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These notes aim to present only the basics of our understanding of how bodies move in
planetary systems, and naturally, the discussion will focus on our Solar System. For a stringent
and comprehensive analysis including derivations of some formulae that we shall cite below, we
refer to courses on celestial mechanics.

Kepler’s laws and Newton’s law of gravity

Found empirically by Johannes Kepler in the early 17th century from the observations of
planetary positions aqcuired most importantly by his mentor, Tycho Brahe, these laws state
that:

• the orbits of planets are ellipses, where the Sun occupies one of the foci;

• in equal times, the radius vector of a planet sweeps out equal areas, independent of its
orbital position;

• the square of the period of revolution is proportional to the cube of the semimajor axis
of the orbit.

These laws found their explanation with Isaac Newton’s law of gravity, according to which
a planet moves under the influence of a gravitational force, subject to an acceleration

r̈ = −G(M� + Mp)

r2
r̂. (1)

Here r is the radius vector from the Sun to the planet and r̂ is the corresponding unit vector,
r is its modulus (the distance Sun-planet), G is the gravitational constant, and M� and Mp

are the masses of the Sun and the planet. Note that Eq. (1) describes the motion of the planet
with respect to the Sun, i.e., in a non-inertial frame of reference. In an inertial frame like that
of the center of mass, the law of gravity would look the same, replacing (M� + Mp) by M�.

Let us assume for simplicity that all other forces affecting the planet (most importantly,
the gravitational attractions of the other planets) can be neglected. The force field is then
both conservative and central, which means that both the total energy (kinetic + potential)
and the angular momentum are constants (“integrals”) of motion. Given that the force varies
as the inverse square of the distance (r−2), an analytic solution of this “gravitational two-body
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problem” is obtained straightforwardly in the form of a conic section (i.e., ellipse, parabola or
hyperbola) satisfying all three of Kepler’s laws.

If the law of gravity had not been inverse-square in r, but followed some other arbitrary
function f(r), the orbit would not have been a conic section with the Sun in a focus. In general,
it had not been a closed curve at all, but a rosette curve oscillating between a minimum and
a maximum distance (rmin and rmax), gradually filling up the annulus described by the circles
r = rmin and r = rmax. Even in such a case, however, something analogous to Kepler’s second
law would have followed from the conservation of angular momentum.

Kepler’s third law and mass determination

The only one of Kepler’s laws that has a potential for solving physical problems is the third
one. However, for this purpose it has to be formulated in a comprehensive way. The exact form
is:

4π2

P 2
a3 = G (M� + Mp) = GM�

(
1 +

Mp

M�

)
, (2)

where P is the orbital period and a is the semimajor axis. Table 1 summarizes the values
of a, P , mp = Mp/M�, and the mean orbital velocity vp = 2πa/P , for the four terrestrial
and the four giant planets of the Solar System. The unit of length is the astronomical unit
(1AU = 1.496 · 108 km), the unit of time is the year (1 year = 3.156 · 107 s), and the unit of
velocity is km/s. We note that mp is always << 1 and may often be neglected in Eq. (2).

It is important to note that in an inertial frame of reference, only the center of mass may
be at rest, and thus both the Sun and the planet are moving (cf. the note to Eq. (1) above).
Let us now consider the orbital motions of the Sun with respect to the different planets.

The distances of the Sun and the planet from the center of mass are rMp/(M� + Mp) =
rmp/(1 + mp) and rM�/(M� + Mp) = r/(1 + mp), respectively. The orbital semimajor axis

Table 1:

Planet a (AU) P (yr) mp vp (km/s)
Mercury 0.39 0.24 1.7 · 10−7 48
Venus 0.72 0.62 2.4 · 10−6 35
Earth 1.00 1.00 3.0 · 10−6 30
Mars 1.52 1.88 3.2 · 10−7 24
Jupiter 5.20 11.9 9.5 · 10−4 13
Saturn 9.55 29.4 2.9 · 10−4 10
Uranus 19.2 83.7 4.4 · 10−5 6.8
Neptune 30.1 164 5.2 · 10−5 5.5
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and mean velocity of the Sun are amp/(1 + mp) and 2πamp/P (1 + mp), or approximately, amp

and 2πamp/P = vpmp.

Exercise. Arrange the eight planets of Table 1 in order of decreasing semimajor axis and
mean velocity of the Sun, respectively!

For the case of Jupiter, we get 0.005 AU and 0.013 km/s. The values for the Earth are
much smaller in both cases. For comparison, the radius of the solar photosphere is 7 ·105 km '
0.005 AU. The measurement of such displacements for stars is currently not possible with
astrometric observations. Hence the detection of exoplanets so far mainly rests on spectroscopic
observations of stellar Doppler shifts caused by the orbital velocities. Note that in this case
too, a very high accuracy is required.

Consider for simplicity a planet with mass Mp, which moves in a circular orbit around a
star of mass M∗. The line of sight makes an angle i with the normal to the orbital plane.
Superimposed on the other contributions to the radial velocity of the star, there will hence be
a sinusoidal variation with period P and half-amplitude v∗ sin i, where v∗ is the orbital velocity
of the star in its circular motion around the center of mass. P and v∗ sin i can be measured,
but i is in general unknown. Hence v∗ is also unknown, but the measured value of v∗ sin i is a
lower limit.

