Planetary System Dynamics
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Kepler's Laws (1609-1619)

e Law I. The orbit of each planet is an ellipse, with the Sun at one of its foci.

e Law II. As the planet moves in its orbit, the radius vector sweeps out equal
areas in equal intervals of time.

e Law III. For any two planets, the ratio of the squares of their periods of
revolution about the Sun is the same as the ratio of the cubes of their mean
distances from the Sun.

The first nearly correct general description of planetary
motions

Empirical fit to the observations, no causal explanation
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lnaccuracies

 Why do Kepler’'s Laws not give an exact
description of the real planetary orbits?

* The planetary masses enter into the 3rd Law
* The planets perturb each others’ orbits
* Newtonian theory is not exact (GR effects)



Newton's law of gravity
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« Conservative force field = Energy integral

» Central force field = Angular momentum
integral

» Solution: Conic section satisfying Kepler's
laws



The velocity vector

« Radial and transverse
components:

- Radial - Magnitude = time
derivative of r

 Transverse - Magnitude =

r times time derivative of 0 Polar coordinates:
r and 0



Basic integrals (1)

Point mass potential (energy per unit mass): U(r) = —

velocity: = 7t + r0
. _ L.,
Energy integral. 51- +U(r)=FE

%(7’“2 + 7"292) +U(r)=F
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Basic integrals (2)

Angular momentum integral: r X r = h  (constant vector)

h = 20 (¢ x 0);

h = r20 (constant)




Properties of motion

* 2GM
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The hammer and the thrower both rotate around their

common center of mass, but the hammer moves much

faster at a larger distance

The same happens with a planet and its star



Stellar/Planetary orbits

* The Center of Mass (CM) is
fixed in the origin, and the
star-planet radius vector turns

frame:

around the CM
« Equations of motion in the CM k/

GM., . . GMp
> T b =
7] Gl

r, =-

Subtract to get the equation of relative motion!



EXOplanetS M. Mayor, G. Marcy
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— radial motions of solar type stars are measured from
the Doppler shifts of a large number of narrow
absorption lines in the optical spectrum

— useful to a distance of about 160 light years

— The large majority of exoplanets were detected by this
method



Exoplanet mass determination
SN

o . Vobs
/ line of sight T "

time

 Measure: period P and radial velocity half amplitude
V., Sin |

* Identifying v, with v, sin i yields a lower limit for M,

* Detection is easiest if P is short (v, is large), M, is
large, or M, is small

v*

M, =M, x v, e M, P M
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Orbi

tal Elements

e a-semimajor axis

e e - eccentricity
e j-inclination w.r.t.

the ecliptic

« Q -longitude of the ascending node
* - argument of perihelion

T - time of perihel

on passage

M=n(t-T) is mean anomaly at time ¢
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Useful Relations

Perihelion distance ¢ =a(l-e)
Aphelion distance ~ Q=a(l+e¢)
Binding energy  E=- M,
2a
. ) 2 1
Speed of motion Vo= GMSW(; - ;)

Angular momentum H = \/GMsuna(l—ez)



Critical velocities




The Hyperbola

Semi-major axis
negative for hyperbolas!

(Z) - (%) -

B p
T(V) 1+ ecosv
q=a(l-e)
p=a(l-e’)

1
COSV, =——
e



Hyperbolic deflection

Impact parameter. B (minimum distance along the straight line)

Velocity at infinity: V, Angle of deflection: { = 1 - 2¢
. 1
COS P = COS(T — Vo) = — COS Voo = —
€

B = lalesin¢ = |a|ve? —1=1b

u=GM
tan L— = cot¢ = ! = — Kl
T2 T -1 h
*  |a 2 Vh VB




Sphere of influence

« A massive body has a sphere of influence, where
its gravitational influence exceeds that of the Sun
(e.g., the Hill sphere)

 This can be defined in terms of the ratio of central to

perturbing force in the planetocentric or heliocentric
frame




Close encounters

« Approximate treatment as
hyperbolic deflections
(scattering problem)

* The approach velocity U is
conserved:

U2=3-T < e e Bkt

* As the direction of the
velocity vector is changed,
the heliocentric motion can
be either accelerated or 6 controls the values of
decelerated E and H,

B=1/2



Gravitational scattering

* Protoplanet-planetesimal interactions in
the early Solar System (planetary
migration due to exchange of energy
and angular momentum)

» Capture of comets into short-period
orbits

» Gravity-assist manoeuvres in space
missions (ex. Grand Tour)




Gravitational focusing

The actual minimum distance is smaller than
the impact parameter

g=ld(e-1) B=ldhe* -1

q e —1

B e+1

Cross-section for collision with a planet:
impact parameter yielding a grazing collision

2 2
V., Bg —\/voo+ve Rp



Planetary Perturbations (1)

 Small departures from Keplerian
motion, expressible as (mostly slow)
changes of the orbital elements

Formulating the equation of motion in the heliocentric frame:

* Direct perturbations: caused by the
acceleration of the test body due to the
perturbing planet

* Indirect perturbations: caused by the
acceleration exerted by the perturbing
planet on the Sun



Planetary Perturbations (2)

* Perturbing function: DIRECT  INDIRECT

Pert. Acc. = VR, R =GM,- 1 h-r
F=h

« If M, and R, were zero, the orbital elements
would be constant

 When M, and R, are small, the orbital elements
will vary slowly

« Set up differential equations for the time
derivatives of (a,e,i,w,Q,T), seek solutions that

are valid over as long time as possible



Lagrange’s planetary equations

da 2 OR
dt  nadX
de 1 5. OR OR
— = 1 — e2)=—— — /1 — 2=
dt  na’e <( ‘ )8X ‘ (%))
N = ! Cotia% — Coseciag%
dt B na?+v/1 — e2 / Ow ’ oS
dQy 1 OR
dt  na2v/1— e2sini Oi
dw V1 —e20R cot 1 ON

dt ~  na2e Oe 21— 2 Oi

dX__l—ezﬁﬁ%_ 2 OR
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Series development

* Use successive approximations for solving the
planetary equations, starting from a linear
perturbation theory, computing the perturbing
function from unperturbed orbits

» EXxpress the coordinates, and thus the perturbing
function, as trigonometric series in the angular
elements (M,w,Q) with coefficients that are non-

linear expressions in the non-angular elements
(a,e,l)

* Truncate this expression at a certain order in the
small quantities (e and /)




Action-angle variables

By truncating the series developments, we necessarily
get an integrable system of equations

By transforming the variables, we can put this system
on a canonical form, which means that the
Hamiltonian (energy of the system) only depends on
three of them (the action variables) but not on the
other three (angle variables)

The integrals are then the action variables and the
frequencies of the angle variables (constants of
motion)

The semi-major axis a Is such a constant in the linear
theory, and M is an angle variable with constant
frequency n (the mean motion)



Proper Elements

* The linear theory also identifies

the coupled variations of (e,w)
and (/,Q2) in terms of quasi- o7
circular patterns in e.g. the ~ vt
(ecosw,esinw) plane LR
- The offset of the center is the A\
“forced eccentricity” and the " ass|
radius of the circle is the o _
“proper eccentricity” o
« The proper eccentricity and Amein@eos)
Inclination are quasi-constants Example from a long-

of motion over very long periods term integration of
of time (11798) Davidsson



Asteroid Collisional Families
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* Hirayama families (Hirayama 1918), most evident
using proper elements: Eos, Koronis, Themis



