
Stellar Dynamics

Part I



The N-Body Problem

• Forces acting within
the system:

Dynamical system of order 6N

Numerical integrations vs
analytic solutions



Center of Mass integrals

• The sum of the equations:

• The terms cancel out in pairs:

• Center of mass position:

Eliminate the common motion, solve for the internal motions



Angular momentum integrals
• Sum of cross products:

• Cancellation of terms:

• Integration:

Conservation of the total angular momentum vector
Characteristic direction (axis of symmetry)



Energy integral
• Pairwise potential energy:
• Total potential energy:

• Multiply by velocity and sum:

• Integration:

Conservation of the total energy
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Treatments of the problem

• N = 2:   analytic solution (Kepler’s laws)
two-body problem

• N = a few:   “experiments” using
numerical simulations
few-body problem

• N ~ 100 or more:   statistical mechanics
many-body problem



Lagrange’s identity
• Moment of inertia about the origin:

• Second time derivative:

• Simplification:

Lagrange’s identity



Virial equilibrium
• Stellar systems in general are

in steady state in spite of
stellar motions

• Thus, J = constant, apart
from statistical fluctuations,
and as long as the system
does not evolve dynamically

• On the average, we get from
Lagrange’s identity:
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Virial theorem

• For many-body systems like
star clusters or galaxies, the
statistical fluctuations are
negligible

• Using the energy integral:

and

Virial theorem Energy relations for
steady-state systems



Virialization

• A system that is out of
virial equilibrium tends to
evolve toward it, while
conserving total energy

• This is possible only if the
energy is negative

• Virialization involves
damped oscillations due
to overshoot



Practical applications
• Approximating the terms in the virial

theorem, and neglecting correlations:

• For star clusters: mass and size yield the
velocity dispersion ~ 1 km/s

• For galaxy clusters: size and velocity
dispersion yield mass >> “observed” mass
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Statistical Description

• the Distribution function

• the Liouville equation

• Close encounters



Distribution function

• Phase space coordinates:

•                               is a continuous,
smooth function approximating the
density of representative points in
phase space
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Density and potential
• Mass density in physical

space:

• Gravitational potential:

• Poisson equation:
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We neglect the potential
wells around the stars!



Liouville theorem
Phase space velocity vector:

f is a unique function of
position – like fluid flow

Phase space volumes are conserved

The distribution function is constant along
phase space trajectories



Liouville equation

“Liouville equation” or
“collision-free Boltzmann equation”



Close encounters
• Real stellar systems are not entirely smooth

and continuous; this depends on the number
of stars

• The importance of local attractions (potential
wells) decreases with the number of stars

• The effect of close encounters is to deflect
the motions of stars (“hyperbolic deflections”)

Stars will “jump” between different phase space
positions and trajectories ⇒ a “collisional term”
enters into the Boltzmann equation



Collision-free systems

• Dynamical mixing

• The Jeans theorem

• Spherically symmetric systems

• Plane-parallel geometry



The mixing time scale

Time scale of orbital motion:  Crossing time
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This is ~ 1 Myr for stellar clusters, much shorter than
their ages, except for the youngest ones



Phase space mixing
Example: one-dimensional system with attractive force

Evolution of a parcel of stars:



Elimination of the mass
Reduced distribution function:
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(mass density in reduced 6-dimensional phase space)

Density equation:
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The Poisson equation is unchanged, and the Liouville
equation looks the same with ϕ instead of Ψ

This is possible because we neglected the collision term



Integrals of motion

• An integral is a function I(x,y,z,u,v,w,t) that
remains constant along any trajectory

• Several integrals are independent, if there
is no relation g(I1,I2,…,In)=0 between them

• A sixth-order system has six independent
integrals; all integrals are functions of these

• But the distribution function is conserved
along all trajectories!



Jeans theorem

• The distribution function is an integral of
motion; hence…

• The general solution of the
Liouville equation is:

where the I’s are six independent integrals of
motion and f is an arbitrary function
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Stationary systems
• For a system in steady state, ϕ cannot

depend on time, so only time-independent
integrals may feature in f

• Five of the six integrals can always be chosen
time-independent (“conservative”), while the
sixth may depend on time; hence

• In a stationary system the general form of
the distribution function is

where the I’s are five independent, conservative integrals
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Non-Isolating integrals
• Simple example: 2D system with

potential

• Solution: periodic oscillations in x
and y

• One conservative integral is
expressed by arctan functions and
has values practically everywhere:
“non-isolating”

• For any value, the orbit comes
arbitrarily close to any point (x,y)
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Jeans theorem, final version

• Each conservative integral constrains the motion in
6D phase space to a 5D “hyperplane”

• But the hyperplanes of non-isolating integrals do
not constrain the motion since they fill up the phase
space everywhere

• The distribution function cannot depend on them;
hence…

• In a stationary state, the distribution function is
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where the I’s are independent, conservative, isolating
integrals



The Energy Integral
• But only one such integral is known in the general

case (i.e., without imposing symmetry properties
on the system)

• The total energy of motion of a star per unit mass:

• What about the four remaining conservative
integrals? Are they all non-isolating? (ergodic
hypothesis)

• No, but other isolating integrals are known only for
special, symmetric systems


