Stellar Dynamics

Part I



Spherically symmetric systems

 Globular clusters

* Nearly spherically
symmetric mass
distribution

* Not necessarily
collision-free!




Integrals

Spherically symmetric potential = central force field

A=rxr

dA e,
1t =TI XxXT I' <X T =

Four independent, conservative, isolating integrals
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Planar orbits 1 A
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Orbits

* Velocity components:
radial velocity U, =T
transverse velocity v, = ré

* Energy & Angular Momentum
integrals:

£=U(r)+3 (o2 +22) =U(r) + 5 (2 + )

A=ruv, =10

* Solution: (4_ 4,2
{ F=,/2E — 2U (r) — A2/r?



E’.nerg\j

General appearance
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* Energy may prevent
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Rosette orbits

 roscillates regularly
between maxima and
minima

* Combining this with a

steady rotation in 6
yields in general a
rosette orbit that does
not close upon itself

* Non-isolating fifth

integral!



Extreme cases

Homogeneous system: Point-mass system:
o = /2 o=7T

In real stellar clusters, the homogeneous
case is an approximation for the central parts
and the point-mass case for the outskirts



Plummer model

o { a(—&)7? £ <0
o=

Ansatz: 0 : £>0 (independent of A)

o =g(U.V) = a(~U — V?/2)7/?

v 9 T_,-'IE ) VI ","E T .I,-'E
p= -“-lTT-A ‘a (—U— %) Vidv  p= 4;m(—U]“fﬂ (1 - ?) T dr

Poj fion: *U  2dU [ 4xGC(-U)5 U <0
oisson equation: —- + == P
Solution: 7 — Us Po (polytrope)
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Other models

For collisionally relaxed systems, one may use the
Boltzmann energy distribution of kinetic gas theory:

—-bDE

pxe

However, this has to be cut at energies too large
to exist in real clusters (e.g., positive energies)

King models:

Ww=a {Eb':'f"_"s:' — 1} . £ < &

E, is the “tidal” cutoff energy set by the tidal
perturbations of the Galaxy

Eddington model:

Ellipsoidal velocity
. —be—eA? | distribution stretched
in the radial direction




Plane-parallel systems

NGC 4565

* @, p, Udepend only on the z coordinate

* This approximation can be used for disk
galaxies, e.qg., the Galactic disk in the solar
neighbourhood



Integrals

Integrate the distribution function over u and v:.

ﬂZU . f:lTTG ﬂ'il.i'l l!:iU- G'ili-"l
82 " oF

-
At

Vi =

u :
0z dz OJw

2-dimensional phase space; two independent integrals,
whereof one conservative — the energy!

2
Thus the general solution: ¢y = f(€£) £=U(2) + %



Orbits

* In x and y, the motion is
uniform and rectilinear

5 = +,/26 — 2U(2) \

« U(z) is a concave function, T
corresponding to a restoring T
force toward z=z, 2

 The z motion is a periodic /\ /\
oscillation around z=z, with I S G 7t
constant extrema z, and z,




An Isothermal model

_RIT I T
oy =a-e . g2

Relation between density and potential:

e oV f_lx e /2 gy — EL“,I'L%WE
N M
Poisson equation: sz 5 \ ~~
= 4w (Ga Tﬂ_w ~ ~
N

122
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Solution: =y, + %ln coth 2 —h Zo

This model only works for small values of |z|. The real
disk potential flattens out at large distances.



Modelling the local disk

« Use a fracer population, e.g., K giants (relatively
numerous and luminous stars)

* Observe the local velocity distribution
P1x(0,w) = £ (E)
2

pr(z) = /ff-: [U T ET] dw = hg(U)

* Observe pk(z) = U(z); use the Poisson equation
to derive p(z), including the local density p,

From analysis of Hipparcos data, Holmberg & Flynn
(2000) derive: p,=0.10 Mg/pc3



Axial symmetry

» Use cylindrical coordinates:

(R,0,2) B}

. Meridional plane: passes N Fedional
through the point and the z axis \\,

* The force vector is in the
meridional plane but not in | 3
general toward the origin; thus ° R

there may be a torque but with ¢
no z component

The z component of the angular momentum is
conserved, so there are two integrals: E and A,

No further integrals are known in the general case
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« If all three remaining conservative integrals are non-
isolating, we have o= ¢@(E,A,):
1

w=f [E (ug +vi 4 wz) + U (R, 0), R, n]

« Thus the radial and vertical velocity components would
have equal distributions, but this is not observed



Third Integral problem

The non-equality of the axes of the velocity
ellipsoid is one clear indication that there is a
third, isolating integral

Expressions for this have been found in special
cases of simplified potentials

Numerical exploration of a different simple
potential by Henon & Heiles (1964) led to the
discovery of an intricate mixture of integrable and
ergodic motion - thus a complex nature of the
third integral