Applying Eq. (2) to the star-planet system, and assuming that Mp << M∗, we can solve
for the orbital velocity of the planet:

vp '
(

2πGM∗

P

)1/3

(3)

M∗ has to be estimated from the spectral type of the star, but due to the 1/3-power dependence,
vp is relatively insensitive to errors in this estimate. The mass of the planet can then be obtained
from:

Mp = M∗ ·
v∗
vp

(4)

and substituting v∗ sin i for v∗ yields a lower limit for Mp.
Note that detection of an exoplanet is easiest, if P is short and v∗ is large. The latter

criterion is favoured if Mp is large, vp is large, or M∗ is small. In conclusion, detectability is
optimized for tight systems with heavy planets around low-mass stars.

For mass determinations within our Solar System we make use of the simultaneous avail-
ability of values for a and P in systems where one object orbits another. For instance, the
mass of the Sun is readily obtained from Eq. (2) using the values in Table 1 and G =
6.66 · 10−11 kg−1m3s−2.
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Table 2:

Star Type Period v∗ sin i ap min. Mp

(days) (m/s) (AU) (MJup.)
51 Peg G2.5 V 4.23 55 0.051 0.45
υ And F7 V 4.61 74 0.056 0.65
Gliese 876 M9 V 61.1 220 0.20 1.9
16 Cyg B G2.5 V 802 44 1.7 1.7
14 Her K0 V 1 619 80 2.5 3.3

Exercise. Verify the value of M� = 2.0 · 1030 kg using several planets!

Another example is the determination of masses of planets with natural satellites, which
has been possible since a long time. In this case, combining two versions of Eq. (2) for the
Sun-planet and planet-satellite systems, we get:

mp =
Mp

M�

'
(

asat

apl

)3 (
Psat

Ppl

)−2

(5)

assuming that Mp << M� and Msat << Mp. Table 3 gives a few examples of satellites of giant
planets, from which the corresponding values of mp can be computed. In addition, Pluto has
been included so that its very small mass can be verified.

Table 3:

Satellite Planet asat (km) Psat (days)
Io JUPITER 4.2 · 105 1.77
Dione SATURN 3.8 · 105 2.74
Titania URANUS 4.4 · 105 8.71
Triton NEPTUNE 3.5 · 105 5.88
Charon PLUTO 2.0 · 104 6.39

Exercise. Verify the values of mp listed in Table 1, using the values of asat, Psat, ap and
Pp!

Modern values of planetary masses rely more heavily on the tracking of artificial satellites
or space probes. This is particularly important for planets lacking natural satellites (Mercury
and Venus). One does not use Eq. (5) directly, since the observables are not asat and Psat but
rather the accurate distance and radial velocity of the satellite using the radio communication
link. This holds not only when the probe orbits the planet but also during a flyby, when the
probe trajectory is deflected by the gravity of the planet. But just like the case of Kepler’s
third law, one uses the strength of the gravity field to measure the mass of the planet.

Recent high-resolution imaging has revealed a number of satellites around near-Earth as-
teroids, main-belt asteroids and members of the transneptunian population. Periods are easy
to measure, but distances between the object and the satellite are less accurate, and in general
the masses derived are not yet very reliable.

Other methods to determine masses of objects in the Solar System include mutual pertur-
bations of heliocentric orbits (to be described in the next Section), and modelling of nongravi-
tational perturbations (comets).
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Orbital elements and planetary perturbations

Consider first the two-body problem Sun-planet as described by Eq. (1). Using Cartesian
coordinates, we can rewrite Eq. (1) as six first-order differential equations for position (x, y, z)
and velocity (u, v, w):

ẋ = u; ẏ = v; ż = w

u̇ = −G(M� + Mp)

r3
x; v̇ = −G(M�+Mp)

r3 y; ẇ = −G(M� + Mp)

r3
z

Given values of all six phase-space coordinates (x, y, z, u, v, w) at a certain time to, this
system can be integrated in order to find the corresponding values x(t), y(t), z(t), u(t), v(t), w(t)
at all times. As we already mentioned, these solutions take the form of conic sections. In
order to specify the solution that holds for a given object, one may use the initial values
xo, yo, zo, uo, vo, wo at t = to, but one may also use any set of six independent quantities which
are constant and describe the conic section uniquely. Such sets of geometric quantities are
called orbital elements.

The most commonly used orbital elements for planets and asteroids are:

a – the semimajor axis of the ellipse;
e – the eccentricity of the ellipse;
i – the inclination, i.e., the angle between the plane of the ellipse and a reference plane

(usually the ecliptic plane);
Ω – the longitude of the ascending node, i.e., the angle along the ecliptic from a reference

direction to the point where the object crosses the ecliptic northbound;
ω – the argument of perihelion, i.e., the angle along the orbit from the ascending node to

the direction of perihelion, where the object is closest to the Sun;
T – the time of perihelion passage.

Some useful relations follow:

perihelion distance
aphelion distance

q = a(1 − e)
Q = a(1 + e)

}
(6)

binding energy

speed of motion

angular momentum

E = −GM�

2a

v2 = GM�

(
2
r
− 1

a

)

H =
√

GM�a(1 − e2)





(7)
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These formulae are unproblematic for elliptic orbits (a > 0; e < 1), but with the exception
of Q, they can also be used in other cases. For parabolas (a → ∞; e = 1) q is well-defined, and
we have E = 0; H =

√
2GM�q. For hyperbolae we simply count a as negative and solve for q

from Eq. (6), and E, v and H from Eq. (7).

