
Astrofysikalisk dynamik, VT 2010

Gas Dynamics:
Basic Equations, Waves and Shocks

Lecture Notes

Susanne Höfner
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1 The Equations of Fluid Dynamics

In the following, we discuss the basic equations which describe the flow of a gas from
a macroscopic point of view. We will derive and interpret the equations by looking at
the changes of macroscopic quantities within a fixed volume. Considering ideal fluids
only, we neglect the effects of viscosity and heat conduction which are of little importance
in many astrophysical flows. Furthermore, we will discuss relevant external forces and
energy exchange processes.

1.1 The Conservation Laws

Consider an arbitrary but fixed volume V with a surface A (with local unit normal n̂): the
time rate of change of a quantity inside this volume will be given by the sum of explicit
changes of this quantity (volumetric contributions) and surface effects (net transport
across the surface).

Mass Conservation

The time rate of change of the mass contained in the volume V is equal to the (negative)
value of the mass flux ρu across the surface (with ρ and u denoting the mass density and
flow velocity, respectively):

d

dt

∫

V
ρ dV = −

∮

A
ρu · n̂ dA = −

∫

V
∇·(ρu) dV (1)

where the last expression is obtained by using the divergence theorem. V is fixed, so we
can write ∫

V

[
∂ρ

∂t
+∇·(ρu)

]
dV = 0 (2)

and, since V is completely arbitrary, the integrand must vanish. Thus we obtain the
equation of continuity:

∂ρ

∂t
+∇·(ρu) = 0. (3)

Momentum Conservation

The time rate of change of the fluid momentum in volume V equals the surface integral
of the momentum flux due to fluid flow across A, plus the effect of the pressure P acting
on the fluid across the surface A, plus the contribution of external forces (e.g. gravity)
acting on every point of V (causing an acceleration a):

d

dt

∫

V
ρ ui dV = −

∮

A
(ρ ui) ujn̂j dA−

∮

A
P δijn̂j dA +

∫

V
ρ ai dV (4)

Applying the divergence theorem to transform the surface integrals into volume integrals
we obtain the momentum equation

∂

∂t
(ρ ui) +

∂

∂xj

(ρ uiuj) = −∂P

∂xi

+ ρ ai (5)

2



Energy Conservation

The time rate of change of the total fluid energy (kinetic energy of fluid motion plus
internal energy, where e denotes the specific internal energy) equals the surface integral
of the energy flux (kinetic + internal), plus the surface integral of the work done by the
pressure plus the volume integral of the work done by external forces (e.g. gravitation):

d

dt

∫

V

[
1

2
ρu2 + ρe

]
dV = −

∮

A

[
1

2
ρu2 + ρe

]
u · n̂ dA−

∮

A
uiP δijn̂j dA +

∫

V
ρu · a dV (6)

Using the divergence theorem we obtain the total energy equation:

∂

∂t

[
1

2
ρu2 + ρe

]
+∇·

([
1

2
ρu2 + ρe

]
u

)
= −∇·(P u) + ρu · a (7)

We see that the fluid equations have the general form

∂

∂t
(density of quantity) +∇·(flux of quantity) = sources− sinks.

1.2 External Forces and Radiation

So far, we have taken external forces formally into account by considering the acceleration
a acting on the gas. In most astrophysical situations gravity is the force which determines
the large-scale structure of an object. In this case we have a = g where g is the the
gravitational acceleration, given by Poisson’s equation (G = constant of gravitation)

∇·g = −4πGρ. (8)

In some circumstances we can not ignore the interaction of the gas with a radiation field.
The force per unit volume exerted by the radiation on the gas is

frad =
ρ

c

∫ ∞

0
κνFν dν, (9)

were ν denotes the frequency, κν is the opacity of the gas (absorption and scattering) and
Fν is the monochromatic radiative energy flux. In this case we have to add

frad

to the right-hand side of Eq. 5, and account for the work done by this force by adding

u · frad

to the right-hand side of Eq. 7. In addition, we also have to take radiative sources and
sinks of heat (internal energy) into account by adding

Γ− Λ

to the right-hand side of Eq. 7. Here Γ and Λ denote the volumetric gains and losses of
energy due to local sources and sinks (absorption and emission of radiation), respectively.

Note in this context that this simple treatment of the interaction of radiation and
matter can only be used if the flow velocity is much smaller than the speed of light.
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1.3 Limit Cases of the Energy Transport

Depending on which processes are relevant for the transport of energy in the system
under consideration, the energy equation can be rather complicated. However, in many
situations this equation can be replaced by a barotropic equation of state, i.e. a relation

P = P (ρ). (10)

One example for such a case is a fluid consisting of degenerate matter. Two other examples
are the limit cases of negligible and extremely efficient energy transport.

Adiabatic Flow

Consider an element of gas which neither gains nor loses heat by contact with its surround-
ings (no thermal conduction, radiative energy exchange, etc.) and the internal energy only
changes due to work performed by the element on its surroundings, and vice versa. Then
the entropy of this element remains constant and from thermodynamics we know that the
pressure and temperature of the gas are related by the adiabatic relationship

P = K ργ.

