ 600 km/s
 - Mass ~1×10¹5 M_☉
 - Distance 15—20 Mpc

Virgo cluster & M87 (lower left) with foreground objects masked

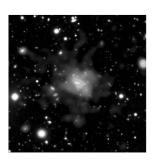
The Laniakea Supercluster

- We belong to the Local Group, which belongs to the Virgo Supercluster, which belong to the (even bigger) Laniakea Supercluster
- Laniakea: "immeasurable heaven" in Hawaiian
- 100 000 galaxies and 300-500 groups and clusters over 160 Mpc total mass $\sim\!10^{17}$ M_{\odot}

https://www.youtube.com/watch?v=rENyyRwxpHo

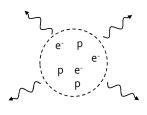
Compact groups

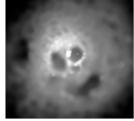
- Typically 4—7 galaxies inside few ~100 kpc
- Very often spirals
- Short predicted lifetimes (due to expected merging)
- ≈1/3 discordant redshifts
- Can injection of highvelocity members into these groups prevent mergers?



Intermission: Group or cluster?

Gas in groups and clusters


Most baryonic material in groups and clusters is not stars, but hot gas



X-ray gas, T=107—108 K

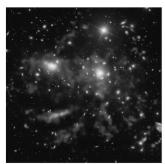
Why does the gas glow?

Free-free radiation or Brehmsstrahlung (radiation from electrons accelerated by charged particles)

Why is the gas so hot?

- Galaxy motions
- Consider a "gas of galaxies":
- High cluster mass → High galaxy velocities
- kT~ $mv^2 \rightarrow High galaxy velocities imply high T$
- •Winds from supernova explosions inject additional kinetic energy into the gas

Why do the galaxies move so fast?


Balance between kinetic and potential energy

Gravitational The virial radius theorem: $M \sim$

•Hence, high cluster mass \rightarrow high v \rightarrow high T → High X-ray luminosity

Where does the gas come from?

- Mixture of:
 - Gas never captured by galaxies (primordial chemical abundances)
 - Gas (metal-enriched) ejected from galaxies by stellar winds and supernova explosions
- Gas metallicity: Z~10% Solar

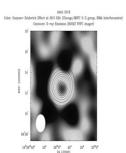
Gas in the Coma cluster

Mass estimates

- •X-ray spectrum \rightarrow T(r)

•X-ray luminosity $\rightarrow \rho(r)$ radiation process

 $L = n_{\rm e} n_{\rm H} \Lambda(T)$ • Mass: Number densities


The Sunyaev-Zeldovich effect I

Slightly blueshifted **CMBR CMBR** ✓ Observer Galaxy cluster with ionized gas

• Compton scattering of CMBR by free electrons in the intercluster medium increases the energy of CMBR photons

The Sunyaev-Zeldovich effect II

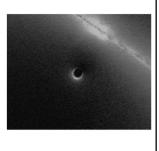
- Measure S-Z \rightarrow thickness of cluster
- Assume thickness=diameter \rightarrow Linear size of cluster in sky
- Measure angular size of cluster in sky
- Combine angular and linear size → Distance

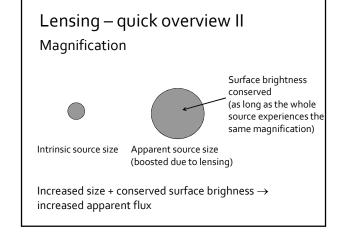
Depends on the

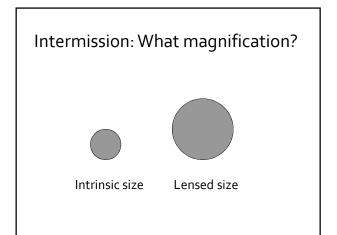
The S-Z effect is an important tool for cosmology!

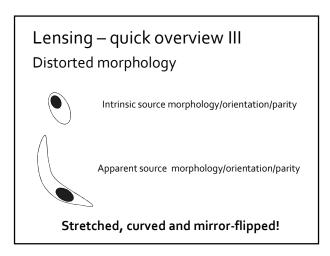
Gravitational lensing

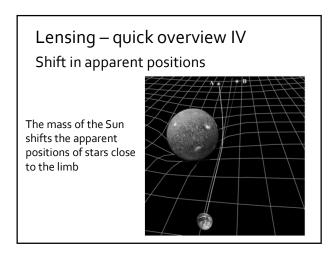
- Lensing basic stuff: What? Why? Where?
- What do you need it for? Want to probe the source, the lens, or the Universe?

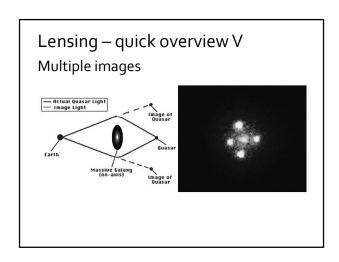


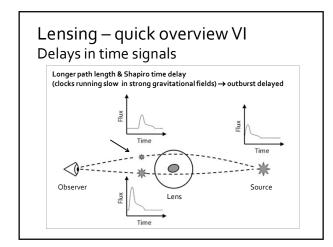


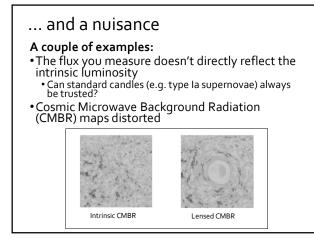

Lensing – quick overview I

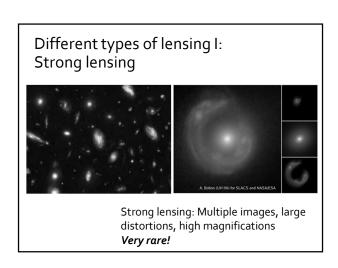

Overdensities of matter along line of sight \rightarrow

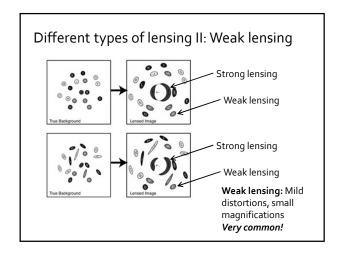

- Magnification
- Distorted morphology
- Shift in apparent position
- Multiple images
- Delays in time signals

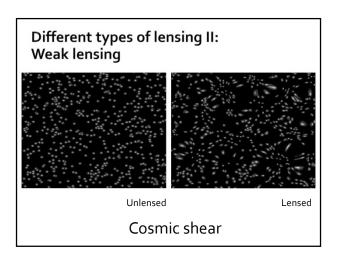


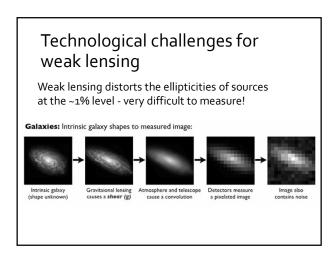









Lensing – A tool...


- Magnification → Can detect sources too faint to be seen otherwise
- Multiple images, distortions time delays
 → Probes of structure and dust reddening along line(s) of sight
- Testing gravity & cosmology

