
Dynamics of planet formation



Centrifugal equilibrium
• Conservation of angular momentum in a

contracting cloud ⇒ increase of angular velocity
and rotational energy

• Rotational energy Urot increases faster than
gravitational energy U decreases

• Contraction perpendicular to the spin axis stops
when the centrifugal force equals the force of
gravity at the equator of the cloud

• Rlim = Rc (centrifugal radius)
• Continued collapse along the spin axis ⇒ flattened

disk with radius R ~ Rc



Rotation and Contraction
• Potential energy of a spherical,

homogeneous cloud:

• Moment of inertia:
• Energy of rotation:

• Centrifugal equilibrium condition:
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Estimating a rough value of Rc

• Use L/M = ωR2 from observations of
molecular cloud cores

• R=5000 AU and ω=2×10-14 s-1 leads to
Rc~25 AU

• Observations of protoplanetary disks
are consistent with this estimate



Protoplanetary disks

                HH 30                                “proplyds”
      “Herbig-Haro object”                (Orion nebula)
                    General radii ~ 100 AU

                           HST pictures



Accretion disk

• Differentially rotating disk -
angular velocity decreases
outward:  SHEAR

• The shear has a physical effect,
if elements at different radial
distances “stick” together

• For a gaseous disk the
interaction can be described as
a VISCOSITY (suppressing
relative motion)



Shearing instability, turbulent flow

• Autobahn example:

• Low traffic, peaceful
drivers – laminar flow

• High traffic, nervous
drivers changing lanes –
turbulent flow



Consequences of shear and
viscosity

• The energy of relative motion
is dissipated ⇒ HEATING

• Angular momentum is
transported outward

• Global tendency for the disk to
break up radially

• Material deprived of angular
momentum collects at the
center of the disk:
ACCRETION



Accretion disk evolution
• Consider a circular annulus

according to the picture
• The surface density is Σ
• Ω decreases with r
• In the absence of infall:

Thus the mass continuity equation:



Accretion disk evolution, ctd
Conservation of angular momentum:

where G is the torque acting on the inner neighbour

Thus the angular momentum continuity equation:

Shear velocity:



Shear and viscosity
• Viscous tension:
    where ν is viscosity
• Force acting over length    :

• Total torque
    with                  :
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Global evolution
• Combining the equations, eliminating vr, we get a

diffusion equation for Σ:

Example: a narrow, circular ring
gets dispersed inward and
outward over time. Most of the
mass moves inward, and a small
fraction of the mass carries the
angular momentum outwards



Magneto-rotational instability

• Suppose the gas disk is partially ionized and penetrated
by a frozen-in magnetic field

• If a field line connects two gas parcels at somewhat
different radial distance, their differential rotation will
stretch the field line, and magnetic tension acts to keep
them together ⇒ instability against radial break-up

Initiates turbulence
and transports
angular momentum



Episodic accretion

•   A “dead zone” may develop inside the disk, where
neither thermal motion nor X-rays are able to ionize
the gas enough for MRI

• The dead zone would accumulate material from the
outside and grow in mass

• There may be bursts of accretion, when such clumps
fall onto the protostar



Planetary formation mechanisms
• Planetesimal Accretion  (PA)
• Gas Disk Instability  (GI)

Terrestrial planets were certainly formed by PA
For giant planets, PA is favoured
But the issue is still open!



What is a planetesimal?

• A planetesimal is a planetary building
block large enough to cause some
significant gravitational attraction on
neighbouring objects (km-size or larger)

• A planetary embryo is formed from
planetesimals by accumulating them
into a larger object by local accretion

The eventual planets are much fewer than the embryos



Planetesimal formation

• Proposed mechanisms:

 - gravitational instability of a thin disk
of solid bodies

 - grain accretion by collisions with
sticking, triggered by gas-dust
interactions



Gravitational instability

• Consider a disk in differential, Keplerian rotation
around a central object (Sun)

• Perturb the mass distribution locally; find the
response of the disk as a spiral wave

• The dispersion relation (frequency vs wave
number) indicates instability (imaginary
frequency) for large wavelengths, if the velocity
dispersion is small enough

• Hence an instability so that local density
enhancements can grow ⇒ planetesimals

Compare the derivation of the Jeans mass!



Grain growth

• Mechanisms for grain collisions:

 - thermal (Brownian) motions
 - turbulent gas motions (grains carried along

by eddies)
 - gravitational settling into the midplane
 - inward drift due to solar gravity and gas

drag



Gas drag

• Consider a grain moving sub-sonically through a
gas with molecular mass mg and thermal speed
vg. The drag force acting on the grain is:
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Coupling time scale

• Solving the equation of motion
  we get:

  with

• For a spherical grain with radius Rgr and
density ρgr, the gas-grain coupling time
scale is roughly:
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Grain settling to the midplane
• Grav. force on a grain of mass M:

• z component:

• Gas drag force on a grain with
radius Rgr moving at vertical
velocity u:

Ω = local frequency of
disk rotation

CD~1 = gas drag
coefficient

uth = random velocity of
a gas molecule in the
direction opposite to u
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Settling time scale
• With ρgas=nµ = density of the gas disk and
ρgr = density of the grain, force balance
yields:

• With ueq = dz/dt, we get:  z = zoexp(-t/τs),
introducing the sedimentation time scale:
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2 ~1000 yr for cm-sized
grains at Jupiter’s orbit



Radial drift
• The gas circulates at sub-

Keplerian speed being
pressure supported, but the
grain is not

• When the grain is small and
coupled to the gas, it is
dragged toward the Sun by
moving too slowly

• When the grain is larger and
decoupled from the gas, it
moves at Keplerian speed
and feels a gas drag. Thus it
loses speed and spirals
toward the Sun

This radial drift causes the
grain to sweep up smaller
ones



Drift time scale

• Orbital angular momentum:
• Drag torque:
• Decay time scale:

• Taking u (the difference between Kepler
and pressure-supported speeds) as 1% of
the circular speed:
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A few hundred years for a 1-meter boulder     Problem!



Planetary accretion

• Planetesimal to planet evolution:

 - Collective growth of size distribution and relative velocity
distribution in an enormous population of initially roughly
equal-sized planetesimals

 - Runaway growth: the largest body grows much more
rapidly than the rest of the population ⇒ quick formation
of planet embryos, moving in concentric orbits separated
by a few Hill radii from each other

Phenomena caused by the gravity of planetesimals:
                   Stirring and Focussing



Close encounters
• The number of

planetesimals per unit
area is so large that
“congestion” occurs ⇒
frequent close
encounters

• Gravity causes
hyperbolic deflections
with ψ = ψ(b,vo,m); this
increases the orbital
eccentricities



Stirring and focussing
• The typical eccentricity/inclination obtained by hyperbolic

deflections (“gravitational stirring”) determines the average
relative velocity vo at close encounters

• If m1 is the largest planetesimal mass (r1 is the radius), we
have:

    where ve is the escape speed and θ~2-5
• From angular momentum conservation we get:

    where rc>r is the maximum impact parameter for collision
(“gravitational focussing”), and we get the cross-section:
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(V.I. Safronov)

⇐ gravitational focussing


