Astrophysical Dynamics, VT 2010

Gas Dynamics:
Basic Equations, Waves and Shocks

Susanne Hofner

Susanne.Hoefner@{fysast.uu.se



Astrophysical Dynamics, VT 2010

Gas Dynamics:
Basic Equations, Waves and Shocks

1. Basic Concepts of Fluid Mechanics



Fluid Dynamics: Basic Concepts

consider a typical fluid ...




Fluid Dynamics: Basic Concepts

... and define a fluid element
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Fluid Dynamics: Basic Concepts

Definition of fluid element:

A region over which we can define local variables (density, temperature, etc.)
The size of this region (length scale L ) is assumed to be such that it is

region

(1) small enough that we can ignore systematic variations across it for any
variable q we are interested in:

L << 1 0Og/0dq0

region scale

(11) large enough to contain sufficient particles to ignore fluctuations due to
the finite number of particles (discreteness noise):

nl? >> ]

region

In addition, collisional fluids must satisfy:

(iii) L >> mean free path of particles

region



Mean Free Path - Examples

Mean Free Path

- depends on number density and cross section
- elastic scattering cross section of neutral atoms: 10" cm®

Examples
gas in density MFP size
[cm™] [cm] [cm]
typical room 10" 10°* 10°

HI region (ISM) 10 10" 10"



Fluid Dynamics: Basic Concepts

- frequent collisions, small mean free path compared to the characteristic
length scales of the system — coherent motion of particles

- definition of fluid element: mean flow velocity (bulk velocity)

- particle velocity = mean flow velocity + random velocity component

Vi "l

uit

random-walk trajectory



Fluid Dynamics: Basic Concepts

coherent motion of particles
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Fluid Dynamics: Basic Concepts

coherent motion of particles




Fluid Dynamics: Basic Concepts

coherent motion of particles




Fluid Dynamics: Basic Concepts

* The fluid is described by
local macroscopic variables
(e.g., density, temperature,
bulk velocity)

* The dynamics of the fluid is
governed by internal forces
(e.g. pressure gradients) and
external forces (e.g. gravity)

* The changes of macroscopic
, T properties in a fluid element
—T are described by conservation

- ﬁ:\\\ laws
N
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2. Fluid Dynamics: Conservation Laws



Fluid Dynamics: The Conservation Laws

Mass conservation:




Fluid Dynamics: The Conservation Laws

Mass conservation: divergence theorem

d _ A L
” pr dV = —fﬁApu-n dA = —IVV-(pu) dv
rate of change of mass in V = mass flux across the surface

0p _
E + V(pu)] dV = ()

rewrite as: f
v

... but the volume V is completely arbitrary

0p ~
L] E + V°(pu) = ()

equation of continuity



Fluid Dynamics: The Conservation Laws

Momentum conservation:

A

f pu; dV = fﬁ puu.n. d4 - %P(Si]‘ﬁj d4 +prai dV

rate of change of momentum in V =
momentum flux across the surface (fluid flow)
- effect of pressure on surface
+ effect of forces

applying divergence theorem (surface to volume integrals):

0 0 __aP
[] 8t( )+E(pu)— 8erpa

J
equation of motion



Fluid Dynamics: The Conservation Laws

Energy conservation:

d 1 2 _ 1 7 A A
|7 +pe)dV——§ﬁA(Epu +pe)u°n dA—gﬁA ul.PcSZ.jnjdAJerpu-a dv
rate of change of energy in V =
energy flux across the surface (due to fluid flow)
- work done by pressure

+ work done by forces

applying divergence theorem (surface to volume integrals):
]
+ V-((2—pu2+pe)u) = - V{Pu) + pua

energy equation

Jd |1
—|=pu +




Fluid Dynamics: The Conservation Laws

0p _
o V-(pu| =0
0 0 0P
- |+ — Y. = —- — + .
[0 axj(pulu]) PR
¢ l—pu2 + pe| + V- (l—pu2+pe)u = - V{Pu) + pua
0t\2 2

general form of conservation laws:

