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Fluid Dynamics: Basic Concepts

consider a typical fluid ...



Fluid Dynamics: Basic Concepts

... and define a fluid element 



Fluid Dynamics: Basic Concepts

Definition of fluid element:
 

   A region over which we can define local variables (density, temperature, etc.) 
   The size of this region (length scale l

 region
 ) is assumed to be such that it is

 

   (i)  small enough that we can ignore systematic variations across it for any 
         variable q we are interested in: 
 

                                              l
 region

 <<  l
 scale

 ∼ q /∇q   

   (ii)  large enough to contain sufficient particles to ignore fluctuations due to
          the finite number of particles (discreteness noise):
 

                                              n l 3
region

  >>  1

   In addition, collisional fluids must satisfy:
 

   (iii)                                     l
 region

 >>  mean free path of particles
  

 



Mean Free Path - Examples 

Mean Free Path

  - depends on number density and cross section
  - elastic scattering cross section of neutral atoms: 10 - 15 cm2

Examples 

     gas in density MFP size
[cm-3] [cm] [cm]

     ________________________________________________
 
     typical room 1019 10 - 4 10 3

     HI region (ISM) 10 10 14 10 19



Fluid Dynamics: Basic Concepts

  -  frequent collisions, small mean free path compared to the characteristic 
length scales of the system → coherent motion of particles

  -  definition of fluid element: mean flow velocity (bulk velocity)
  -  particle velocity = mean flow velocity + random velocity component



Fluid Dynamics: Basic Concepts

coherent motion of particles 



Fluid Dynamics: Basic Concepts

coherent motion of particles 



Fluid Dynamics: Basic Concepts

coherent motion of particles 



Fluid Dynamics: Basic Concepts

● The fluid is described by 
local macroscopic variables 
(e.g., density, temperature, 
bulk velocity)                           
 

● The dynamics of the fluid is 
governed by internal forces 
(e.g. pressure gradients) and 
external forces (e.g. gravity)     
 

● The changes of macroscopic 
properties in a fluid element 
are described by conservation 
laws    

v
ρ, T

ρ, T

v



2.  Fluid Dynamics: Conservation Laws  
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Fluid Dynamics: The Conservation Laws

Mass conservation: 



Fluid Dynamics: The Conservation Laws 

Mass conservation:                                       divergence theorem
 

rate of change of mass in V = mass flux across the surface

rewrite as:

... but the volume V is completely arbitrary

            ⇒ 

equation of continuity

∫V [ ∂∂ t
 ∇⋅u] dV = 0

∂
∂ t

 ∇⋅u = 0

d
dt ∫V

 dV = −∮A
u⋅n dA = −∫V

∇⋅u dV



Fluid Dynamics: The Conservation Laws 

Momentum conservation:                           
 

rate of change of momentum in V = 
                              momentum flux across the surface (fluid flow)
                                                         - effect of pressure on surface
                                                                            +  effect of forces

applying divergence theorem (surface to volume integrals):

            ⇒ 

equation of motion

d
dt ∫V

ui dV = −∮A
ui u j n j dA − ∮A

P ij n j dA ∫V
ai dV

∂
∂ t ui   ∂

∂ x j
ui u j  = − ∂P

∂ x i
 ai



Fluid Dynamics: The Conservation Laws 

Energy conservation:                           
 

rate of change of energy in V = 
                            energy flux across the surface (due to fluid flow)
                                                         - work done by pressure 
                                                                    +  work done by  forces

applying divergence theorem (surface to volume integrals):

         

energy equation

d
dt∫V 1 

2
u2 edV =−∮A 1 

2
u2 eu⋅n dA−∮A

ui Pij n j dA∫V
u⋅a dV

∂
∂ t  1 

2 
u2  e  ∇⋅ 1 

2 
u2 eu = − ∇⋅P u   u⋅a



Fluid Dynamics: The Conservation Laws 

 

general form of conservation laws:

                                                        
         

∂
∂ t  1 

2 
u2  e  ∇⋅ 1 

2 
u2 eu = − ∇⋅P u   u⋅a

∂
∂ t ui   ∂

∂ x j
ui u j  = − ∂P

∂ x i
 ai

∂
∂ t

 ∇⋅u = 0

∂
∂ t

density of quantity   ∇⋅  flux of quantity  = sources−sinks



Fluid Dynamics: The Conservation Laws 

 

... and what about external forces ?  