This was one of the first demonstrations of
chaotic behaviour of dynamical systems



Circular orbits

Circular velocity

linear angular
V-E _ Rd_U -.’.-:.-'2 _ l E
dR R oR
Rotation curve
theoretical observed
V
..’
_i
R 2 ”:: N
= R ."(, — ' L —‘J

Galactic halo



Differential rotation

R—R,~ —rcosf

. dw . _
r=—R, (L‘ER)GI sin ¢ cos £
R, o
R 7= usin # 5
| f=—-R, (E) cos® £
rf = ucosf “
Y \V4



Oort’s constants A and B

1 (ELL)
A=—-R, |55
= AR/, Observed velocities:
B-A—uw, radial velocity
r= Ar sin2¢
Definitions p1roper motion

p=F—w,=Acos2{+ B



Nearly circular orbits

circular nearly circular
R=R, R=H,+¢&
I,
z=10 =2z

Find the time variations of &, n and z



Epicyclic motion

Equations of motion:

o '2__E

R— RO? = Y
2RO+ RO =0
. aU

== iz

Linearize in the small
quantities:

. 217
E_EWG?F“-".EE: _dRE £
i+ 2waé = 0

a2

F=—

=2 E

Solution:

z = zy COSw; (t — t2)

2w a

lI"'-|:|-

&= + c cos kK, (t —t,)

A 2w,
?Ir=ﬂ(1_ E")(t—h]— CEil‘lr‘:ﬂ(f—faj

K Ko

K, Is the epicyclic frequency

a2
KY = —— —I—ﬂ.u

° OR? = —Awoll



Epicyclic motion, ctd

: |
TN
—

epicycle

¥
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epicycle + drift

The epicyclic motion combined with the asymmetric
drift is an expression of a rosette orbit in a rotating

frame



Orbits in the near-circular case

General orbit:
1) Circular rotation around the center

%%\ - 2) Small-scale epicyclic motion
/ /) 3) Vertical oscillation

Three independent frequencies:

c 2 1 ‘;jU
%ﬂ% RoR
] &*U 30U
A 2= 4

1 "o~ 9R: " ROR
_ 12 . l!:jﬂil_--'r
T B

Two non-isolating integrals, the third integral is isolating



Effects of close encounters

Consider a test star moving
within an ensemble of field stars

The motion of the test star is
deflected at close encounters
with field stars

Thus the quantities defined by
integrals are exchanged

Each star performs a "Brownian
motion” in the space spanned
by the integrals



Collisional evolution

Stars jump in and out of any phase space volume
due to close encounters

The net effect is an explicit time dependence of
the distribution function and a “collisional term” in
the Boltzmann equation

Thus stars with given values of the integrals no
longer have the same value of f, and the stationary
State is perturbed

But due to the rapid dynamical mixing a new
stationary state will appear, and the system

evolves by virialization and relaxation
Quick! Slow!



Relaxation time

Approximate treatment

y Velocity change of star 1:

400
AV, — f oy di

—

Acceleration vector:

a2y =

Gmsin?@ [ cos®
2 sin @

V £ £ . 5 Variable
T =—gt=gceotd dt=sm0dd o nsformation



Relaxation time, ctd

Auy =10
AV G [ ( cos @ ) i — .
1 — Jd 3 EG
VvV Jo sin ¢ Av = ﬂ;ﬁ deflection

Total effect during time At by random walk:

AL ((avy)?) = [(avi)dp

e‘ ’. P
| dp= £ .onede. VAL
i

This integral diverges logarithmically:

a\ 4{3'21:-1? 2 ETER Vs fmaz ﬁ L E-mu:
(i) = [~ - 2mbdl - VAL /;m F =g

replacement




Relaxation time, ctd

Limited system size: bone = R
Maximum reasonable i
deflection: Avy =V = gy =2Gm/V?
Virial theorem: v = ﬂ
2K
_ 2 2R
Iﬂ — EE"E — -E:Im:'_n — HR — F
I3 bmaz _ . N
v In T In 7 = In N

Relaxation time: At=t = (51.-12> ~ V2



Relaxation time estimates

'L_:':I

£~
8nG2mpln N

» For the solar neighbourhood, using V ~ 30 km/s
and In N ~ 10 for the stellar population, we get t, ~
10'4 yr VERY LONG!

* Relaxation effects like increasing velocity
dispersion and disk scale height for older
populations are observed

 These may be explained by the presence of
massive objects like star clusters and Giant
Molecular Clouds



Relaxation time estimates, ctd

* |In comparison to the crossing time scale of a

cluster, t. ~ R/V: f ”

t.  8nGZmpRIn N

M_ M M
PP4pr—arr TN

Ly 1 N
t. 2w InN

* Thus, the relaxation time is much larger than
the crossing time, when N is very large



