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These notes are intended as an introduction to fundamental concepts of stellar dynamics,
and while observed stellar systems will often be taken as examples, the aim is not to describe
those systems in detail but rather to focus on the dynamical processes.

1 Fundamental equations

1.1 The N-body problem

Consider a self-gravitating system of N objects that do not experience any external forces –
i.e., the system is isolated. The objects in question will always be stars, so we will use the term
stars instead of ‘objects’. Let us number the stars from 1 to N .

Consider a cartesian coordinate system x,y,z. We denote the coordinates of star i by xi,yi,zi.
These are functions of time, since the star is moving. The velocity has components

dxi

dt
= ẋi = ui

dyi

dt
= ẏi = vi

dzi

dt
= żi = wi

(the dots traditionally stand for time derivatives). For convenience we name them ui,vi,wi.
Finally, let the mass of star i be mi. By ri we denote the coordinate vector (xi,yi,zi) that
connects the origin to star i. We denote by rij the distance between stars i and j:

rij = |rj − ri| =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 (1)

The force of attraction between stars i and j has the abso-
lute value Gmimj/r

2
ij (G is the gravitational constant). Its

direction is along the line i–j. Thus, in vector form, the force
exerted by j on i is:

Gmimj

r2
ij

· rj − ri

|rj − ri|

(the second factor is the unit vector from i toward j).

Hence the total force acting on star i due to all the others is:

mir̈i =
N
∑

j=1

j 6=i

Gmimj(rj − ri)

r3
ij

(i = 1, . . . , N) (2)
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According to Newton’s 2nd law of motion, this force equals the product of the acceleration and
the mass (thus the above equation). This is a vector equation, which represents three scalar
equations; the first is obtained by isolating the x components:

miẍi =
N
∑

j=1

j 6=i

Gmimj(xj − xi)

r3
ij

(i = 1, . . . , N)

and similarly for y and z.
Equation (1) provides the foundation for the whole subject of stellar dynamics, as well as

celestial mechanics. Such an equation can be written down for each star, i.e., for all values of i,
from 1 to N . We have a system of 3N simultaneous second-order differential equations and thus
a dynamical system of order 6N . If one knows the exact positions and velocities of all the stars
at an initial moment, these equations in principle allow to compute the subsequent evolution
of the stellar system for all times. However, such an exact solution is impossible to achieve
by numerical integration owing to round-off errors and finite time steps of the integration. We
hence wish to proceed as far as possible by analytic means.

1.2 The ten integrals

One may obtain some important information about the system from the basic equations of
motion without integrating them. Let us first seek integrals of the system, i.e., entities that
do not change with time.

1.2.1 Motion of the center of mass

Let us form the sum of the equations, from 1 to N :

N
∑

i=1

mir̈i =
N
∑

i=1

N
∑

j=1

j 6=i

Gmimj(rj − ri)

r3
ij

(i = 1, . . . , N)

In the right-hand member we have all pairs (i, j) represented except
those for which i = j. The sum of the two terms (i, j) and (j, i) is:

Gmimj(rj − ri)

r3
ij

+
Gmjmi(ri − rj)

r3
ji

But rji = rij, and hence this sum equals zero. In this way the terms cancel out in pairs, and
we have:

N
∑

i=1

mir̈i = 0 (3)

Physical Interpretation: Eq. (3) means that the sum of all forces within the system is zero,
which is always true for an isolated system. If we integrate over time, we get:

N
∑

i=1

miṙi = a,

where a is a constant vector, and then:

N
∑

i=1

miri = at + b,
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where b is yet another constant vector.
The center of mass of the system, G, is defined by:

rG =

∑

miri
∑

mi

=
at + b

M
(4)

where M is the total mass of the system, which is also a constant. This shows that the center
of mass moves with constant velocity along a straight line, which is obvious, since no force is
acting upon the system.

In mechanics we can always replace one frame of reference by another one in uniform,
rectilinear motion with respect to the first. Hence, in all that follows, we shall take a coordinate
system anchored at the center of mass, i.e., which has its origin in G and moves with G. In this
system we thus have: rG ≡ 0, i.e.: a = 0 and b = 0.

The choice of the center of mass frame simply means that we eliminate the common motion
of the system, which does not interest us. We shall only investigate the internal motions.