Here γ = CP /CV is the ratio of the heat capacities (e.g. γ = 5/3 for a monatomic gas)
and K is a constant related to the entropy of the element.

Radiative Equilibrium

On the other hand, in the limit of extremely efficient radiative heating and cooling the en-
ergy equation is dominated by the radiative source and sink terms (see preceding section)
and reduces to

Γ− Λ ≡ 0.

For a gas of given composition under optically thin conditions Γ−Λ can often be expressed
as a function of density and temperature, only. Then Γ − Λ ≡ 0 associates a unique
temperature with a given density, which implies, together with the equation of state for
an ideal gas, that P = P (ρ).
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2 Acoustic Waves and Shock Waves

2.1 Small-amplitude Acoustic Waves

We consider the propagation of acoustic disturbances (sound waves) in an ideal gas where
the pressure and density are related by

P = K ργ (11)

(see preceding section for definitions). In the following, Eq. 11 replaces the energy con-
servation equation.

We assume that initially the gas is at rest, has a constant pressure P0 and a con-
stant density ρ0, and no external forces are acting on the gas. Now we consider a small
disturbance so that the pressure, density and velocity are:

P = P0 + P1(x, t) (12)

ρ = ρ0 + ρ1(x, t) (13)

u = u1(x, t). (14)

The perturbations P1, ρ1 and u1 are assumed to be of small amplitude so that we
can neglect terms of higher order than linear in these quantities. Linearizing the (one-
dimensional) equations of mass and momentum conservation (acceleration due to external
forces a = 0), as well as Eq. 11 we obtain

∂ρ1

∂t
+ ρ0

∂u1

∂x
= 0 (15)

ρ0
∂u1

∂t
= −∂P1

∂x
(16)

and

P1 = γ K ργ−1
0 ρ1 = γ

P0

ρ0

ρ1. (17)

We define the quantity a2
0 by

a2
0 = γ

P0

ρ0

. (18)

where a0 has the dimension of velocity and is constant. Using this definition, the linearized
momentum equation can be written as

ρ0
∂u1

∂t
+ a2

0

∂ρ1

∂x
= 0. (19)

Differentiation of Eq. 15 with respect to t, of Eq. 19 with respect to x and subtraction of
the resulting equations gives

∂2ρ1

∂t2
− a2

0

∂2ρ1

∂x2
= 0. (20)

This is the homogeneous wave equation which has as its most general solution

ρ1 = f(x− a0t) + g(x + a0t), (21)

where f and g are waves propagating in opposite directions with speed a0 (adiabatic
sound speed), maintaining their original shape.
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2.2 Shock Waves

In the previous section we have considered small disturbances which are described by
a linear wave equation. In general, due to the non-linear nature of the hydrodynamic
equations, waves with a finite amplitude will not maintain their shape as they propagate.
On the contrary, such waves have a tendency to steepen, because different parts of the
wave move with different speeds. The limit of this steepening process is a shock wave, i.e.
a ‘discontinuous’ change of the velocity, density and pressure at the location of the shock.

We consider a stationary shock, i.e. the velocity, density and pressure at either side
of the shock do not explicitly depend on time, and we choose the frame of reference in
which the shock is at rest. According to the conservation equations for mass, momentum
and energy the flow across the shock front has to satisfy the following jump conditions:

ρ2 u2 = ρ1 u1 (22)

ρ2 u2
2 + P2 = ρ1 u2

1 + P1 (23)
1

2
u2

2 + h2 =
1

2
u2

1 + h1 (24)

These equations give the downstream conditions (index 2) as a function of the upstream
conditions (index 1). They are known as the Rankine-Hugoniot jump conditions. Here h
denotes the specific enthalpy which for a perfect gas satisfies the constitutive relations

h =
γ

γ − 1

P

ρ
=

γ

γ − 1

kT

µmu

(25)

where k, µ and mu are the Boltzmann constant, the mean molecular weight and the atomic
mass unit, respectively. From these relations one can obtain expressions for the ratios of
upstream to downstream quantities in terms of the upstream Mach number M1 ≡ u1/as,

where as ≡
√

γP/ρ (adiabatic sound speed). For an ideal gas one finds:

ρ2

ρ1

=
(γ + 1)M2

1

(γ + 1) + (γ − 1)(M2
1 − 1)

=
u1

u2

(26)

P2

P1

=
(γ + 1) + 2γ(M2

1 − 1)

(γ + 1)
(27)

T2

T1

=
[(γ + 1) + 2γ(M2

1 − 1)][(γ + 1) + (γ − 1)(M2
1 − 1)]

(γ + 1)2M2
1

(28)

Note that P2 ≥ P1, ρ2 ≥ ρ1, and T2 ≥ T1 if M1 ≥ 1 (supersonic upstream) with equality if
M1 = 1 (no shock at all). In the limit of a very strong shock, M1 →∞, the density jump
is bounded by a finite value (γ + 1)/(γ− 1), which equals 4 if γ = 5/3. In the same limit,
the pressure and temperature jumps have no bound. In any case the deceleration of a gas
from supersonic to subsonic speeds in a shock results in compression and heating.
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