∂
∂ t  1 

2 
u2  e  ∇⋅ 1 

2 
u2 eu = − ∇⋅P u   u⋅a

∂
∂ t ui   ∂

∂ x j
ui u j  = − ∂P

∂ x i
 ai

∂
∂ t

 ∇⋅u = 0

a=F
m



Fluid Dynamics: External Forces

Gravitation: 

a = g      ...  acceleration  

where g is given by  
Poisson's equation

∇ ⋅ g =  - 4 π G ρ



Fluid Dynamics: External Forces

Radiation pressure: 

f
rad

  =  ρ/ c  ∫ κ
ν  
F

ν 
 dν

f
rad  

    ...  force per volume, 
added to equation 

   of motion 

u ⋅ f
rad  

... work done by 
radiation pressure, 

   added to energy 
   equation



Fluid Dynamics: The Conservation Laws 

 

... including: gravity    
radiation pressure
heating & cooling by radiation

∂
∂ t  1

2
u2  e  ∇⋅ 1

2
u2eu = − ∇⋅P u  u⋅g

 u⋅f rad −

∂
∂ t ui   ∂

∂ x j
ui u j = − ∂ P

∂ x i
  g i  f rad

i

∂
∂ t

 ∇⋅u = 0



Fluid Dynamics: Limit Cases of Energy Transport 

 

Barotropic equation of state:

Examples:    - ideal gas:
 

* isothermal case     
 

* adiabatic case

Efficient radiative heating and cooling:
(→ radiative equilibrium)

∂
∂ t ui   ∂

∂ x j
ui u j  = − ∂P

∂ x i
 ai

∂
∂ t

 ∇⋅u = 0

P = P 

P = K 

P ∝ T
P ∝ 

− = 0  T  P  ,T 



3.  Acoustic Waves and Shock Waves  
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Fluid Dynamics: The Conservation Laws 

 

general form of conservation laws:

                                                        
         

∂
∂ t  1 

2 
u2  e  ∇⋅ 1 

2 
u2 eu = − ∇⋅P u   u⋅a

∂
∂ t ui   ∂

∂ x j
ui u j  = − ∂P

∂ x i
 ai

∂
∂ t

 ∇⋅u = 0

∂
∂ t

density of quantity   ∇⋅  flux of quantity  = sources−sinks



Small-Amplitude Sound Waves 

replacing energy equation:

1D, no external forces:

∂
∂ t ui   ∂

∂ x j
ui u j  = − ∂P

∂ x i
 ai

∂
∂ t

 ∇⋅u = 0

P=K 

∂
∂ t

 ∂
∂ x u = 0

∂
∂ t u   ∂

∂ x u u  = − ∂ P
∂ x



Small-Amplitude Sound Waves 

small-amplitude disturbances 
in gas which initially is at rest  
with constant pressure and density

replacing energy equation:

1D, no external forces:

P=K 

∂
∂ t

 ∂
∂ x u = 0

∂
∂ t u   ∂

∂ x u u  = − ∂ P
∂ x

P=P0P1 x , t 
=01x , t 
u= u1 x , t 



Small-Amplitude Sound Waves 

small-amplitude disturbances 
in gas which initially is at rest  
with constant pressure and density

insert into equations & linearise:

P1=K 0
−11=

P0

0
1

∂1

∂ t  0
∂u1

∂ x = 0

0
∂ u1

∂ t
= −

∂ P1

∂ x

P=P0P1 x , t 
=01x , t 
u= u1 x , t 



Small-Amplitude Sound Waves 

small-amplitude disturbances 
in gas which initially is at rest  
with constant pressure and density

insert into equations & linearise:

use sound speed:

P1=K 0
−11=

P0

0
1

∂1

∂ t  0
∂u1

∂ x = 0

0
∂ u1

∂ t  a0
2 ∂1

∂ x = 0

P=P0P1 x , t 
=01x , t 
u= u1 x , t 


P0

0
= a0

2



Small-Amplitude Sound Waves 

⇒  homogeneous wave equation:

      general solution:

waves propagating with sound speed a
0
 

∂21

∂ t2 − a0
2 ∂

21

∂ x2 = 0

1 = f x−a0 t   g xa0 t 



Small-Amplitude Sound Waves 

⇒  homogeneous wave equation:

      general solution:

waves propagating with sound speed a
0
 

∂21

∂ t2 − a0
2 ∂

21

∂ x2 = 0

1 = f x−a0 t   g xa0 t 



The Conservation Laws and Burgers' Equation
 
Fluid equations, 1D:

∂
∂ t  1 

2 
u2  e  ∂

∂ x  1 
2 
u2 eP u = 0

∂
∂ t u   ∂

∂ x uu  P  = 0 

∂
∂ t

 ∂
∂ x u = 0



The Conservation Laws and Burgers' Equation
 
Fluid equations, 1D:

 

reformulate the
equation of motion:

∂
∂ t  1 

2 
u2  e  ∂

∂ x  1 
2 
u2 eP u = 0

∂
∂ t u   ∂

∂ x uu  P  = 0 

∂
∂ t

 ∂
∂ x u = 0

u
∂
∂ t

 u ∂
∂ x u   ∂u

∂ t
 u  ∂u

∂ x
 ∂P

∂ x
= 0 



The Conservation Laws and Burgers' Equation
 
Fluid equations, 1D:

 

reformulate the
equation of motion:

 

∂
∂ t  1 

2 
u2  e  ∂

∂ x  1 
2 
u2 eP u = 0

∂
∂ t u   ∂

∂ x uu  P  = 0 

∂
∂ t

 ∂
∂ x u = 0

u
∂
∂ t

 u ∂
∂ x u   ∂u

∂ t
 u  ∂u

∂ x
 ∂P

∂ x
= 0 



The Conservation Laws and Burgers' Equation

∂
∂ t  1 

2 
u2  e  ∂

∂ x  1 
2 
u2 eP u = 0

∂
∂ t u   ∂

∂ x uu  P  = 0 

∂
∂ t

 ∂
∂ x u = 0

u
∂
∂ t

 u ∂
∂ x u   ∂u

∂ t
 u  ∂u

∂ x
 ∂P

∂ x
= 0 

 
Fluid equations, 1D:

 

reformulate the
equation of motion:



The Conservation Laws and Burgers' Equation

∂
∂ t  1 

2 
u2  e  ∂

∂ x  1 
2 
u2 eP u = 0

∂
∂ t u   ∂

∂ x uu  P  = 0 

∂
∂ t

 ∂
∂ x u = 0

u
∂
∂ t

 u ∂
∂ x u   ∂u

∂ t
 u  ∂u

∂ x
 ∂P

∂ x
= 0 

∂ u
∂ t

 u ∂u
∂ x

= 0 

 
Fluid equations, 1D:

 

reformulate the
equation of motion:



The Conservation Laws and Burgers' Equation

∂
∂ t  1 

2 
u2  e  ∂

∂ x  1 
2 
u2 eP u = 0

∂
∂ t u   ∂

∂ x uu  P  = 0 

∂
∂ t

 ∂
∂ x u = 0

u
∂
∂ t

 u ∂
∂ x u   ∂u

∂ t
 u  ∂u

∂ x
 ∂P

∂ x
= 0 

 
Fluid equations, 1D:

 

reformulate the
equation of motion:

 

         = 0                                                                                      ... and neglect pressure gradients:

Burgers' equation captures the
essential non-linearity of the 
1D Euler equation of motion.

