

Supermassive black holes in AGN

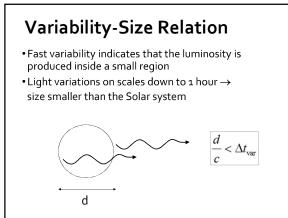
- Doppler broadened emission lines in AGN indicate gas velocities ~ 10 000 km/s
- Line variability time scale (weeks) → size of lineemitting region
- \bullet Velocity & size \rightarrow Mass(<size) & Density, indicating that the gas orbits a SMBH
- Schwarzschild radius:

$$R_{\rm S} = \frac{2GM_{\rm BH}}{c^2} \approx 3 \times \frac{M_{\rm BH}}{M_{\rm solar}} \, \rm km$$

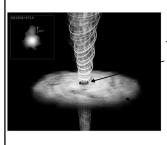
Characteristics of Active Galactic Nuclei

- •High luminosity produced in small region
- •Fast variability
- •High fraction of polarized light
- •Non-thermal spectrum: Not stars!
 - •Synchrotron radiation
 - •Emission-line ratios \rightarrow lonization source more energetic than hottest known stars

Intermission: Music from AGN


Dr Fiorella Terenzi Music from the Galaxies (1991): Radio waves from the active galaxy UGC 6697 converted into music

Intermission: Music from AGN



NGC 4151 (1993): Rest-frame UV emission-line and continuum variability from the Seyfert galaxy NGC 4151 converted into music

Professor Emeritus Nils Bergvall

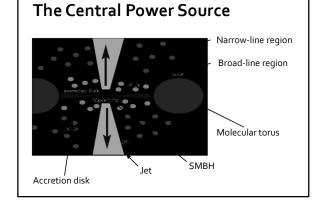
Accretion Disks

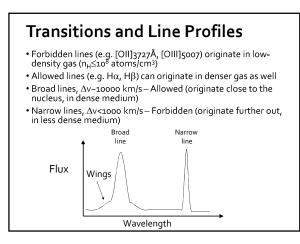
Magnetic field channel matter into relativistic jets

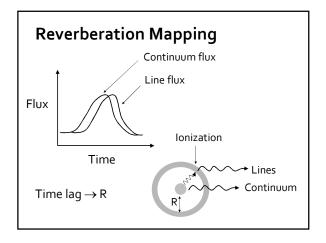
SMBH

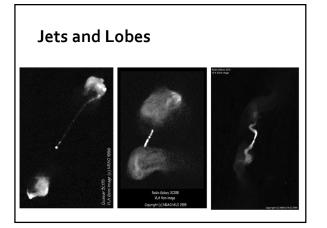
Angular momentum of infalling material→ matter spirals inward in an accretion disk

Eddington Luminosity

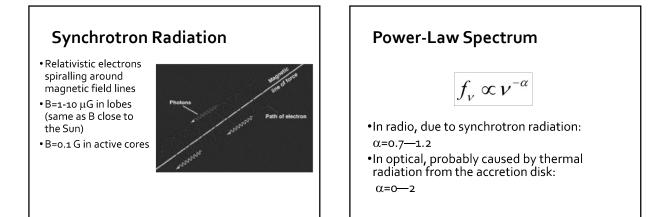

Too high radiation pressure of AGN may overcome inward gravitational force \rightarrow upper limit on AGN luminosity which still allows material to fall inwards

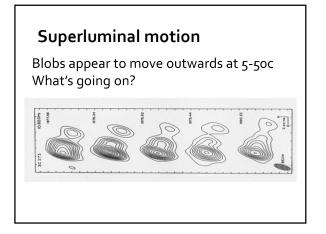

$$L_{\rm E} \approx 30000 \frac{M}{M_{\rm solar}} L_{\rm solar}$$

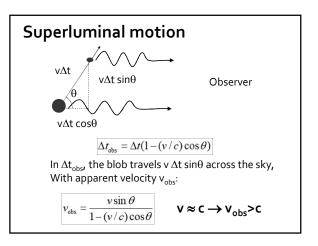

```
Note: L_E assumes spherical accretion.
Super-Eddington luminosities (a few times L_E)
can be produced in accretion disks
```


Radiation Efficiency

- Mass M falling into a SMBH \rightarrow energy Mc² added
- •Theoretical maximum:
- 42% of Mc² is converted into luminosity The rest increases the SMBH mass
- But typically, ≤10% of Mc² is converted into luminosity
- \bullet SMBHs in a typical quasar grows with \geq 1 $\rm M_{\rm solar}/yr$
- Activity is expected to last for ~ 100 Myr \rightarrow $M_{SMBH} \ge$ 108 M_{solar} in faded quasars



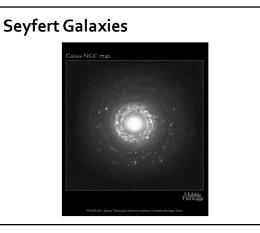




The number densities of AGN at z=o	
Type Spiral galaxies E/So galaxies	Number/Gpc ³ ~5×10 ⁶ ~ 1×10 ⁶
E/So galaxies Seyfert galaxies Radio galaxies Quasars Blazars	~ 1×10 ⁵ ~ 3×10 ³ ~ 100 ~ 80