Needless to say, for real planetary systems including the Solar System the two-body problem
is a highly idealized model. Independent of whether Eq. (1) is applied to a planet or a small
body, we may consider that there is always at least one other planet around, whose gravitational
influence has to be taken into account. In principle, one may then resort to numerical integration
of the complete equations of motion including all the gravitational forces of the system, but
this method has practical difficulties due to uncertainties over the exact initial values of the
phase space coordinates and errors inherent to the technique of numerical integration (e.g.,
round-off errors). Analytical and semi-analytical results are therefore very important as well
to understand this complex dynamical problem.

Consider for simplicity just one perturbing planet with mass M1 and heliocentric radius
vector r1, and assume that the object under study (“test body”) has negligible mass (mp ' 0).
This is called the restricted three-body problem, and Eq. (1) transforms into:

r̈ = −GM�

r3
r − GM1

|r − r1|3
(r − r1) −

GM1

r3
1

r1 (8)

The three terms of the right-hand member represent (1) the acceleration exerted by the Sun
on the test body, (2) the acceleration exerted by the perturbing planet on the test body, and
(3) minus the acceleration by the planet on the Sun. Small departures from the Keplerian
motion with constant orbital elements as given by the first term are called perturbations, and
the second term is usually referred to as the source of direct perturbations, while the third
term leads to indirect perturbations.

If close encounters occur, so that |r − r1| becomes very small, the direct perturbation may
dominate over the solar gravity even if M1 << M�. We shall look at such cases later on (in the
Solar System they involve comets and some asteroids), but for the present we limit ourselves to
cases where close encounters do not occur because the orbits of the test body and perturbing
planet do not intersect or come close to each other.

Eq. (8) may be rewritten as:

r̈ = −∇
(
−GM�

r

)
−∇R1 (9)

with

R1 = −GM1

{
1

|r − r1|
− r1 · r

r3
1

}
(10)

Here ∇ denotes the gradient vector and r1 · r is the scalar product of the vectors r1 and r.
The first term on the right-hand side of Eq. (9) is the acceleration in the central force field
of the Sun with the potential −GM�/r, and the second term is a much smaller perturbing
acceleration caused by a potential R1, which is usually called the perturbing function,

Now, if M1 and R1 were zero, the orbital elements (a, e, i, Ω, ω, T ) would be strictly constant.
The fact that R1 is not zero but nonetheless very small means that the orbital elements will
change slowly with time. One of the basic tasks of classical celestial mechanics is to set up
differential equations for (ȧ, ė, di/dt, Ω̇, ω̇, Ṫ ) as functions of the derivatives of R1 with respect
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to (a, e, i, Ω, ω, T ), i.e., as functions of the orbital elements and time, and to seek solutions that
are valid over as long time as possible.

Stability and secular perturbations

The classical method is to use the fact that R1 is proportional to the small parameter m1 =
M1/M� and consider a solution for the orbital elements in terms of power series in m1. A
simple picture is the following. For any element E , the first term Eo is the current value. The
second term (δ1E) is found as a first-order solution of the differential equations using constant
values of the elements – this is a linear function of time, proportional to m1. Inserting instead
Eo + δ1E and the other linear expressions, one obtains a second-order solution involving terms
proportional to m2

1, and so on. One may consider cutting at a low order, arguing that the
higher-order terms are too small to have a significant influence. This may work well over a
limited time, but there is no guarantee of convergence over infinite time by carrying the series
to infinite order. In fact it was shown already more than a century ago that such a procedure
will in general diverge.

A particular problem is posed by orbital resonances. If the so-called mean motion,
or mean angular velocity n = 2π/P , of the test object is commensurable with that of the
perturbing planet (i.e., n/n1 is very close to a ratio of small integers, like e.g. 2, 3/2, 2/3 or
1/2), some terms in the series can grow arbitrarily large. One may even worry that over long
enough time, this may happen for any rational number that n/n1 happens to be close to, and
given that there is always a rational number arbitrarily close to any real number, no orbit would
be stable over infinite time.

Certainly, this may be a problem of academic interest only, as far as the real Solar System is
concerned, and it may be that our planetary orbits remain stable over a time much longer than
the age of the Solar System (4.6 · 109 years). However, the problem of the stability of the Solar
System has remained one of the great challenges of dynamics ever since it arose during the 19th
century. The study of this problem has developed in close relation to the theory of chaos in
dynamical systems. This is because the fundamental question about stability is whether the
orbital elements of the planets evolve only by periodic oscillations, or if they vary chaotically.
Only the former case would ensure stability. Sure enough, each resonance is associated with
some chaotic regions of phase space, but in most cases this chaos may take extremely long times
to develop. Thus the chaos leading to eventual instability may be too slow to be important in
the real Solar System.

We should also note some important theoretical breakthroughs regarding chaos in slightly
perturbed, integrable dynamical systems. The Kolmogorov-Arnold-Moser (“KAM”) theorem
from the 1960’s states that quasi-periodic motions will dominate the phase space, if the pertur-
bation is small enough. The more recent and practically oriented Nekhoroshev theorem assures
that even if chaos exists, the deviations from regular motion are bounded during a finite time.

