Dynamics of planet formation
Centrifugal equilibrium

• Conservation of angular momentum in a contracting cloud ⇒ increase of angular velocity and rotational energy

• Rotational energy U_{rot} increases faster than gravitational energy U decreases

• Contraction perpendicular to the spin axis stops when the centrifugal force equals the force of gravity at the equator of the cloud

• $R_{\text{lim}} = R_c$ (centrifugal radius)

• Continued collapse along the spin axis ⇒ flattened disk with radius $R \sim R_c$
Rotation and Contraction

- Potential energy of a spherical, homogeneous cloud:
 \[U = -\frac{3}{5} \frac{GM^2}{R} \]

- Moment of inertia:
 \[I = \frac{2}{5} MR^2 \]

- Energy of rotation:
 \[U_{rot} = \frac{1}{2} I \omega^2 = \frac{L^2}{2I} = \frac{5}{4} \frac{L^2}{MR^2} \]

- Centrifugal equilibrium condition:
 \[R_c \omega^2 = \frac{GM}{R_c^2} \quad \therefore R_c = \frac{25L^2}{4GM^3} = \frac{25}{4GM} \times \left(\frac{L}{M} \right)^2 \]

Centrifugal radius
Estimating a rough value of R_c

- Use $L/M = \omega R^2$ from observations of molecular cloud cores
- $R=5000$ AU and $\omega=2 \times 10^{-14}$ s$^{-1}$ leads to $R_c \sim 25$ AU

- Observations of protoplanetary disks are consistent with this estimate
Protoplanetary disks

HH 30
“Herbig-Haro object”

“proplyds”
(Orion nebula)

General radii ~ 100 AU

HST pictures
Accretion disk

• Differentially rotating disk - *angular velocity decreases outward: SHEAR*

• The shear has a physical effect, if elements at different radial distances “stick” together

• For a gaseous disk the interaction can be described as a *VISCOSITY* (suppressing relative motion)
Shearing instability, turbulent flow

- **Autobahn example:**
 - Low traffic, peaceful drivers – *laminar flow*
 - High traffic, nervous drivers changing lanes – *turbulent flow*
Consequences of shear and viscosity

- The energy of relative motion is dissipated ⇒ HEATING
- Angular momentum is transported outward
- Global tendency for the disk to break up radially
- Material deprived of angular momentum collects at the center of the disk: ACCRETION
Accretion disk evolution

- Consider a *circular annulus* according to the picture
- The surface density is Σ
- Ω decreases with r
- In the absence of infall:

$$2\pi r \Delta r \frac{\partial \Sigma}{\partial t} = \frac{\partial (\Delta m)}{\partial t} = -\Delta (2\pi r \Sigma v_r)$$

Thus the *mass continuity equation*:

$$r \frac{\partial \Sigma}{\partial t} + \frac{\partial}{\partial r} (r \Sigma v_r) = 0$$
Accretion disk evolution, ctd

Conservation of angular momentum:

\[2\pi r \Delta r \frac{\partial}{\partial t} \left(\Sigma r^2 \Omega \right) = \frac{\partial (\Delta L)}{\partial t} = -\Delta \left(2\pi r^3 \Sigma \Omega v_r \right) + \Delta G \]

where \(G \) is the \textit{torque} acting on the inner neighbour.

Thus the \textit{angular momentum continuity equation}:

\[r \frac{\partial}{\partial t} \left(\Sigma r^2 \Omega \right) + \frac{\partial}{\partial r} \left(r^3 \Omega \Sigma v_r \right) = \frac{1}{2\pi} \frac{\partial G}{\partial r} \]

Shear velocity:

\[A = r \frac{d\Omega}{dr} \]
Shear and viscosity

- Viscous tension: $p = \rho \nu A$
 where ν is viscosity

- Force acting over length ℓ:
 $F = \ell \int p \, dz = \ell \cdot \nu \Sigma A$

- Total torque $G = rF$
 with $\ell = 2\pi r$:

