Stellar Dynamics
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The N-Body Problem
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* Forces acting within
the system:
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Dynamical system of order 6N

Numerical integrations vs
analytic solutions




Center of Mass integrals

* The sum of the equations:
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Eliminate the common motion, solve for the internal motions



Angular momentum integrals

* Sum of cross products:
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Conservation of the total angular momentum vector
Characteristic direction (axis of symmetry)



Energy integral
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Pairwise potential energy: Q, =-
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Treatments of the problem

N =2: analytic solution (Kepler's laws)
two-body problem

« N =afew: “experiments” using
numerical simulations
few-body problem

* N~ 100 or more: statistical mechanics
many-body problem



Lagrange’s identity
 Moment of inertia about the origin:
N
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« Second time derivative:
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« Simplification: J = AT + 20

Lagrange’s identity



Virial equilibri

« Stellar systems in general are
In steady state in spite of
stellar motions

 Thus, J = constant, apart
from statistical fluctuations,
and as long as the system
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does not evolve dynamically

* On the average, we get from
Lagrange’s identity:

AT +2Q =0



Virial theorem

* For many-body systems like

star clusters or galaxies, the e
statistical fluctuations are e
negligible
. . 5
* Using the energy integral: c
T=—-E ; Q=2E La
and
2I' +Q =0

Energy relations for

Virial theorem steady-state systems



Virialization

* A system that is out of
virial equilibrium tends to
evolve toward it, while
conserving total energy o

* This is possible only if the
energy Is negative

* Virialization involves
damped oscillations due
to overshoot
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Practical applications

* Approximating the terms in the virial
theorem, and neglecting correlations:
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* For star clusters: mass and size yield the
velocity dispersion ~ 1 km/s

* For galaxy clusters: size and velocity
dispersion yield mass >> “observed” mass

Missing mass: dark matter



Statistical Description

* the Distribution function
* the Liouville equation

 Close encounters



Distribution function

 Phase space coordinates:

xi’yﬂzi?uiaviawiami [ = 1,...,N

e W(x,y,z,u,v,w,m,t) is a continuous,
smooth function approximating the

density of representative points in
phase space

Jwdr=N



Density and potential

* Mass density in physical
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We neglect the potential
wells around the stars!



Liouville theorem

Phase space velocity vector: L= “ - ;-'f
Y = v = Iy
f is a unique function of M dll/l;/ . j,t ¢
position — like fluid flow b= —oU/dy —=f,
w= —0U/dz = f,
m = 0 = fm |
5 divf=0
V/ Phase space volumes are conserved
-

The distribution function is constant along
phase space trajectories



Liouville equation
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“Liouville equation” or
“collision-free Boltzmann equation”




Close encounters

* Real stellar systems are not entirely smooth
and continuous; this depends on the number
of stars

« The importance of local attractions (potential
wells) decreases with the number of stars

* The effect of close encounters is to deflect
the motions of stars (“*hyperbolic deflections™)

Stars will “jump” between different phase space
positions and trajectories = a “collisional term”

enters into the Boltzmann equation



Collision-free systems

Dynamical mixing
The Jeans theorem
Spherically symmetric systems

Plane-parallel geometry



The mixing time scale

Time scale of orbital motion: Crossing time
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This is ~ 1 Myr for stellar clusters, much shorter than
their ages, except for the youngest ones




Phase space mixing

Example: one-dimensional system with attractive force

Evolution of a parcel of stars:
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Elimination of the mass

Reduced distribution function: Q= f Wmdm
0

(mass density in reduced 6-dimensional phase space)

Density equation: O = f f T(pdudvdw

The Poisson equation is unchanged, and the Liouville
equation looks the same with ¢ instead of ¥

This is possible because we neglected the collision term



Integrals of motion

An integral is a function /(x,y,z,u,v,w,t) that
remains constant along any trajectory

Several integrals are independent, if there
IS no relation g(/.,1,...,1.)=0 between them

A sixth-order system has six independent
integrals; all integrals are functions of these

But the distribution function is conserved
along all trajectories!



Jeans theorem

* The distribution function is an integral of
motion; hence...

* The general solution of the
Liouville equation is:

p=fU,l,...I)

where the I’s are six independent integrals of
motion and f is an arbitrary function



Stationary systems

* For a system in steady state, ¢ cannot
depend on time, so only time-independent
integrals may feature in f

* Five of the six integrals can always be chosen
time-independent (“conservative™), while the
sixth may depend on time; hence

* In a stationary system the general form of
the distribution function is

p=fU,L,...,1)

where the I’s are five independent, conservative integrals



Non-Isolating integrals

Simple example: 2D system with

potential

U= %(azx2 + b2y2)

Solution: periodic oscillations in x
and y

One conservative integral is
expressed by arctan functions and
has values practically everywhere:
“non-isolating”

For any value, the orbit comes
arbitrarily close to any point (x,y)
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Lissajous figure



Jeans theorem, final version

Each conservative integral constrains the motion in
6D phase space to a 5D “hyperplane”

But the hyperplanes of non-isolating integrals do
not constrain the motion since they fill up the phase
space everywhere

The distribution function cannot depend on them;
hence...

In a stationary state, the distribution function is
(p = f(119]29° o 9Iy)

where the I's are independent, conservative, isolating
integrals



The Energy Integral

But only one such integral is known in the general

case (i.e., without imposing symmetry properties

on the system)

The total energy of motion of a star per unit mass:
£ = % (z 2 4+ v + u.'g) +Ulx,y, z)

What about the four remaining conservative
integrals? Are they all non-isolating? (ergodic
hypothesis)

No, but other isolating integrals are known only for
special, symmetric systems