Let us now focus on problems of immediate interest. Limiting the solutions to time spans
of ∼ 105 years, the main results are as follows:

• the semimajor axis a remains on the average constant;

• the eccentricity e and inclination i show periodic oscillations;

• these oscillations are coupled to linear variations in ω and Ω, respectively, over 2π.
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These (e, ω) and (i, Ω) variations have periods typically ∼ 104 years, and they represent the
principal secular variations of the orbits. When applied to asteroids in the main belt, one finds
that the solutions may be represented graphically as:

The quantities ef and if are called forced eccentricity and inclination, respectively, while ep

and ip are the proper eccentricity and inclination. It is an important aim of asteroid dynamics
to reduce the observed, current values of (e, ω) and (i, Ω) to get the proper elements (ep, ip),
which are intrinsic to the objects and thus allow to see genetic relationships like collisional
families (where the fragments have closely similar values of ep and ip).

The frequencies with which (e, ω) circulates around (ef , ωf ) and (i, Ω) around (if , Ωf ) are
of great interest, since they are the frequencies of libration or circulation of (1) the apsidal
line (perihelion-aphelion) in the orbital plane, and (2) the line of nodes in the ecliptic plane.
There are similar variations of the planetary orbits due to the mutual perturbations between
the planets. Thus, for some combinations of a, ep and ip it happens that the frequency of
secular variation of the asteroid orbit coincides with that of a major perturbing planet (in the
first place, Jupiter or Saturn). This is called a secular resonance.

Just like the mean motion resonances, the secular ones cause singularities in the series
development of the perturbing function, and the motion has to be treated with special care.
Very important secular resonances are present in the range of a, e, i where the main asteroid
belt is situated, and they lead to large variations in eccentricity in specific regions of the belt,
such that some asteroids get into planet-crossing orbits. Such asteroids may get ejected from
the Solar System, or they may collide with a planet. The perihelia may also be driven by the
secular resonance all the way into the Sun.

Also the main mean motion resonances like 3/1, 5/2 or 2/1 are affected by the closeness of
secular resonances. An overlap of resonances leads to a chaotic zone with large excursions in
eccentricity. This offers the best explanation of the Kirkwood gaps in the asteroid belt.
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The circular restricted three-body problem

Consider the following problem. A nearly massless body (its mass and gravity are completely
negligible) moves in the combined gravitational field of the Sun and one planet, and the orbit
of the planet is circular. This is called the circular restricted three-body problem. It may seem
highly idealized but is actually a good approximation for small bodies like asteroids or comets
over short periods of time. There are some useful general results for this problem, which we
shall now describe.

First, let us note that we can define a uniformly rotating frame of reference, where the Sun
and the planet are both at rest. This is a frame rotating with the constant angular velocity
of the planet’s orbital motion. It was shown already by Lagrange that there are five points
where we can place the third body at rest, and it will remain there. These equilibrium points
are called Lagrange points, and they are denoted L1, L2, L3, L4 and L5. The first three are
situated on the line drawn through the Sun and the planet, while L4 and L5 occupy the third
corners of the two equilateral triangles that have the Sun and the planet in the two remaining
corners.

L1, L2 and L3 represent unstable equilibria, but L4 and L5 are stable equilibrium points. In
the real Solar System there are many objects that move in the vicinity of such points: first and
foremost the Trojan asteroids with respect to Jupiter and a few other asteroids with respect
to Neptune and Mars, but also Saturnian satellites sharing the orbits of Tethys and Dione.

Let us then note that the force field in the rotating system is conservative, since the two
masses are at rest, and the centrifugal force also has a fixed potential. This means that the
total energy of the massless body (kinetic + potential) remains constant. If we define the unit
of mass as M� + Mp, i.e., Mp = m and M� = 1 − m, the unit of length as the Sun-planet
distance, and the unit of time such that the angular velocity of the rotating frame is unity, and
if we take the (x, y) plane to be the orbital plane of the planet with the Sun and planet situated
on the x axis, we can write the constant quantity as:

C = −2E =
(
x2 + y2

)
+ 2

{
1 − m

ρ1

+
m

ρ2

}
− v2 (11)

The first term in the right-hand member represents the centrifugal potential, the second term
the gravitational potential, and the third term the kinetic energy per unit mass. Here ρ1 is the
distance to the Sun and ρ2 is the distance to the planet. If we put v = 0, Eq. (11) defines a
surface of zero velocity, which limits the region of space, where the massless body can move. It
is instructive to plot the contours of zero velocity, where these surfaces cut the (x, y) plane for
different values of C.
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For very large values of C, motion can occur either in a nearly spherical volume around m
(assuming that m << 1), in a larger, oval region around 1 − m, or outside a large cylinder
enclosing both the Sun and the planet.

If we let C decrease, the two first regions grow, while the third volume shrinks. It turns out
that L1 and L2 are the points, where the region around the planet opens up, first at L2 toward
the Sun and then at L1 toward the exterior. Since m << 1, L1 and L2 are at approximately
the same distance from the planet, and the largest region of stable satellite motion around the
planet is a sphere extending to that distance. We call this the Hill sphere.