1.2.2 Total angular momentum integral

Take the cross product of both members of the basic equation by ri, and form the sum over i:

N
∑

i=1

miri × r̈i =
N
∑

i=1

N
∑

j=1

j 6=i

Gmimjri × (rj − ri)

r3
ij

(i = 1, . . . , N)

All the terms ri × ri in the right-hand member vanish. Let us again form pairs (i, j) and (j, i):

Gmimjrj × ri

r3
ij

+
Gmjmiri × rj

r3
ji

= 0,

since rj × ri = −ri × rj. Hence:
N
∑

i=1

miri × r̈i = 0 (5)

Thus we have:
d

dt

(

N
∑

i=1

miri × ṙi

)

=
N
∑

i=1

miri × r̈i = 0

which yields:
N
∑

i=1

miri × ṙi = c (6)

where, again, c is a constant vector.

Physical Interpretation: This quantity is the total angular momentum of the system,
and it is conserved for an isolated system, on which no external torque is acting.

It cannot be eliminated by a change of reference system, like we did with a and b. In
other words, c is an invariant vector that characterizes the system. In particular, it defines a
characteristic direction. If the system has an axis of symmetry, this axis should coincide
with c. We shall also see below that the absolute value of c, which measures the amount of
common rotation in the system, is linked to the flattening of the system.
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1.2.3 Total energy integral

Let us define a pairwise potential energy of stars i and j as the quantity:

Ωij = −Gmimj

rij

and the total potential energy as the sum of all pairwise ener-
gies, i.e.:

Ω = −
N−1
∑

i=1

N
∑

j=i+1

Gmimj

rij

(7)

Each pair should appear once and only once, which explains the definition of the sums. It
can be shown that Ω is the work performed by the system, if all the stars are removed infinitely
far from each other. Thus the name potential energy, i.e., work that potentially may be
performed. In reality Ω is negative, i.e., work must be provided to the system in order to push
the stars away from each other. This is obvious, since they are attracting each other.

Ω is a function of all the coordinates: Ω(x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN ) – these appear
in the expressions for rij. Let us differentiate with respect to one of them and form ∂Ω/∂xi.
Only the pairs formed by star i and another star yield a non-vanishing derivative. Thus:

∂Ω

∂xi

= −
N
∑

j=1

j 6=i

∂

∂xi

(

Gmimj

rij

)

=
N
∑

j=1

j 6=i

Gmimj

r2
ij

∂rij

∂xi

We have: r2
ij = (xj − xi)

2 + (yj − yi)
2 + (zj − zi)

2, and hence:

∂rij

∂xi
= −xj − xi

rij

and:
∂Ω

∂xi

= −
N
∑

j=1

j 6=i

Gmimj(xj − xi)

r3
ij

But we saw before that this expression is exactly: −miẍi. Thus:

miẍi = − ∂Ω

∂xi

and similarly:

miÿi = −∂Ω

∂yi

miz̈i = −∂Ω

∂zi

which we merge into:
mir̈i = −∇iΩ (8)

(a notation that is not strictly correct but convenient). So we have yet another quite general
result: The force equals minus the gradient of the potential energy.
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Let us take the scalar product of both members with ṙi and form the sum over i:

N
∑

i=1

miṙi · r̈i +
N
∑

i=1

ṙi · ∇iΩ = 0 (9)

or:
d

dt

N
∑

i=1

miṙ
2
i

2
+

dΩ

dt
= 0 (10)

since the second term of Eq. (9) can be written:

∂Ω

∂x1

ẋ1 + . . . +
∂Ω

∂zN

żN =
∂Ω

∂x1

dx1

dt
+ . . . +

∂Ω

∂zN

dzN

dt
=

dΩ

dt

The sum in the first term of Eq. (10) is called the total kinetic energy (T ) of the system,
i.e., the sum of the individual kinetic energies of the stars. We integrate over time and obtain:

T + Ω = E (11)

where E is a constant called the total energy. This is simply the theorem of energy conser-
vation.

1.2.4 Concluding remarks

We have found a number of constant quantities – the vectors a, b and c plus the scalar E.
Since each vector has three components, this yields ten constants, i.e., ten integrals of the
system of differential equations. In principle, each integral allows to substitute one variable in
terms of the others, i.e., to reduce the order of the system by 1. Thus the order of the system
can be reduced from 6N to 6N − 10.