% (densityof quantity) + V- | fluxof quantity| = sources —sinks



Fluid Dynamics: The Conservation Laws

0p ~

E + V-(pu) =
0 0 _ 0P
E(W") + E(P“i”j) = ™ T P4,

... and what about external forces ? a=



Fluid Dynamics: External Forces

Gravitation:
a=g .. acceleration

where g 1s given by
Poisson's equation

Jig=-41Gp




Fluid Dynamics: External Forces

lﬁ“-‘l%- 2 Radiation pressure:
f. =pc /KF dv
f . force per volume,

added to equation
of motion

uLf ... workdone by
radiation pressure,

added to energy
equation



Fluid Dynamics: The Conservation Laws

0
8—? + Vi{pu) =
0 0 0P i
E('Du") + a(l)uiuj) - = a U P, t frad
%(%pbf +pe| +V s

... Including: gravity
radiation pressure
heating & cooling by radiation



Fluid Dynamics: Limit Cases of Energy Transport

0p
— + V:lpu =0
-+ Vilpul
0 0 0P
—\pu,| + —\pu.u.| = - — T pa
at(p l) ax](p l ]) axl p l
Barotropic equation of state: P="P ([))
Examples: - ideal gas: Popl
* isothermal case P« p
* adiabatic case P=Kp

Efficient radiative heating and cooling: [-A =( = T - P(p,T)

(- radiative equilibrium)
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3. Acoustic Waves and Shock Waves



Fluid Dynamics: The Conservation Laws

0p _
o V-(pu| =0
0 0 0P
- |+ — Y. = —- — + .
[0 axj(pulu]) PR
¢ l—pu2 + pe| + V- (l—pu2+pe)u = - V{Pu) + pua
0t\2 2

general form of conservation laws:

% (densityof quantity) + V- | fluxof quantity| = sources —sinks



Small-Amplitude Sound Waves

L5 Vo] =
lou) + Srloun) = = 55+ pa
replacing energy equation: P=Kp’
1D, no external forces: ) 5
o gl =
S lpu] + Sfpu) = - 5

l



Small-Amplitude Sound Waves

small-amplitude disturbances P=P,+P, ( X, t)
in gas which 1nitially 1s at rest _
with constant pressure and density P=Py TP, (x’ t)
u= u(x,1t)
replacing energy equation: P=Kp’
1D, no external forces: 5
p
— + —lpu) =0
ot  0x (p )
0 0 0P
—\pu) t —lpuu) = = —
i+ Gplowl = =



Small-Amplitude Sound Waves

small-amplitude disturbances P=P,+P, ( X, t)
in gas which 1nitially 1s at rest _
with constant pressure and density P=Py TP, (x’ t)
u= u(x,1t)
insert into equations & linearise:
vk = Py
Pi=yKpy p=y—p,
Py
dp, . ouy,
or ' Pox
du, 0P,

pOE 0x



Small-Amplitude Sound Waves

small-amplitude disturbances P=P,+P, ( X, t)
in gas which 1nitially 1s at rest _
with constant pressure and density P=Py TP, (x’ t)
u= u(x,1t)
_ -1 P,
Pi=yKpy p=y—p,
Py
dp, . ou,
or ' Pox
ou 0p P, )
use sound speed: po_l + £ = y— = q,



Small-Amplitude Sound Waves

. 0°p, 282/)1
[] homogeneous wave equation: — =0y = 0
0t 0X
general solution: p, = f(x—aot) + g(x+a0t)

waves propagating with sound speed a_
_/\/v —

In the absence of dissipation and spatial inhomogeneities (or dispersion), the
waveform of a disturbance governed by a linear wave equation maintains its size
and shape forever, apart from propagation at a constant wave speed.



Small-Amplitude Sound Waves

. 0°p, 282/)1
[] homogeneous wave equation: — =0y = 0
0t 0X
general solution: p, = f(x—aot) + g(x+a0t)

waves propagating with sound speed a_

ﬂ%

In the absence of dissipation and spatial inhomogeneities (or dispersion), the
waveform of a disturbance governed by a linear wave equation maintains its size
and shape forever, apart from propagation at a constant wave speed.



