
Physics of Galaxies 2019 Lecture 7: Groups, clusters and lensing

Outline: Galaxy groups & clusters

- Basic characteristics
- •Gas and galaxy content
- •Clusters in our vicinity
- •The Sunyaev-Zeldovich effect

Outline: Gravitational lensing


- Basic principles
- Different types of lensing: Strong, weak and micro
- Multiply-imaged quasars
- Cluster lensing

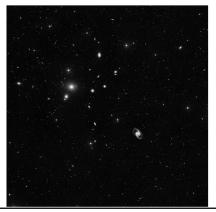
Galaxy groups and clusters I

- Around 50% of all galaxies at low redshift are located in groups and clusters - the rest are in "the field"
- Characteristic group/cluster sizes: 1—10 Mpc
- Clusters: More than 30—50 giant galaxies
- Groups: Less than 30—50 giant galaxies

Galaxy groups and clusters II

- - σ_r ~500—1200 km/s
 - Masses 10¹⁴—10¹⁵ M_☉
- Groups:
 - •σ,~100—500 km/s
 - Masses 1013 solar masses
- •Typical M/L ≈ 100—500
 - A few times times higher than in individual galaxies
 - Most dark matter is located between the galaxies

Cluster classification


- Abell richness class:
 - •Class o: 30-49 galaxies
 - •Class 1: 50-79 •Class 2: 80-129
 - •Class 3: 130-199 •Class 4: 200-299 •Class 5: ≥300

- Many other schemes in use:
 Zwicky (Based on compactness)
 Rood and Sastry (Based on dominant galaxy)
 Bautz-Morgan (Based on projected distribution of 10 brightest members)

Increasing

rareness

Intermission: What is this?

Brightest Cluster Galaxies

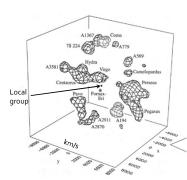
- Limited luminosity range: $M_{v}\approx -22.8\pm0.28 \rightarrow Possibly$ useful as standard candles
- Some, but not all, are cD galaxies

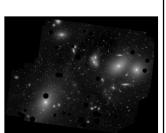
Galaxy content

- Fraction of E/So galaxies depends on local galaxy density
- Groups and outskirts of clusters: Many S / SB
- Cluster cores: Many E / So
- Mass segregation (in analogy with stars in star clusters):
 - Massive galaxies close to centre
 - Light-weight galaxies further out

The Butcher-Oemler effect

- More blue galaxies in high-z clusters than in low-z ones
- •Blue galaxies: Irr / S / SB
- Red galaxies: E / So
- Possible interpretation: Mergers
 - Irr / S / SB \rightarrow E / So over time




Galaxy groups & clusters in our backyard

- Sculptur, Fornax, Centaurus A...
- Clusters: Virgo, Coma, Hydra, Centaurus, Perseus...
- súpercluster...
- Superclusters: Local Virgo supercluster, Hydra-Centaurus (but the definitions of superclusters are mėssy)

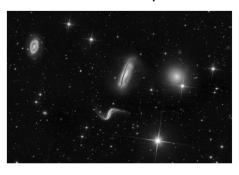
Galaxy groups & clusters in our backyard II

- Virgo cluster
- Nearest large galaxy cluster with more than 2000 galaxies brighter than M_B≈-14
- Extent ~ 3 Mpc
- Velocity dispersion $\sigma_R \approx$ 600 km/s
- Mass ~1×10¹5 M_☉
- Distance 15—20 Mpc

Virgo cluster & M87 (lower left) with foreground objects masked

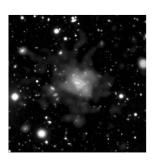
The Laniakea Supercluster

- We belong to the Local Group, which belongs to the Virgo Supercluster, which belong to the (even bigger) Laniakea Supercluster
- Laniakea: "immeasurable heaven" in Hawaiian
- 100 000 galaxies and 300-500 groups and clusters over 160 Mpc total mass $\sim\!10^{17}$ M_{\odot}


https://www.youtube.com/watch?v=rENyyRwxpHo

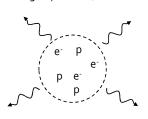
Compact groups

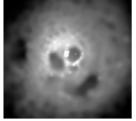
- Typically 4—7 galaxies inside few ~100 kpc
- Very often spirals
- Short predicted lifetimes (due to expected merging)
- ≈1/3 discordant redshifts
- Can injection of highvelocity members into these groups prevent mergers?