The radius of the Hill sphere is:

ρH '
(

m

3

)1/3

(12)

Exercise. Compute approximate radii of the Hill spheres of all planets of the Solar System.
Verify that the known natural satellites move within these spheres. Which satellite is closest
to the limit?

Finally, let us note that Eq. (11), which is called the Jacobi integral, offers a way to
estimate how the orbit of a comet or asteroid may change in a general situation – even if a close
encounter with the planet is involved. For comets, such encounters with Jupiter are relatively
frequent, and as a result their orbital elements may change dramatically. However, one may
show that, as long as the comet is not very close to either the Sun or Jupiter,

C ' 1

a
+ 2

√
a(1 − e2) cos i (13)

Hence, even if a, e and i change considerably, they have to do so in accordance with Eq. (13)
for a constant value of C. For practical purposes we use the Tisserand parameter T , which
is just the same as C:

T =
aJ

a
+ 2

√
a

aJ
(1 − e2) cos i (14)

In practice, T is only a quasi-constant quantity, because Jupiter’s orbit is not exactly circular
and other planets add to the perturbations. But it is generally a good approximation.
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If a cometary orbit changes due to close encounters, one can use Eq. (14) to draw evolu-
tionary curves in the (a, e) plane for comets with cos i = 1 – knowing that a coplanar orbit will
always remain coplanar (i ≡ 0). Using Eqs. (6), one can also plot such curves in the (Q, q)
plane as illustrated above. This shows that comets with low-inclination orbits inside that of
Jupiter (Q <∼ aJ) may have evolved from other orbits outside the planet (q >∼ aJ) due to close
encounters.

It is interesting to note that the first term of T expresses the orbital energy of the comet with
reversed sign, and the second term is the component Hz of angular momentum perpendicular
to Jupiter’s orbital plane (i.e., approximately the ecliptic plane). In situations where no close
encounters occur, a remains nearly constant, and so does Hz according to Eq. (14), but secular
perturbations may change the total angular momentum H very much. The eccentricity and
inclination may thus oscillate with large amplitudes according to a so-called Kozai cycle, so
that i is closest to 90◦ (| cos i| is a minimum) when e is at its minimum, and conversely the
maximum of e occurs when i is closest to 0 or 180◦.

If an object (comet or asteroid) has Hz ' 0, e can get very close to 1, so that the perihelion
distance q = a(1 − e) nearly vanishes. This situation is currently observed for Sun-grazing

comets, some of which are actually seen to hit the Sun. And it has been realized that it is also
a common end state for near-Earth asteroids. When these collide with the Sun, the reason is
sometimes the above-mentioned secular or mean-motion resonances and sometimes the Kozai
cycle.

Close encounters

Let us consider the acceleration of a nearly massless body (we shall call it a comet) that is close
to a planet. The equations of motion for the three-body system Sun-planet-comet are:
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r̈� =
GMp

|rp − r�|3
(rp − r�) (15)

r̈p = − GM�

|rp − r�|3
(rp − r�) (16)

r̈c = − GM�

|rc − r�|3
(rc − r�) − GMp

|rc − rp|3
(rc − rp) (17)

The acceleration of the comet in the heliocentric frame is thus:

r̈c − r̈� = − GM�

|rc − r�|3
(rc − r�) − GMp

|rc − rp|3
(rc − rp) −

GMp

|rp − r�|3
(rp − r�) (18)

CENTRAL=⇒ PERTURBING =⇒

Note that this is the same as Eq. (8). Since |rc − rp| << |rp − r�|, the last term can be
neglected, and we have approximate values of the magnitudes of the other terms:

central GM�

a2
p

; perturbing
GMp

∆2

where ∆ is the distance planet-comet, and ap is the distance Sun-planet. The value of ∆, for
which the two accelerations are equal, is:

∆h = ap ·
(

Mp

M�

)1/2

(19)

The acceleration of the comet in the planetocentric frame is:

r̈c − r̈p = − GMp

|rc − rp|3
(rc − rp) −

GM�

|rc − r�|3
(rc − r�) +

GM�

|rp − r�|3
(rp − r�) (20)

CENTRAL=⇒ PERTURBING =⇒

Both |rc−r�| and |rp−r�| are ' ap, so we get the approximate magnitudes of the accelerations:

central
GMp

∆2 ; perturbing GM�∆
a3

p

The value of ∆, for which the two accelerations are equal, is:

∆p = ap ·
(

Mp

M�

)1/3

(21)

Finally, the ratio of central to perturbing acceleration is for the heliocentric frame:

M�

Mp

·
(

∆
ap

)2

and for the planetocentric frame:

Mp

M�
·
(

∆
ap

)−3

Equality of the two ratios occurs for:

∆h/p = ap ·
(

Mp

M�

)2/5

(22)

For instance, for Jupiter the three values are: ∆h = 0.16 AU; ∆p = 0.52 AU; and ∆h/p =
0.33 AU.
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We see that there is a small region around Jupiter (∆ < ∆h), where the heliocentric orbit
gets unstable. There is a larger region (∆ < ∆p), where the jovicentric orbit is reasonably
stable. For ∆h < ∆ < ∆p, both orbits may be called stable, though only marginally so.