 $G = r \cdot 2\pi r \cdot \nu \Sigma A = 2\pi r^2 \nu \Sigma A = 2\pi r^3 \nu \Sigma \frac{d\Omega}{dr}$
Global evolution

• Combining the equations, eliminating v_r, we get a diffusion equation for Σ:

$$\frac{\partial \Sigma}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left\{ \frac{1}{d/dr(r^2\Omega)} \cdot \frac{\partial}{\partial r} \left[r^3 \nu \Sigma \left(\frac{-d\Omega}{dr} \right) \right] \right\}$$

Example: a narrow, circular ring gets dispersed inward and outward over time. Most of the mass moves inward, and a small fraction of the mass carries the angular momentum outwards.
Magneto-rotational instability

- Suppose the gas disk is partially ionized and penetrated by a frozen-in magnetic field
- If a field line connects two gas parcels at somewhat different radial distance, their differential rotation will stretch the field line, and magnetic tension acts to keep them together \Rightarrow instability against radial break-up

Initiates turbulence and transports angular momentum
Episodic accretion

- A "dead zone" may develop inside the disk, where neither thermal motion nor X-rays are able to ionize the gas enough for MRI.
- The dead zone would accumulate material from the outside and grow in mass.
- There may be bursts of accretion, when such clumps fall onto the protostar.
Planetary formation mechanisms

- Planetesimal Accretion (PA)
- Gas Disk Instability (GI)

Terrestrial planets were certainly formed by PA

For *giant planets*, PA is favoured

But the issue is still open!
What is a planetesimal?

• A **planetesimal** is a planetary building block large enough to cause some significant *gravitational attraction* on neighbouring objects (km-size or larger)

• A **planetary embryo** is formed from planetesimals by accumulating them into a larger object by local accretion

The eventual planets are much fewer than the embryos
Planetesimal formation

- Proposed mechanisms:
 - gravitational instability of a thin disk of solid bodies
 - grain accretion by collisions with sticking, triggered by gas-dust interactions
Gravitational instability

Compare the derivation of the Jeans mass!

- Consider a *disk in differential, Keplerian rotation* around a central object (Sun)
- *Perturb the mass distribution locally; find the response of the disk as a spiral wave*
- The dispersion relation (frequency vs wave number) indicates *instability* (imaginary frequency) *for large wavelengths, if the velocity dispersion is small enough*
- Hence an instability so that local density enhancements can grow ⇒ *planetesimals*
Grain growth

• Mechanisms for grain collisions:
 - *thermal* (Brownian) motions
 - *turbulent* gas motions (grains carried along by eddies)
 - gravitational *settling* into the midplane
 - *inward drift* due to solar gravity and gas drag
Gas drag

- Consider a *grain moving sub-sonically* through a gas with molecular mass m_g and thermal speed v_g. The drag force acting on the grain is:

$$F_D = n_g A V \times C_D m_g v_g$$
Coupling time scale

• Solving the equation of motion

\[M \frac{dV}{dt} = F_D \]

we get:

\[V = V_o \exp \left\{ -C_D \frac{A}{M} n\mu u_{th} t \right\} = V_o \exp \left\{ -\frac{t}{\tau_c} \right\} \]

with

\[\tau_c = \frac{M}{AC_D \rho_{gas} u_{th}} \quad \left(\rho_{gas} = n\mu \right) \]

• For a spherical grain with radius \(R_{gr} \) and density \(\rho_{gr} \), the gas-grain coupling time scale is roughly:

\[\tau_c \approx \frac{\rho_{gr} R_{gr}}{\rho_{gas} u_{th}} \quad \text{(very short!)} \]
Grain settling to the midplane

- Grav. force on a grain of mass M:
 \[F_G = M \Omega^2 r \quad \left(r^3 \Omega^2 = GM_{\text{sun}} \right) \]

- z component:
 \[F_z = M \Omega^2 z \]