Intermission: Group or cluster?

Gas in groups and clusters


Most baryonic material in groups and clusters is not stars, but hot gas



X-ray gas, T=107—108 K

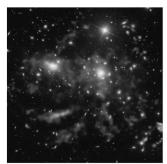
Why does the gas glow?

Free-free radiation or Brehmsstrahlung (radiation from electrons accelerated by charged particles)

Why is the gas so hot?

- •Galaxy motions
 - Consider a "gas of galaxies":
 - $\bullet \ \mathsf{High} \ \mathsf{cluster} \ \mathsf{mass} \to \mathsf{High} \ \mathsf{galaxy} \ \mathsf{velocities}$
 - kT~ $mv^2 \rightarrow High galaxy velocities imply high T$
- •Winds from supernova explosions inject additional kinetic energy into the gas

Why do the galaxies move so fast?


Balance between kinetic and potential energy

The virial theorem: $M \sim \frac{\left\langle v^2 \right\rangle R_{\rm grav}}{G}$ radius

Hence, high cluster mass → high v → high T
 → High X-ray luminosity

Where does the gas come from?

- Mixture of:
 - Gas never captured by galaxies (primordial chemical abundances)
 - Gas (metal-enriched)
 ejected from galaxies
 by stellar winds and
 supernova explosions
- Gas metallicity: Z~10% Solar

Gas in the Coma cluster

Mass estimates

- •X-ray spectrum \rightarrow T(r)
- •X-ray luminosity $\rightarrow \rho(r)$ ra

Depends on the radiation process

 $L = n_{\rm e} n_{\rm H} \Lambda(T)$ • Mass:

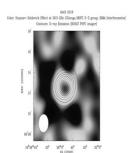
 $M(< r) = \frac{k_{\scriptscriptstyle B}}{\mu m_{\scriptscriptstyle p}} \frac{r^2}{G\rho(r)} \frac{d}{dr} (-\rho T)$

The Sunyaev-Zeldovich effect I

Slightly blueshifted

CMBR

e e CMBR


Galaxy cluster

with ionized gas

• Inverse Compton scattering of CMBR by free electrons in the intracluster medium increases the energy of CMBR photons

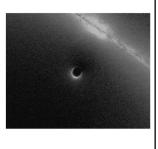
The Sunyaev-Zeldovich effect II

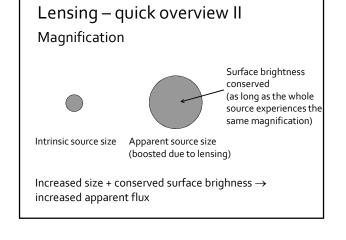
- Measure S-Z \rightarrow thickness of cluster
- Assume thickness=diameter
 → Linear size of cluster in sky
- Measure angular size of cluster in sky
- Combine angular and linear size → Distance

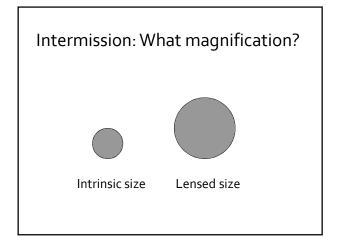
The S-Z effect is an important tool for cosmology!

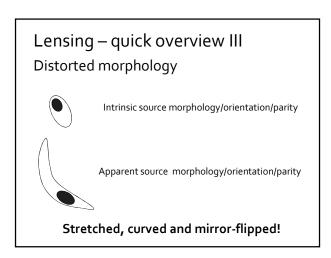
Gravitational lensing

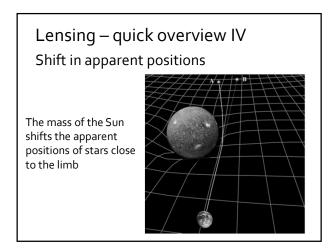
- Lensing basic stuff: What? Why? Where?
- What do you need it for?
 Want to probe the source, the lens, or the Universe?