∆p represents a stability criterion for planetocentric motion that differs somewhat from the
earlier result for the Hill sphere. The limiting distance is a factor 31/3 ' 1.44 smaller for the
Hill sphere, which is the more stringent of the two criteria.

An approximate way to treat close encounters is to follow the unperturbed heliocentric
orbit until ∆ = ∆h/p, and then shift to a hyperbolic planetocentric orbit that is followed
until ∆ = ∆h/p again, and a new heliocentric orbit is computed. This means that the close
encounters can be treated with “hyperbolic deflections” like a scattering problem, analogous to
nuclear particle scattering in accelerators.

One useful result is that the planetocentric velocity has the same magnitude before and
after the scattering – only the direction is changed. The event can also be considered as
instantaneous, so the position of the planet is unchanged.

In fact, the approach velocity to the planet (U) can be computed very easily, since it can
be shown to be related to the Tisserand parameter by:

U2 = 3 − T (23)

and naturally, since T is conserved, U is also conserved.

Exercise for the advanced student. Prove Eq. (23)

There is a simple relation between the direction of planetocentric motion and the orbital
elements. Let θ be the angle between this direction and the planet’s direction of heliocentric
motion. Then the transverse component of the comet’s heliocentric velocity in the planet’s
orbital plane can be written as Vp(1+U cos θ). Hence, when θ changes during a close encounter,
so does the perpendicular component of the orbital angular momentum in a corresponding way.
And, due to the conservation of T , the orbital energy also changes correspondingly. In fact, for
a given U , the value of θ is uniquely related to E and Hz.
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We may investigate what conditions a cometary orbit must fulfill, if Jupiter shall be able
to eject the comet from the Solar System by close encounters. In the units previously adopted,
Jupiter’s circular orbital velocity is VJ = 1. The velocity of escape from the Solar System is
thus VE =

√
2 (prove this!). The relative velocity between the comet and Jupiter must hence

obey: U >
√

2 − 1, and we get:

3 − T > (
√

2 − 1)2 =⇒ T < 2
√

2 (24)

Dynamics of the Oort Cloud

The outskirts of the Solar System are occupied by a huge number of comets moving in bound
orbits around the Sun. If external perturbations did not exist, the gravitational reach of the
Sun would be infinite, and comets might move around the Sun at whatever distances. But,
clearly, this is not the case, and we have to estimate the size of the Sun’s sphere of influence in
the Galaxy.

For this purpose let us consider the Hill sphere as in Eq. (12) under the assumption that
the Sun moves in a circular orbit around the center of the Galaxy, where we place a point
mass equal to the total mass of the Galaxy. Hence we use the approximation of the circular
restricted three-body problem. The mass of the Galaxy can be estimated at about 2 · 1011

solar masses, and the distance to the Galactic center is about 8.6 kpc. Eq. (12) thus yields:
ρH ' 1 pc ' 2 · 105 AU. We may take this to be a rough limiting distance for cometary orbits
to be stable.

Determination of long-period comet orbits and integration of the planetary perturbations
backward in time indicate that, more or less, the whole volume at r < ρH is populated by
comets. We call this the Oort Cloud. Even the observed comets, which have perihelia in the
innermost part of the Solar System, spend most of the time at r >∼ 104 AU. Which perturbations
may act in comets moving at such distances? The answer is twofold.

1. The Solar System is situated in the smooth, general gravitational field of the Galaxy as
a whole. We already saw that this limits the distances of stable motion around the Sun,
but the orbits may be strongly perturbed even inside this limit. Since our place in the
Galaxy is inside the disk relatively far from the center, it turns out that the gravity of the
disk causes the dominant acceleration. The corresponding perturbing force on a comet
in the Oort Cloud is the difference in the accelerations of the comet and the Sun due to
their slight difference in distance from the central plane of the disk.

The effect of this perturbation is similar to the above-described Kozai cycle, because
there is no change in orbital energy – only in angular momentum. But there is no torque
component perpendicular to the disk since the perturbing force is “vertical”, so Hz is
conserved (with the z direction toward the Galactic pole). Some orbits may thus undergo
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very large changes in perihelion distance, especially if Hz is very small. The periods are
very long – typically ∼ 108 yr or more – and during most of the time the perihelion is
safely outside the planetary system. But there comes a time, when the comet penetrates
among the planets and may come close enough to the Sun to be observed. When this
happens, the orbit becomes violently unstable due to planetary perturbations, and the
comet may be ejected from the Solar System or captured into orbits of shorter periods.

2. Individual stars or other local mass concentrations in the Galaxy add their own, local
gravitational fields in their immediate surroundings. Therefore, whenever the Solar Sys-
tem passes at high speed near such local perturbers, both the Sun and each comet in the
Oort Cloud receive impulses that are somewhat different due to the difference in encounter
geometry. The differential impulse perturbs the heliocentric orbit of the comet.

Such impulses are best described by means of hyperbolic deflections like those undergone
by comets passing close to Jupiter. But often one may use a simplified approach, assuming
that the star passes along a straight line with constant speed, while the comet is at rest
relative to the Sun. This is motivated by the fact that typical encounter speeds of other
stars are ∼ 30 km/s, while the comet moves around the Sun with a speed <∼ 0.1 km/s
and the speed of escape at the star’s closest approach – typically at ∼ 105 AU – is only
∼ 0.1 km/s as well. One generally refers to the simplification as the classical impulse
approximation, and the formula for the relative impulse is:

∆v =
2GM∗

v∗

{ b̂c

bc
− b̂�

b�

}
(25)

where M∗ and v∗ are the mass and velocity of the star, b̂ is the unit vector toward the
point of closest encounter, and bc and b� are the respective encounter distances.