The Conservation Laws and Burgers' Equation

Fluid equations, 1D:

E + a—x(pu) = ()
0 0 _
a(pu) 1 a—x(puu + P) = ()

+ ai((l—puerpeJrP)u

= ()
x\ 2

0 (1
—|=pu" +



The Conservation Laws and Burgers' Equation

Fluid equations, 1D:

reformulate the
equation of motion:




The Conservation Laws and Burgers' Equation

Fluid equations, 1D:

reformulate the
equation of motion:

op 0

u— + u—(pu) +p— + (pu)@ oF 0

ot Ox ot dx  Ox



The Conservation Laws and Burgers' Equation

Fluid equations, 1D:

reformulate the

equation of motion: ﬁt(pu) T a_x(PW T P) =

ou ou 0P _
pa + (pu)a P (




The Conservation Laws and Burgers' Equation

Fluid equations, 1D:

reformulate the
equation of motion:

p—+(pu)@+a—P—O

ot dx  Ox



The Conservation Laws and Burgers' Equation

Fluid equations, 1D:

reformulate the
equation of motion:

... and neglect pressure gradients:



The Conservation Laws and Burgers' Equation

Fluid equations, 1D:

reformulate the
equation of motion:

Burgers' equation captures the
essential non-linearity of the
1D equation of motion.




Burgers' Equation: Steepening of Waves

inital data
numerical solution

08F




Fluid Dynamics: Steepening of Sound Waves

/V;—L/_, unphysical density profile

A B LC
density profile at t =0

An acoustic wave of finite amplitude, even if it starts with a perfect sinusoidal

shape and propagates in an undisturbed medium of exactly uniform properties,
would inevitably steepen in its waveform.



Fluid Dynamics: Steepening of Sound Waves

density p — po

shock

The tendency for nonlinearities to steepen the wave profile, which would
produce multiple values for fluid properties such as gas density and velocity,
must be eventually offset by the onset of strong viscous forces. The balance of
the viscous forces and the steepening tendency mediates a shock, which is
approximated in ideal fluid flow as a discontinuous jump of gas properties
across the front,



Fluid Dynamics: Structure of Shock Waves

P
P2 U1
downstream upstream
U2 P1
P

Across a viscous shock, the pressure and density increase and the velocity
decreases as the gas flows from the upstream state to the downstream state.
The transition is made in a characteristic distance Az that equals a few mean
free paths ¢ for the elastic scattering of the gas particles.



Fluid Dynamics: Structure of Shock Waves

Py

P2 U1
2 shock “jump” if f < L

U9 1

On macroscopic scales, shock transitions may be approximated as single
discontinuous jumps.



Shocks and Conservation Laws

op 0
1D, no external forces _
9 _— _|_ S —
o T ooy
0 0 0P
il + — - -
siloul  glowl = - =
8 1 p) 8 1 2 a
—| = + + —|{=pu + = - —
TAVI B ((2‘”’ peli ox




Shocks and Conservation Laws

1D, no external forces, 5_ ( 0 u) _
stationary flow: 0X
9 (puu) = = £
0x 0x
Jd [l 0
~ (= + - - 2
8x((2pu peli 0x




Shocks and Conservation Laws

1D, no external forces, 5_ ( pu) _
stationary flow: 0X
0 0P
a—x(puu) + e 0
o (,1 0
—|(=pu+ + —\Pul =0
ax((zp” pejul + =[Py




Shocks and Conservation Laws

1D, no external forces, 5_ ( pu) _
stationary flow: 0X
0
—\puu+P| =0
0x (p )
o [[1 » P




Shocks and Conservation Laws

1D, no external forces, 5_ ( pu) _
stationary flow: 0X
0
a—x(pourP) = ()
0 |1 2 P
—|{zu+et+t—]| pu| =0
ox\{\2 p) g
jump conditions: P, U, = Pl
2 )
specific enthalpy pyly + Py = puuy + P
P y P I 1

h = et— = —u, + hy = —uy + h
ep y—lp 22 2 21 I



Shocks and Conservation Laws

From these relations one can obtain expressions for the ratios of upstream to downstream
quantities in terms of the upstream Mach number M, = u;/a,, where a®> = vP/p. The
quantity M; is known as the Mach number of the shock. For a perfect gas we find:

P2 _ (y +1)M¢ _ " (75)
p (HD+O-DAF-1)  w

P, (y+1)429(M7-1)

P (v +1) 0
L _ [0+ 20 (M - D)y + 1) + (= DM~ 1) .
T (y+1)2M?

Notice that P, > Py, py > py, and T, > T if M; > 1 (supersonic upstream) with equality
if My = 1 (no shock at all). In the limit of a very strong shock, M; — oo, the density
jump is bounded by a finite value (y+1)/(y — 1), which equals 4 if 7 = 5/3. In the same
limit, the pressure and temperature jumps have no bound. In any case the deceleration of
a gas from supersonic to subsonic speeds in a shock results in compression and heating.