In the simplest of all cases – the two-body problem (N = 2) – it is actually possible to
solve the problem completely. But as soon as N ≥ 3, such a solution would mean finding
≥ 18 integrals, and this has not been possible so far. And for many-body systems like stellar
clusters with N ∼ 103 − 106 or galaxies with N ∼ 1011 it does not make sense at all to hope
for analytic solutions. This is one fundamental reason why we have to discuss the behaviour of
such systems in terms of statistical mechanics.

Finally, note that the integrals derived above refer to the whole system and not to individual
stars. In the most general case, the energy or angular momentum of an individual star will not
be conserved. However, we shall see that there are cases, where the symmetry properties of
the systems allow the existence of such integrals, and that this is very useful for constructing
models of those systems.

1.3 The virial theorem

1.3.1 Lagrange’s identity

Yet another very important property – although not an integral – can be derived from the
equations of motion. Let us consider the quantity:

J =
N
∑

i=1

mir
2
i , (12)
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which is called the moment of inertia about the origin. Note that in mechanics in general,
the moment of inertia is taken with respect to an axis so that ri is replaced by the distance
from this axis. The quantity J that we now consider is thus a little different.

Let us take the first and second time derivatives of J as follows:

J̇ = 2
N
∑

i=1

miri · ṙi

J̈ = 2
N
∑

i=1

miṙ
2
i + 2

N
∑

i=1

miri · r̈i

which may be written:

J̈ = 4T + 2
N
∑

i=1

N
∑

j=1

j 6=i

Gmimjri · (rj − ri)

r3
ij

In the second part of the right-hand member we again bring together the terms (i, j) and (j, i):

ri · (rj − ri) + rj · (ri − rj) = −(rj − ri)
2 = −r2

ij

and from this we conclude that:

J̈ = 4T − 2
N
∑

i=1

N
∑

j=i+1

Gmimj

rij
,

i.e.,

J̈ = 4T + 2Ω (13)

This relation is known as Lagrange’s identity.

1.3.2 Virial equilibrium

We have just obtained a result of great practical importance. We shall see below that stellar
systems in general are in steady state. Thus, despite the fact that the stars keep moving
within the system, the bulk properties of the system do not change. For instance, the extent –
or size – of the system remains constant. But the quantity J is connected to the extent of the
system: if this would be increasing, then all the ri and therefore also J would increase. Thus,
in vague terms, the steady state means that:

J = constant

Strictly speaking, due to the motions of individual stars, J cannot
be exactly constant but exhibits statistical fluctuations around
an average. Hence, let us instead write: J = const., where J stands
for a time average of J smoothing out the short-term fluctuations.
Since, as we shall see later, the steady states of stellar systems
do not last forever, but the systems evolve over long time scales,
we may consider averaging over an interval that is long enough
to eliminate the fluctuations but still short in comparison to the
evolutionary time scale of the system.

Taking time derivatives, we realize that the averages of J̇ and J̈ both vanish. Thus, by
averaging Lagrange’s identity, we find:

4T + 2Ω = 0
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From the energy integral we know that

T + Ω = E,

which holds strictly at each moment. Forming the average, we find:

T + Ω = E

By solving the two above equations for T and Ω, we obtain:

T = −E ; Ω = 2E (14)

which shows that the time averages of T and Ω are also constant.

The importance of fluctuations depends on the number of stars. It can be shown that in a
system of N stars, the relative amplitude of the statistical fluctuations is N−1/2. In relatively
small-number systems like open star clusters, the fluctuations can be sizeable, but in globular
clusters or galaxies they are negligible. In the latter cases we can thus write T and Ω instead
of their averages, i.e.:

T = −E ; Ω = 2E (15)

and:
2T + Ω = 0 (16)

which is known as the virial theorem.

The relative positions of the energies should be remembered, The three
intervals are equal. This repartition is generally valid in all stationary
systems. In physical terms, the virial theorem suggests that there is
a certain equilibrium between the kinetic and potential energy. This
is easily understood. The kinetic energy tends to remove the stars from
each other because of their motions, and by contrast the potential energy
is linked to the forces of attraction and thus tends to bring the stars closer
together. We realize that if the system is to remain in a steady state,
there has to be an equilibrium between these two tendencies. This is
expressed mathematically by the virial theorem.

We may ask if this equilibrium is stable? More generally, suppose that a system does not
obey the virial theorem at the initial moment. How will it evolve?