Exercise. Estimate the order of magnitude of the impulse received by a comet, if the star
has the same mass as the Sun and passes at ∼ 104 AU from the comet but much further away
from the Sun.

Encounter frequencies in the Galaxy are estimated by the simple formula:

T∗(D) =
{
πD2n∗v∗

}−1
(26)

where T∗ is the average time between successive encounters within a distance D, n∗ is the
number density of stars, and v∗ is the typical encounter speed with stars. We may verify that
stars actually pass through the Oort Cloud on a time scale equal to the orbital periods of Oort
Cloud comets – the latter being a few million years in typical cases.
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Exercise. Estimate the time it typically takes before a comet in the Oort Cloud is en-
countered by a star to within ∼ 104 AU, using the above formula and an estimated density of
n∗ ∼ 0.1 pc−3.

We conclude that there is a practically continuous reshuffling of the orbits of Oort Cloud
comets due to slight impulses received from stellar encounters. This is enough to thermalize the
cloud and make it isotropic during the age of the Solar System, and to guarantee that there will
always be comets with very small values of the angular momentum, which fall into perihelia in
the inner Solar System.

Actually, the above-mentioned effect of the Galactic tide is in general larger, when it comes
to providing new, observable comets from the cloud. But there is an important aspect in
favour of the stars. In case there had only been the Galactic tide, all the comets that started
out with very small values of Hz would have been lost long ago by the planetary perturbations,
as explained above, and we would not see any new comets from the Oort Cloud at the present
time. This awkward situation is saved by the stars, which reshuffle angular momenta all the
time, thereby providing new comets with very small Hz that can be grabbed by the Galactic
tide and transferred into the inner Solar System.

In addition to the above-mentioned effects, one expects that the Solar System passes near
very large mass concentrations in the Galaxy from time to time, and these may cause large
disturbances of the whole Oort Cloud. One example, plotted in the figure above, is Giant
Molecular Clouds (GMCs) with masses ∼ 106 solar masses.

Nongravitational forces

A common feature of the dynamics of all the small bodies in the Solar System is that they
are influenced by forces that do not arise from gravitational interactions. These are called
nongravitational forces. Table 4 summarizes the main effects acting on each class of small
bodies.

Radiation pressure

Consider a dust grain moving in a heliocentric orbit. This grain is affected by two forces with
solar origin, i.e., solar gravity and solar radiation pressure. If the grain is at a distance r from
the Sun, the force of gravity is:

Fg = −GM�m

r2
r̂, (27)
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Table 4:

Object class Nongravitational effect
Dust particles Radiation pressure
Larger meteoroids Poynting-Robertson drag
Comets Outgassing jet effect
Asteroids Yarkovsky effect

obviously directed toward the Sun. The mass of the grain is m, and this can be expressed in
terms of the density ρ and radius a. The radiation pressure force can be expressed in terms of
the momentum flux of solar radiation at distance r:

P� = F�/cr2
AU, (28)

where F� is the “solar constant”, i.e., the bolometric energy flux of sunlight at Earth’s orbit,
and c is the speed of light. The effective cross-section of the grain for interacting with solar
photons can be expressed as:

A = πa2Qpr, (29)

where Qpr is an efficiency factor that is ∼ 2 for wavelengths λ > a and drops toward zero for
λ << a. The radiation pressure force is simply

Fr = P� · A r̂. (30)

Exercise. Verify that the grain radius for which the forces of gravity and radiation pressure
are equal (at any distance from the Sun!) is of order 1 µm, using above numbers for G, M�

and the length of the AU, and the value F� = 1.36 · 103 W m−2.

Since the radiation pressure force is directed outward from the Sun, the resulting force
acting on the grain is Fe = −(Fg −Fr) r̂. Since both terms Fg and Fr scale as r−2, the effective
force is like a scaled-down gravity. One usually expresses this by a parameter β = Fr/Fg, such
that Fe = Fg · (1 − β). Grains with different radii and densities will have different values of β.

Poynting-Robertson drag

This effect can be illustrated as follows. A grain orbiting the Sun will absorb photons from
the solar radiation field, and it will emit its own photons due to thermal radiation. If the heat
balance of the grain involves only those two processes, then the amounts of energy absorbed
and emitted in unit time must be equal. However, the grain will lose angular momentum from
its orbital motion!

Imagine that the transverse velocity of the grain (component perpendicular to the solar
direction) is vt. This is very small compared to the speed of light, but it does cause a slight
aberration effect. As viewed in the grain’s frame of reference, the sunlight appears to come
from a direction slightly ahead of the Sun, the aberration angle being

Ψ = arcsin(vt/c) (31)

The momentum gained by absorption of those photons thus deviates by the angle Ψ from
the radial direction, tending to decrease vt. On the other hand, the photons emitted by the
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grain have no preference for the forward or backward direction and thus do not affect vt. The
result is like that of a drag force, and two phenomena will occur.