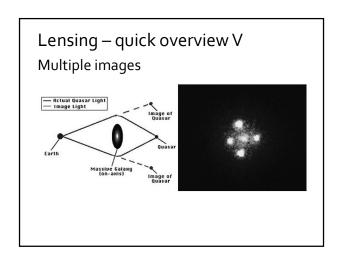


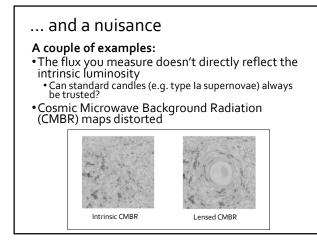


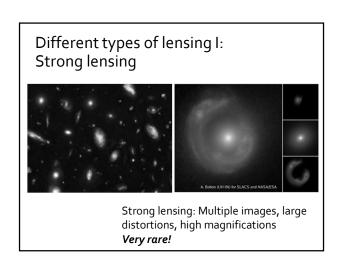

Lensing – quick overview I

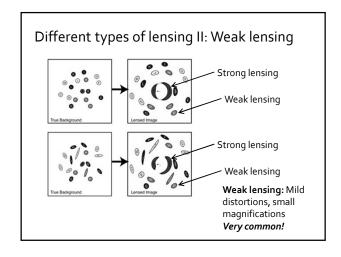

Overdensities of matter along line of sight \rightarrow


- Magnification
- Distorted morphology
- Shift in apparent position
- Multiple images
- Delays in time signals

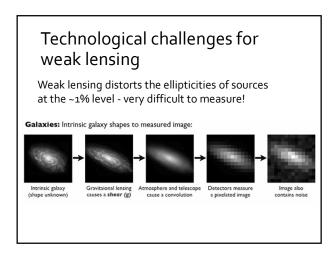


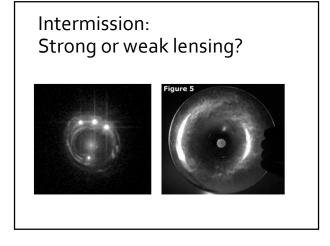


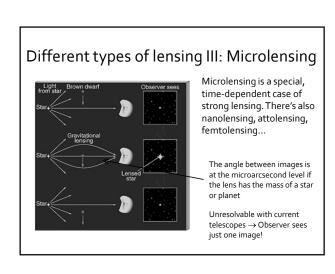


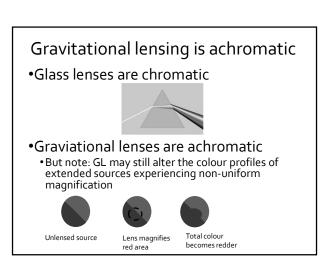

Lensing — quick overview VI Delays in time signals Longer path length & Shapiro time delay (clocks running slow in strong gravitational fields) → outburst delayed Time Source

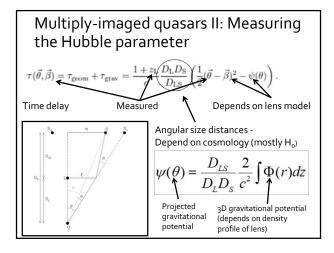
Lensing – A tool...

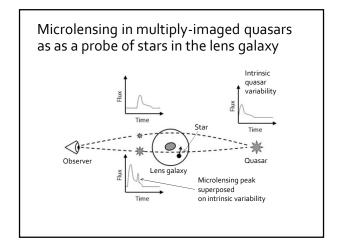

- Magnification → Can detect sources too faint to be seen otherwise
- Multiple images, distortions time delays
 → Probes of structure and dust reddening along line(s) of sight
- Testing gravity & cosmology

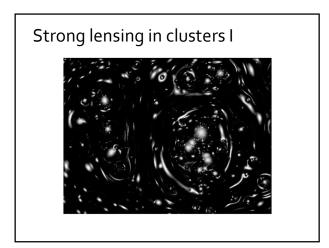


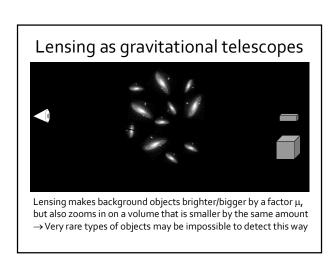


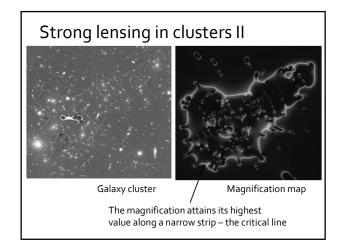


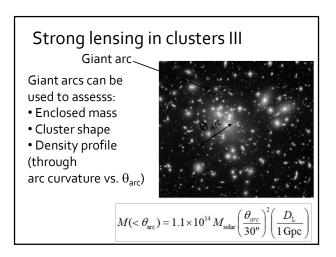











Multiply-imaged quasars III: Dust extinction Almost no extinction High extinction Lens galaxy with dark halo Colour differences between images → Extinction law measurement at high z