Consider a diagram with T as abscissa and Ω as ordinate. We
always have: T ≥ 0 and Ω ≤ 0. At each moment the system is
represented by a point in this diagram, and this point moves
with time. We have: T + Ω = E = const.; thus the point can
only move along a straight line with slope −1. At the same
time, a system obeying the virial theorem is situated on the
line 2T + Ω = 0. Let us take as example a system starting at
point A.

We have: 2T + Ω > 0, and thus J̈ > 0, so that J(t) has a positive curvature. Therefore, at
least after some time, J will be increasing. This means that the extent of the system increases.
We easily realize this physically, because the stars have too much kinetic energy, so they move
too quickly and recede from each other. As they do this, they are decelerated by the forces of
attraction. Thus the velocities – and hence T – will decrease. At the same time |Ω| decreases,
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since the distances increase. This sets the direction of motion in the (T, Ω) plane. The system
moves toward the equilibrium point C.

Let us instead assume that the system starts on the other side with 2T + Ω < 0, for
example at point B. In this case the initial value of T is zero, i.e., all the stars are at rest.
Consequently they will “fall” toward each other, so that T increases and |Ω| increases. The
motion is again directed toward C. Thus any system tends to tune its extent so that the virial
theorem is obeyed. The process of doing so for a system that is initially not in virial equilibrium
is sometimes called virialization. In reality, the representative point will describe a damped
oscillation around C. However, the oscillations of stellar systems are damped very quickly, so
the observed star clusters, for instance, are generally in steady state. Their ages are far larger
than the virialization time.

A system can reach equilibrium only if it is situated below the dashed line. If, e.g., it starts
from point D, it will not reach the equilibrium line but ends up at E, where Ω = 0 and the
stars have moved infinitely far apart. Thus the system is dissolved and ceases to exist. We see
that a necessary condition for stability of a stellar system is that its total energy

is negative. Some young “stellar associations” in the Galaxy in fact have positive energies.
They are thus temporary, new-born clusterings of young stars that have not had the time to
dissolve but are in the process of dissolving.

1.3.3 Using the virial theorem

The practical use of the virial theorem comes from the fact that it yields a relation between
the essential physical parameters of stellar systems. T depends on the velocities and the total
mass, and Ω depends on the extent and the mass. Thus we have got a relation between the
mass, extent and velocities, and if we observe two of these properties, we can derive the third
using the virial theorem.

To formulate this relation, let us first write:

T =
1

2

N
∑

i=1

miṙ
2
i =

1

2

N
∑

i=1

miv
2
i =

1

2
N〈mv2〉

where vi = |ṙi| is the absolute value of the velocity of a star, and the average “〈 〉” is taken
over the whole set of stars.

Now, we would like to write 〈mv2〉 ' 〈m〉〈v2〉. We must realize that this may not be a very
good approximation in case there is a correlation between the masses and velocities of the stars
(and in reality these are indeed correlated!), but let us use it all the same. At the same time
we have:

Ω = −
N−1
∑

i=1

N
∑

j=1+1

Gmimj

rij
' −N(N − 1)

2
G

〈

mimj

rij

〉

and – analogous to the above assumption – we put: 〈mimj/rij〉 ' 〈m〉2/〈r〉, where 〈r〉 is the
mean distance between two stars of the system, randomly selected. This is of the order of the
mean radius of the system. One can replace N − 1 by N , since this is a large number, and the
virial theorem hence yields:

N〈m〉〈v2〉 − N2

2
G
〈m〉2
〈r〉 ' 0

We have: N〈m〉 = M , the total mass, which yields:

〈v2〉 ' GM

2〈r〉 (17)
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This is the “practical” form of the virial theorem. One should keep in mind that it only provides
an approximate relation.

Examples. Consider an open star cluster with 500 stars of 〈m〉 = 1 M�. The radius of the
cluster is 〈r〉 = 1 pc. If we measure masses in solar masses, distances in pc, and times in years,
we have: G = 4.5 · 10−15, so we get from Eq. (17):

〈v2〉 = 4.5 · 10−15 · 500 (pc/yr)2 = 2.25 · 10−12 (pc/yr)2,

and since 1 pc/Myr is very close to 1 km/s (very useful to remember!), the square root of 〈v2〉
turns out to be 1.5 km/s. This is a measure of the velocity dispersion of the cluster, or the
typical value of the relative velocity of any pair of stars within the cluster. Note how small
this is compared to the typical velocities of the stars in the solar neighbourhood relative to the
Sun, which are ∼ 30 km/s. But those velocities are a different matter, since the stars of the
solar neighbourhood do not form a self-gravitating system but are part of the whole Galaxy.
We will come to Galactic dynamics later on.