First, the orbit of the grain gets circularized, since the drag is strongest near perihelion.
Second, the circular orbit of the grain will slowly “spiral” inward, toward the Sun. Typical
time scales of this spiraling motion, and thus lifetimes of the grains, are ∼ 104 years for the
grain sizes that dominate in the zodiacal light. They increase with increasing radius, and the
Poynting-Robertson effect is not important for macroscopic objects orbiting the Sun.

Cometary outgassing jet effect

The characteristic property of a cometary nucleus, which distinguishes it from an asteroid, is
that it produces gas upon arrival close enough to the Sun. This gas leaves the nucleus with
a finite velocity, which is related to the temperature of the surface layer where the molecules
originate. If the outgassing is not uniform (equal in all directions), the nucleus is subjected to
a jet force corresponding to the average speed of the bulk outflow. If the mass of the nucleus is
M , the mass of a molecule is m, the average outflow velocity is v, and the number of molecules
produced per second is Q, the jet acceleration will be

j = −Qm

M
v (32)

Usually the dominant molecular species is water, and one may use observational estimates
of Q at different positions in the orbit, and a physical model of the outgassing to estimate v, in
order to obtain M j as a function of orbital position. The practical use of this lies in estimating
the mass of the nucleus, using the observed effects of j on the orbital elements of the comet.

There are several such nongravitational effects, and the one that is easiest to measure is a
perturbation of the orbital period, ∆P . For a periodic comet an accurate determination of P
is possible only by observing two consecutive apparitions of the comet. By observing a third
apparition, one may then check if P is only perturbed by the planetary gravities, or if there
is a measurable nongravitational ∆P effect. Such effects are reliably measured for a majority
of the periodic comets, and for those with relatively long periods, the effect in question can be
quite large. For instance, comet 1P/Halley arrives at each perihelion about four days too late
with respect to the best gravitational prediction.

A second effect that also stands out, although the related displacement of the comet on the
sky is always much smaller, is a perturbation of the longitude of perihelion, ∆$. This quantity
can also be deduced from linkages of several apparitions of the same comet, and it typically
amounts to only an arcsecond or less per orbit.

When linking cometary apparitions, one may use different models for j. The one most
commonly used since more than 30 years is based on assuming a functional dependence
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j = (A1, A2, A3) · g(r), (33)

expressing j in a reference frame that follows the comet with the x-axis pointing radially outward
from the Sun, the y-axis in the transverse direction in the orbital plane (positive along the
direction of motion), and the z-axis perpendicular to this plane. Very often the third component
(A3 parameter) is neglected. The other two parameters, A1 and A2, can be shown to relate to
∆$ and ∆P , respectively.

The function g(r) has been chosen to approximate the variation of the sublimation flux of
water ice, as the comet moves along its orbit. This falls off with r nearly as r−2 while close to
the Sun, and much more rapidly at distances beyond r ∼ 2.8 AU:

g(r) = 0.111262
(

r

ro

)−2.15
[
1 +

(
r

ro

)5.093
]−4.6142

(34)

with ro = 2.808 AU.

Yarkovsky effect

When we discussed the Poynting-Robertson drag on grains, we dismissed the possibility of a
forward/backward asymmetry of the thermal radiation of the particle, because for such small
objects there cannot be any major temperature contrasts between the day and night, or for-
ward and backward sides. However, for large objects – several meters across or even larger –
important temperature contrasts may develop, and thus the thermal radiation of those objects
may in fact have an asymmetry along the transverse direction. Hence, the orbital motion may
gain or lose angular momentum, and the object may slowly spiral outward or inward.

There are two different effects of this kind: the diurnal (left panel) and the seasonal

Yarkovsky effect (right panel). The diurnal effect is largest, when the spin axis is perpendicular
to the orbital plane. The thermal inertia induces a lag of maximum surface temperature such
that most thermal photons are emitted toward the afternoon direction, causing a jet force in
the opposite direction. Depending on whether the spin is prograde or retrograde, this jet force
will accelerate or decelerate the orbital motion, and the asteroid will drift outward or inward.

The seasonal effect is largest, when the spin axis is in the orbital plane. Once again due
to thermal inertia, the maximum temperature on the poles occurs somewhat after the orbital
position, when the pole faces the Sun. The jet force that is directed toward the dark pole thus
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has a transverse component that decelerates the orbital motion. The asteroid will hence drift
toward the Sun, as if it were affected by a drag force.

The Yarkovsky effects on sizeable asteroids are extremely small, but when they act over Gyr
time scales, the orbits may change appreciably. This is identified as a main contributor to the
delivery of new asteroids into the resonant zones, where they may escape into planet-crossing
orbits (see above).

In addition, very accurate data on distance and velocity have been obtained by radar obser-
vations during several occasions for near-Earth asteroid (6489) Golevka. These have shown that
a nongravitational effect (interpreted as the Yarkovsky effect) caused a relative displacement
of this ∼ 0.5 km diameter asteroid by 15 km from the first observations in 1991 until the most
recent in 2003. In cases where such small asteroids are predicted to pass very close to the Earth
and get deflected by Earth’s gravity into orbits that may lead to impact on our planet (this
does happen in reality!), a prediction of the Yarkovsky effect would be essential in order to
know if the deflection will be dangerous or not.
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