Astrophysical Dynamics
VT 2010

Susanne Höfner
Susanne.Hoefner@fysast.uu.se

Hans Rickman
Hans.Rickman@fysast.uu.se
Aims of this Course

- understanding the role and nature of dynamical processes in a wide range of astrophysical contexts and how to study such phenomena

- getting familiar with the basic concepts of gas dynamics (incl. gravitation) and commonly used approximations

- learning about theoretical and numerical solutions of the gravitational N-body problem

- getting introduced to the construction of models for self-gravitating stellar systems and characterization of orbits in such models

- studying examples of astrophysical objects and systems where dynamical processes play an important role

- learning how to make simple estimates for dynamical time scales and stability of astrophysical objects and systems

- understanding how the effects of dynamical processes can be measured and observed in astronomical contexts

- creating a basis for more specialized astrophysics courses
The course consists of a series of **lectures** on the following topics:

- introduction: overview of dynamical processes in astrophysics
- solar system dynamics
- basic gas dynamics (conservation laws, waves, shocks)
- protostellar collapse and star formation
- protoplanetary disks and planet formation
- stellar outflows (winds, supernovae) and their interaction with the ISM
- dynamics of stellar clusters and galactic dynamics
- interacting galaxies

hand-in exercises, computer labs (discussed in extra sessions) and **short presentations** by each student on topics related to dynamical processes in astrophysics (literature seminars)
Practical Matters

Literature
- lecture notes (will be posted on-line and/or handed out)

Resources
- PC + MATLAB (or equivalent) for computer labs/exercises
- detailed schedule & more information online:

Course Requirements
- problem sets handed in during course
- results of computer labs handed in / presented during exercises
- short presentations on selected topic ... more information later ...
- written summaries of presentations handed in by end of course
Astrophysical Dynamics

Introduction
The Cosmic Matter Cycle

Interstellar medium

Stars
- form out of interstellar gas
- show convection and pulsation
- return gas to the ISM through winds and SN explosions
Young Stellar Objects: Disks & Jets

a
Rotation axis

b
Rotation axis

c
Rotation axis

protostellar disk
protostar
jet
The Cosmic Matter Cycle

The stellar life cycle ...
in real life:

stars of different mass born from the same cloud evolve on different time scales

stars influence the surrounding interstellar medium, triggering or prohibiting further star formation in a certain region

material ejected from stars is mixed in the ISM

The galactic nebula NGC 3603 (source: hubblesite.org)
Stars enrich the interstellar medium with newly-produced elements heavier than H and He.
The Cosmic Matter Cycle

Interstellar medium

Fraction of elements heavier than H and He (metallicity) increases in the ISM with every generation of stars

Stars enrich the interstellar medium with newly-produced elements heavier than H and He

Dynamical processes in stars and the ISM play a crucial role for the chemical evolution of galaxies!
Measuring Velocities of Astrophysical Objects

velocities: observed as
- movements on the sky: tangential velocities v_t
- Doppler shift in light: radial velocities v_r

$v_t = 4.74 \mu d$ [km/s]
μ: proper motion [arcseconds/year]
d: distance [parsec]

$v_r/c = (\lambda - \lambda_0) / \lambda_0$
λ: observed wavelength
λ_0: rest wavelength (lab)
c: speed of light
Measuring Velocities of Astrophysical Objects

Example: Barnard's star

\[v_t = 4.74 \mu \, d \, [\text{km/s}] = 89.4 \, \text{km/s} \]
\[\mu = 10.358 \, [\text{arcseconds/year}] \]
\[d = 1.82 \, [\text{parsec}] \]

\[v^2 = v_{t}^2 + v_{r}^2 \]
\[v = \sqrt{v_{t}^2 + v_{r}^2} = 143 \, \text{km/s} \]

\[v_{r} = \frac{c (\lambda - \lambda_{0})}{\lambda_{0}} = -111 \, \text{km/s} \]
\[\lambda = 516.438 \, \text{nm} \]
\[\lambda_{0} = 516.629 \, \text{nm} \quad (\text{iron line}) \]
\[c = 3 \times 10^5 \, \text{km/s} \]
Measuring Velocities of Astrophysical Objects

material ejected from a star in all directions (wind, supernova remnant):
superposition of different radial velocities (projected velocity components towards observer) from different parts of the envelope leads to complicated line profiles (e.g. P Cygni profiles for stellar winds)
Measuring Velocities of Astrophysical Objects

Example: Wind of fast moving star interacting with ISM

NASA's Galaxy Evolution Explorer (Galex) discovered an exceptionally long (13 light years) tail of material trailing behind the cool giant star Mira (ο Ceti). The tail is only visible in ultraviolet light (top left), and does not show up in visible light (bottom left).

www.nasa.gov/mission_pages/galex/20070815/a.html
Measuring Velocities of Astrophysical Objects

material ejected from a star in all directions (wind, supernova remnant)

fast expanding envelopes: change of size in tangential direction may be measurable
Measuring Velocities of Astrophysical Objects

Example: Expansion of the Crab Nebula

Positive and negative photographs of the Crab Nebula taken 14 years apart (by Walter Baade) do not superimpose exactly, indicating that the gaseous filaments are still moving away from the site of the explosion.
Measuring Velocities of Astrophysical Objects

Example: Jet produced by a young stellar object

jet movie obtained with HST
Patrick Hartigan (hartigan@sparky.rice.edu)
Dynamics of Stellar Systems

Individual stars
- form, evolve, and die
- modify the interstellar gas
... but they are also parts of stellar systems ...

Stellar systems:
stellar orbits determined by
- gravitation
- kinetic/potential energy
- angular momentum