Another example concerns globular clusters, whose radii are more like 10 pc, and which
are made up of ∼ 106 stars with an average mass of 0.5 M�. In this case we get a velocity
dispersion of about 4.7 km/s.

Finally, consider galaxy clusters, for which we easily observe the radii and velocity disper-
sions but have to derive the masses from the virial theorem. As typical estimates for radii and
velocity dispersions we can take 0.5 Mpc and 1000 km/s, which yields M ∼ 2 · 1014 M�. The
classical problem here is that adding up the estimated masses of the member galaxies, we get a
much smaller value. This has been referred to as the missing mass problem of galaxy clusters,
and it provides one of the best proofs of the existence of dark matter in the Universe.

1.4 Statistical description of stellar systems

1.4.1 The distribution function

Consider the state of the system at a given moment t0. A complete description of this state
involves knowing for each star i: the mass mi, the position (xi, yi, zi), and the velocity (ui, vi, wi).
In principle, from this information one may compute the evolution of the system for all times.

Let us now consider a 7-dimensional space called the phase space. Each star is represented
in this space by a point, whose seven coordinates are:

xi, yi, zi, ui, vi, wi,mi

Thus the whole system is represented by a set of N points in phase space. Conversely, this set
completely describes the state of the system.

In general the number of points is very large. Thus it is not possible in practice to specify
the exact position of each representative point. But exactly because N is large, we may replace
the exact description of the system by a statistical description. Instead of specifying the
exact positions of the N points, we specify only the density of such points in phase space. This
density is defined as follows.

We divide the phase space into small cells. Each cell has to be small compared to the extent
of the whole set of points but yet large enough to contain a considerable number of points. Let
∆τ be the volume of a cell (in seven dimensions) and ∆n the number of points within the cell.
The density associated with this cell is then given by:

Ψ =
∆n

∆τ
(18)
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We thus get a value of Ψ for each cell, and by interpolation and smoothing we may obtain
a continuous function, defined everywhere in phase space. Note that this function Ψ is not
rigorously defined but only approximately. Its approximate definition becomes better, the
larger the number N of points.

Ψ is a function of the seven phase space coordinates but also depends on time, because the
representative points are moving as the stars follow their orbits:

Ψ(x, y, z, u, v, w,m, t)

This is called the distribution function. According to its definition, it obeys the condition:

∫ ∫ ∫ ∫ ∫ ∫ ∫

Ψ dxdydzdudvdwdm =
∫

Ψ dτ = N

1.4.2 Smoothed density and potential

Let us now compute the usual density of the stellar system in 3-dimensional physical space
(x, y, z). It is derived from Ψ simply by summing, or integrating, over all values of velocity and
mass, i.e.:

ρ(x, y, z, t) =
∫ ∞

0
mdm

∫ ∫ ∫ +∞

−∞
Ψ dudvdw (19)

Each star contributes with its mass m such that ρ is the density in the classical sense: the mass
per unit volume, while Ψ instead was a number of points per unit volume in phase space. Note
that ρ depends on time. We see that ρ can be derived from Ψ, but the converse is not true.
Knowledge of the usual density ρ is not enough to define the system.

The function ρ is called smoothed density. It is a continuous
function, while the actual density is markedly discontinuous, being
zero everywhere except in the stars, where it is extremely high. The
sketch to the left indicates a one-dimensional system for simplicity.
The smoothed density is obtained by eliminating the local rough-
ness as part of the smoothing done for the distribution function.
We may imagine that the material in each star has been spread out
into a volume around the star so that the density curve has been
smoothed.