∂ u
∂ t

 u ∂u
∂ x

= 0 



The Conservation Laws and Burgers' Equation

∂
∂ t  1 

2 
u2  e  ∂

∂ x  1 
2 
u2 eP u = 0

∂
∂ t u   ∂

∂ x uu  P  = 0 

∂
∂ t

 ∂
∂ x u = 0

u
∂
∂ t

 u ∂
∂ x u   ∂u

∂ t
 u  ∂u

∂ x
 ∂P

∂ x
= 0 

 
Fluid equations, 1D:

 

reformulate the
equation of motion:

 

         = 0                                                                                      ... and neglect pressure gradients:

Burgers' equation captures the
essential non-linearity of the 
1D equation of motion.

∂ u
∂ t

 u ∂u
∂ x

= 0 



Burgers' Equation: Steepening of Waves 

                                        



Fluid Dynamics: Steepening of Sound Waves 

                                        Waves



Fluid Dynamics: Steepening of Sound Waves 

                                        Waves



                                        Waves

Fluid Dynamics: Structure of Shock Waves 



                                        Waves

Fluid Dynamics: Structure of Shock Waves 



Shocks and Conservation Laws

1D, no external forces,  
stationary flow:

jump conditions:

       specific enthalpy

∂
∂ t  1

2
u2  e  ∂

∂ x  1
2
u2eu = − ∂

∂ x
P u 

∂
∂ t u   ∂

∂ x u u  = − ∂ P
∂ x

∂
∂ t

 ∂
∂ x u = 0

2 u2 = 1 u1

2 u2
2  P2 = 1 u1

2  P1

1
2

u2
2  h2 = 1

2
u1

2  h1h ≡ e P


=


−1
P




Shocks and Conservation Laws

1D, no external forces,  
stationary flow:

jump conditions:

       specific enthalpy

∂
∂ t  1

2
u2  e  ∂

∂ x  1
2
u2eu = − ∂

∂ x
P u 

∂
∂ t u   ∂

∂ x u u  = − ∂ P
∂ x

∂
∂ t

 ∂
∂ x u = 0

2 u2 = 1 u1

2 u2
2  P2 = 1 u1

2  P1

1
2

u2
2  h2 = 1

2
u1

2  h1h ≡ e P


=


−1
P




Shocks and Conservation Laws

1D, no external forces,  
stationary flow:

jump conditions:

       specific enthalpy

∂
∂ t  1

2
u2  e  ∂

∂ x  1
2
u2eu  ∂

∂ x
P u = 0

∂
∂ t u   ∂

∂ x uu   ∂P
∂ x

= 0

∂
∂ t

 ∂
∂ x u = 0

2 u2 = 1 u1

2 u2
2  P2 = 1 u1

2  P1

1
2

u2
2  h2 = 1

2
u1

2  h1h ≡ e P


=


−1
P




Shocks and Conservation Laws

1D, no external forces,  
stationary flow:

jump conditions:

       specific enthalpy

∂
∂ t  1

2
u2  e  ∂

∂ x  1
2

u2e P
  u = 0

∂
∂ t u   ∂

∂ x u uP  = 0

∂
∂ t

 ∂
∂ x u = 0

2 u2 = 1 u1

2 u2
2  P2 = 1 u1

2  P1

1
2

u2
2  h2 = 1

2
u1

2  h1h ≡ e P


=


−1
P




Shocks and Conservation Laws

1D, no external forces,  
stationary flow:

jump conditions:

       specific enthalpy

∂
∂ t  1

2
u2  e  ∂

∂ x  1
2

u2e P
  u = 0

∂
∂ t u   ∂

∂ x u uP  = 0

∂
∂ t

 ∂
∂ x u = 0

2 u2 = 1 u1

2 u2
2  P2 = 1 u1

2  P1

1
2

u2
2  h2 = 1

2
u1

2  h1h ≡ e P


=


−1
P




Shocks and Conservation Laws

1D, no external forces,  
stationary flow:

jump conditions:

       specific enthalpy

∂
∂ t  1

2
u2  e  ∂

∂ x  1
2
u2eu = − ∂

∂ x
P u 

∂
∂ t u   ∂

∂ x u u  = − ∂ P
∂ x

∂
∂ t

 ∂
∂ x u = 0

2 u2 = 1 u1

2 u2
2  P2 = 1 u1

2  P1

1
2

u2
2  h2 = 1

2
u1

2  h1h ≡ e P


=


−1
P