- Gas drag force on a grain with radius R_{gr} moving at vertical velocity u:
 \[F_D = \left(\pi R_{gr}^2 n u \right) \times \left(C_D \mu u_{th} \right) \]

\[\Omega = \text{local frequency of disk rotation} \]
\[C_D \sim 1 = \text{gas drag coefficient} \]
\[u_{th} = \text{random velocity of a gas molecule in the direction opposite to } u \]
Settling time scale

- With \(\rho_{\text{gas}} = n\mu = \) density of the gas disk and \(\rho_{\text{gr}} = \) density of the grain, force balance yields:
 \[
 \rho_{\text{gas}} u_{\text{th}} u_{eq} = \frac{4}{3} R_{\text{gr}} \rho_{\text{gr}} \Omega^2 z
 \]

- With \(u_{eq} = dz/dt \), we get:
 \[
 z = z_0 \exp(-t/\tau_s)
 \]
 introducing the sedimnetation time scale:
 \[
 \tau_s \approx \frac{z}{u_{eq}} = \frac{3\rho_{\text{gas}} u_{\text{th}}}{4 R_{\text{gr}} \rho_{\text{gr}} \Omega^2}
 \]

~1000 yr for cm-sized grains at Jupiter’s orbit
Radial drift

- The gas circulates at sub-Keplerian speed being pressure supported, but the grain is not.
- When the grain is small and coupled to the gas, it is dragged toward the Sun by moving too slowly.
- When the grain is larger and decoupled from the gas, it moves at Keplerian speed and feels a gas drag. Thus it loses speed and spirals toward the Sun.

This radial drift causes the grain to sweep up smaller ones.
Drift time scale

- Orbital angular momentum: \(L = M \sqrt{GM_{\text{sun}} r} \)
- Drag torque: \(\tau = r F_D = r \rho_{\text{gas}} A u^2 C_D \)
- Decay time scale:
 \[
 T_d = \frac{L}{\tau} \approx R_{gr} \frac{\rho_{gr}}{\rho_{\text{gas}}} u^{-2} \sqrt{\frac{GM_{\text{sun}}}{r}}
 \]
- Taking \(u \) (the difference between Kepler and pressure-supported speeds) as 1\% of the circular speed:
 \[
 T_d \approx R_{gr} \frac{\rho_{gr}}{\rho_{\text{gas}}} \cdot 10^4 \sqrt{\frac{r}{GM_{\text{sun}}}}
 \]

A few hundred years for a 1-meter boulder **Problem!**
Planetary accretion

- **Collective growth** of size distribution and relative velocity distribution in an enormous population of initially roughly equal-sized planetesimals

- **Runaway growth**: the largest body grows much more rapidly than the rest of the population ⇒ quick formation of planet embryos, moving in concentric orbits separated by a few Hill radii from each other

Phenomena caused by the gravity of planetesimals: Stirring and Focussing
Close encounters

• The number of planetesimals per unit area is so large that “congestion” occurs ⇒ frequent close encounters

• Gravity causes hyperbolic deflections with $\psi = \psi(b, v_o, m)$; this increases the orbital eccentricities
Stirring and focussing

• The typical eccentricity/inclination obtained by hyperbolic deflections (“gravitational stirring”) determines the average relative velocity v_o at close encounters

• If m_1 is the largest planetesimal mass (r_1 is the radius), we have:

$$v_o^2 = \frac{Gm_1}{\theta r_1} = \frac{1}{2\theta} \cdot v_{e,1}^2$$

(V.I. Safronov)

where v_e is the escape speed and $\theta \sim 2-5$

• From angular momentum conservation we get:

$$v_o \cdot r_c = \sqrt{v_o^2 + v_e^2} \cdot r$$

where $r_c > r$ is the maximum impact parameter for collision (“gravitational focussing”), and we get the cross-section:

$$A_c = \pi r^2 \left(1 + \frac{v_e^2}{v_o^2}\right) \leftarrow \text{gravitational focussing}$$