The gravitational potential that is set up at any point by the whole stellar system is
given by the classical formula:

U(x1, y1, z1, t) = −G
∫ ∫ ∫ +∞

−∞

ρ(x2, y2, z2, t) dx2dy2dz2

r12

(20)

where r12 is the distance between points 1 and 2.
This relation allows to compute U from ρ. It may be inverted, and one then obtains:

4πGρ = ∇
2U =

∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
(21)

which is called the Poisson equation. Generally speaking, it is easier to use than Eq. (20),
even for computing U from ρ, since it contains no singularity. But, of course, when integrating
Eq. (21), we have to take care about the boundary conditions: U = 0 at infinity.
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U is called the smoothed potential, since it is obtained from the
smoothed density. The real potential (solid curve in the sketch to
the left) exhibits deep wells in the vicinity of all stars. If a star
enters into such a potential well, its motion will be very different
from the one due to the smoothed potential, and this phenomenon
will be analysed below.

1.4.3 The Liouville equation

As a first approximation, supposing the number of stars is large, we may disregard the local
irregularities of the real potential and assume that it is well represented by the smoothed
potential U . The motion of a star is then given by:

ẍ = −∂U

∂x
; ÿ = −∂U

∂y
; z̈ = −∂U

∂z
(22)

Each one of these second-order differential equations can be broken down into two first-order
equations, and we thus get:

ẋ = u = fx

ẏ = v = fy

ż = w = fz

u̇ = −∂U/∂x = fu

v̇ = −∂U/∂y = fv

ẇ = −∂U/∂z = fw

ṁ = 0 = fm



















































f (23)

The last equation expresses the fact that the mass of a star remains constant in the course
of time. These seven equations describe the motion of a representative point in phase space.
The velocity of the point is a vector f with components (fx, . . . , fm). Let us call trajectory

the curve described by a representative point in phase space in order to distinguish it from the
orbit, which is a curve in physical space followed by the actual star.

If the state of the system is known, the potential U is also known, since it can be computed
using the above equations. Hence f is known at each point in phase space. In other words,
the motion of the representative points in phase space resembles the motion of a fluid – at
each point the velocity is a uniquely defined vector! Note that this is not true at all for the
3-dimensional physical space, since at any given point the stars may have arbitrary velocities.

The vector field f has the important property:

div f = 0 (24)

which is easily proved:

div f = ∇ · f =
∂fx

∂x
+

∂fy

∂y
+

∂fz

∂z
+

∂fu

∂u
+

∂fv

∂v
+

∂fw

∂w
+

∂fm

∂m

where fx, . . . are the components of f . But fx = u, and thus: ∂fx/∂x = 0 (Note: u and x
are independent coordinates in phase space). Likewise for the two following terms. Moreover,
fu = −∂U/∂x depends only on x, y, z, and thus: ∂fu/∂u = 0. Likewise for the two following
terms. Finally, fm ≡ 0. Hence each of the terms individually equals zero.
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Geometric interpretation: The ensemble of representative points
behaves like an incompressible fluid. Consider a volume V0 (with
seven dimensions) at time t0. At some later time t1 the points that
were inside V0 have moved and now occupy a volume V1. But it is
a fact of geometry that, if the flow of points is divergence free, i.e.,
div f = 0, then V1 = V0. The volume may have changed shape, but
its measure is unchanged. Thus:

Phase space volumes are conserved during the motion of the system.

Let us also consider the stars, whose points were inside V0 at time t0. We denote their
number by n. At time t1 these stars, and only these, yield points within V1. This follows from
the fact that phase space trajectories cannot cross, when the motion is governed by a smooth
potential. The value of Ψ in V0 at time t0 is n/V0, and the value of Ψ in V1 at time t1 is n/V1.
These two values are identical, and thus we have the following fundamental result:

The value of Ψ is constant along phase space trajectories.

The last statement is called the Liouville theorem.

We may also formulate the above arguments by means of equations. The principle of mass
conservation can be written for any fluid:

∂Ψ

∂t
+ div (fΨ) = 0

Developing the second term, we get:

∂Ψ

∂t
+ f · ∇Ψ + Ψ div f = 0

The third term vanishes according to the above result. If we develop the scalar product, we
get:

∂Ψ

∂t
+ fx

∂Ψ

∂x
+ · · · + fm

∂Ψ

∂m
= 0, i .e. :