Quasars

- •Originally:
- •Quasar = "Quasi-stellar radio source" (radioloud)
- •QSO = "Quasi-stellar object" (radio-quiet)
- •Today: Quasar = Both types

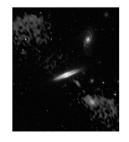


Quasars

- Most luminous of the non-transient objects in the Universe: M_B<-23
- Radio-quiet quasars >10 times more common than radio loud ones
- •Both broad and narrow lines

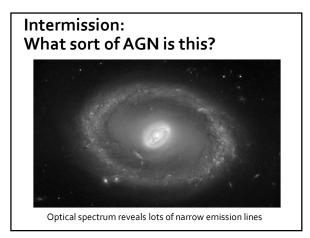
X-ray quasar with jet

Seyfert Galaxies

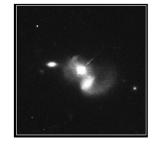

- •"Low-luminosity quasars"
- •Almost always in S- or So-galaxies
- •Seyfert 1 nuclei
 - Broad lines (allowed) & Narrow lines (forbidden)
 - High optical luminosity
- •Seyfert 2 nuclei
 - Narrow lines only, but with wings
 - Low optical luminosity

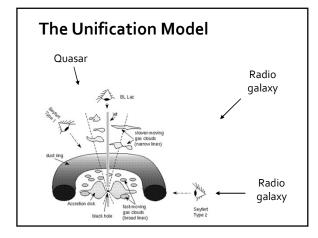
LINERs

- LINER = Low Ionization Nuclear Emission Line Region
- Low luminosities (lower than Seyfert 2)
- Exhibit lines which do not require very energetic power sources – hot stars sufficient
- Many LINERs are probably starbursts, not genuine AGN


Radio Galaxies

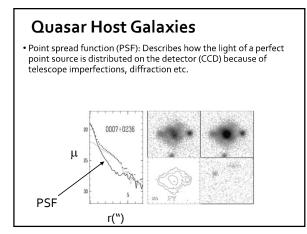
- Milky Way: 10³⁰ W in radio
- Radio galaxies $\geq 10^{34}$ W in radio
- Lobes and hot spots
- •Always elliptical galaxies

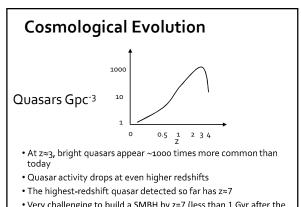


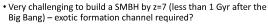

Blazars

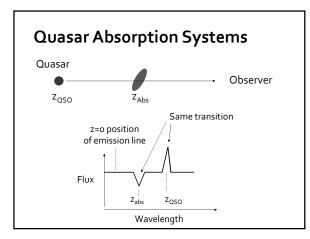
- The most rapid and large variations among AGN
- Originally:
 - BL Lac (very weak emission lines)
 OVV = Optically violent variable (strong emission lines)
- Today: Blazar = BL Lac & OVVs
- *Appear* to be the most luminous objects in the Universe, but this is due to beaming
- Often completely featureless spectrum
 - Emission-lines weak or absent

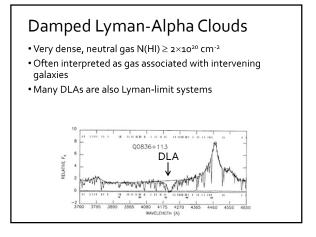
Intermission: What sort of AGN is this?

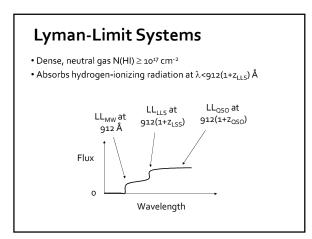


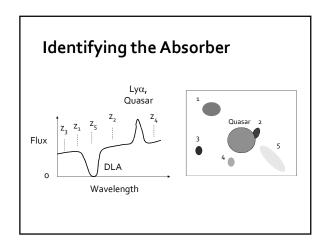


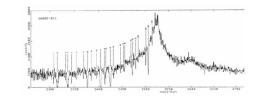

Quasar Host Galaxies




- The AGN of a quasars typically outshines its host galaxy
- To study the host galaxy, one utilizes the fact that the AGN is a point source wheras the host is an extended object







The Lyman-Alpha Forest

- Low-density, very extended clouds in the intergalactic medium
- Proximity effect:

 - Lya-forest thinner at $z_{abs} \approx z_{OSO}$ Indicates that clouds close to the quasar are photoionized by it

The Gunn-Peterson Test • If the Universe (the intergalactic medium, IGM) is neutral at z_{QSO} , then a strong absorption feature blueward of Ly α in quasars should appear – the Gunn-Peterson trough. • This does indeed appear – at $z_{\text{QSO}}{\approx}6$, indicating that the transition from an neutral to ionized IGM takes place at around this redshift Universe ionized at z_{QSO} Universe neutral at z_{QSO} Flux Wavelength Wavelength