
Planetary System Dynamics

Part I



Kepler’s Laws (1609-1619)

The first nearly correct general description of planetary
motions

Empirical fit to the observations, no causal explanation



P²∝a³

Kepler I

Kepler II

Kepler III



Inaccuracies

• Why do Kepler’s Laws not give an exact
description of the real planetary orbits?

• The planetary masses enter into the 3rd Law
• The planets perturb each others’ orbits
• Newtonian theory is not exact (GR effects)



Newton’s law of gravity

• Conservative force field ⇒ Energy integral
• Central force field ⇒ Angular momentum

integral
• Solution: Conic section satisfying Kepler’s

laws
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The velocity vector

• Radial and transverse
components:

• Radial - Magnitude = time
derivative of r

• Transverse - Magnitude =
r times time derivative of θ Polar coordinates:

r and θ



Basic integrals (1)

Point mass potential (energy per unit mass):
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U(r) = "
GM
r

velocity:

Energy integral:



Basic integrals (2)

Angular momentum integral: (constant vector)

(constant)



Properties of motion
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Bound motion in a
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Reflex motion

The hammer and the thrower both rotate around their
common center of mass, but the hammer moves much
faster at a larger distance
The same happens with a planet and its star



Stellar/Planetary orbits
• The Center of Mass (CM) is

fixed in the origin, and the
star-planet radius vector turns
around the CM

• Equations of motion in the CM
frame:
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Subtract to get the equation of relative motion!



Exoplanets

– radial motions of solar type stars are measured from
the Doppler shifts of a large number of narrow
absorption lines in the optical spectrum

– useful to a distance of about 160 light years
– The large majority of exoplanets were detected by this

method

M. Mayor, G. Marcy



Exoplanet mass determination

• Measure:  period P and radial velocity half amplitude
v∗ sin i

• Identifying v∗ with v∗ sin i yields a lower limit for Mp
• Detection is easiest if P is short (vp is large), Mp is

large, or M∗  is small
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Orbital Elements
• a - semimajor axis
• e - eccentricity
• i - inclination w.r.t. the ecliptic
• Ω - longitude of the ascending node
• ω - argument of perihelion
• T - time of perihelion passage

M=n(t-T) is mean anomaly at time t



Useful Relations

• Perihelion distance
• Aphelion distance

• Binding energy

• Speed of motion

• Angular momentum

! 

q = a 1" e( )

! 

Q = a 1+ e( )

! 

E = "
GMsun

2a

! 

v 2 =GMsun
2
r
"
1
a

# 

$ 
% 

& 

' 
( 

! 

H = GMsuna 1" e
2( )



Critical velocities

• Circular speed:

• Escape speed:
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The Hyperbola

Semi-major axis
negative for hyperbolas!! 

q = a(1" e)
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p = a(1" e2)
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Hyperbolic deflection
Impact parameter:  B (minimum distance along the straight line)

Velocity at infinity:  V∞ Angle of deflection:  ψ = π - 2φ
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Sphere of influence
• A massive body has a sphere of influence, where

its gravitational influence exceeds that of the Sun
(e.g., the Hill sphere)

• This can be defined in terms of the ratio of central to
perturbing force in the planetocentric or heliocentric
frame



Close encounters
• Approximate treatment as

hyperbolic deflections
(scattering problem)

• The approach velocity U is
conserved:

                    U2 = 3 - T
• As the direction of the

velocity vector is changed,
the heliocentric motion can
be either accelerated or
decelerated

θ controls the values of
E and Hz



Gravitational scattering

• Protoplanet-planetesimal interactions in
the early Solar System (planetary
migration due to exchange of energy
and angular momentum)

• Capture of comets into short-period
orbits

• Gravity-assist manoeuvres in space
missions (ex. Grand Tour)



Gravitational focusing
The actual minimum distance is smaller than
the impact parameter
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Cross-section for collision with a planet:
impact parameter yielding a grazing collision
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Planetary Perturbations (1)
• Small departures from Keplerian

motion, expressible as (mostly slow)
changes of the orbital elements

• Direct perturbations: caused by the
acceleration of the test body due to the
perturbing planet

• Indirect perturbations: caused by the
acceleration exerted by the perturbing
planet on the Sun

Formulating the equation of motion in the heliocentric frame:



Planetary Perturbations (2)
• Perturbing function:

• If M1 and R1 were zero, the orbital elements
would be constant

• When M1 and R1 are small, the orbital elements
will vary slowly

• Set up differential equations for the time
derivatives of (a,e,i,ω,Ω,T), seek solutions that
are valid over as long time as possible
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DIRECT INDIRECT

Pert. Acc. = ∇R1



Lagrange’s planetary equations



Series development

• Use successive approximations for solving the
planetary equations, starting from a linear
perturbation theory, computing the perturbing
function from unperturbed orbits

• Express the coordinates, and thus the perturbing
function, as trigonometric series in the angular
elements (M,ϖ,Ω) with coefficients that are non-
linear expressions in the non-angular elements
(a,e,i)

• Truncate this expression at a certain order in the
small quantities (e and i)



Action-angle variables
• By truncating the series developments, we necessarily

get an integrable system of equations
• By transforming the variables, we can put this system

on a canonical form, which means that the
Hamiltonian (energy of the system) only depends on
three of them (the action variables) but not on the
other three (angle variables)

• The integrals are then the action variables and the
frequencies of the angle variables (constants of
motion)

• The semi-major axis a is such a constant in the linear
theory, and M is an angle variable with constant
frequency n (the mean motion)



Proper Elements

• The linear theory also identifies
the coupled variations of (e,ω)
and (i,Ω) in terms of quasi-
circular patterns in e.g. the
(ecosω,esinω) plane

• The offset of the center is the
“forced eccentricity” and the
radius of the circle is the
“proper eccentricity”

• The proper eccentricity and
inclination are quasi-constants
of motion over very long periods
of time

Example from a long-
term integration of
(11798) Davidsson



Asteroid Collisional Families

• Hirayama families (Hirayama 1918), most evident
  using proper elements:  Eos, Koronis, Themis