∂Ψ

∂t
+ u

∂Ψ

∂x
+ v

∂Ψ

∂y
+ w

∂Ψ

∂z
− ∂U

∂x

∂Ψ

∂u
− ∂U

∂y

∂Ψ

∂v
− ∂U

∂z

∂Ψ

∂w
= 0 (25)

which is called the Liouville equation or the collision-free Boltzmann equation. The
meaning of the term ‘collision-free’ will be explained in the next subsection. This equation
expresses mathematically the fact that Ψ is constant when following the motion. Specifically,
the time variation of Ψ, when following the motion, is given by:

d

dt
Ψ(x, y, z, u, v, w,m, t) =

∂Ψ

∂x

dx

dt
+

∂Ψ

∂y

dy

dt
+ · · · + ∂Ψ

∂m

dm

dt
+

∂Ψ

∂t

i.e., the above expression.
The Liouville equation along with Eqs. (20) and (21) allow us (still, in principle) to compute

the time evolution of the distribution function Ψ starting from a given initial condition. In
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specific terms, if we know Ψ at t = t0, we can derive ρ and then U , thus yielding ∂Ψ/∂t, from
which we can compute Ψ at the following moment t0 + dt, etc.

In conclusion: When we replace the exact description of the system (as given by all the
coordinates) by the statistical description in terms of the distribution function, the set of
Newtonian equations of motion is replaced by the three above equations: the density equation,
the Poisson equation, and the Liouville equation.

1.4.4 The effects of close encounters

In practice, our definition of the distribution function is not entirely satisfactory. Let us divide
the phase space into small cells and count the stars in each cell in order to estimate Ψ. In order
for Ψ to be well determined, we need a sufficient number of cells – say, at least 10 intervals
along each coordinate axis. So we may use 10 intervals of x, 10 intervals of y, . . ., up to m.
With seven dimensions we thus get 107 cells. Moreover, we do not want the values of Ψ to be
too much affected by statistical noise. In order to get Ψ to a statistical accuracy of ∼ 10%, we
need ∼ 100 points per cell.

In summary, we need at least ∼ 109 stars, and this is just to get a crude picture of Ψ. In
reality stellar systems often contain much fewer stars. Actually, the picture used for Ψ comes
from kinetic gas theory. In that case the number of particles is ∼ 1024, and thus Ψ is well
determined. But within stellar dynamics we may ask if the definition is indeed meaningful. It
is at least not rigorous!

A way out might be to leave the concept of phase space density in favour of the probability

to find a star at any particular place. This means to use, for each star i, a function Fi defined
so that:

Fi(x, y, z, u, v, w,m, t) dxdy · · · dm

is the probability for the star to find itself in the volume element dxdy · · · dm around the point
(x, y, . . . ,m). We may write Fi(τ, t) dτ , where τ represents the set of seven coordinates, and dτ
is the 7-dimensional volume element. The integral of each such probability function is of course
unity, and there are N functions, one for each star.

For a theoretician such probability functions have the advantage of being rigorously defined
independent of the number of stars in the system. But of course, in practice the probabilities
have to be measured using a finite number of stars, so the practical problem cannot be escaped.
Let us instead use the probability functions to illustrate the effects of direct interactions between
individual stars, arising from close encounters.

The N functions Fi are not enough to describe the system completely. For instance, the
probability that star i is in a volume dτ around τ and star j is in a volume dτ ′ around τ ′ would
be equal to the product of Fi(τ, t)dτ and Fj(τ

′, t)dτ ′ if and only if the locations of the two stars
were independent of each other. Thus, if we introduce the double probability function Fij, we
can write:

Fij = Fi Fj + εij (26)

Here εij is the correlation term. It would be zero, if there was no correlation between stars i and
j. One can show that the size of the correlation term is generally dictated by: εij/FiFj ∼ 1/N ,
i.e., if the number of stars is large, the correlations are generally weak. Thus, in this case, stars
move nearly independent of each other.

This has to do with the smoothness of the potential function. The stars feel each others’
presence, when they pass close and thus enter into each others’ potential wells, and their motions
are deflected. In sparse systems the potential is not very smooth, and the actual positions of
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the individual stars are important for determining the acceleration that any star experiences.
But when the systems contain enormous numbers of stars, the smoothed potential gives quite
a good description.

In fact, stellar dynamics can be divided into two parts that are very different from each
other. The first part is relevant when considering the systems over short enough time scales
that close encounters can be neglected, the correlation term is zero, and stars move independent
of each other. In this case the smoothed density and potential functions are relevant, and the
collision-free Boltzmann equation can be used. Alternatively, one can write down corresponding
equations for the probability functions, and higher-order multiple functions are easily obtained
from the first-order ones by utilizing Eq. (26) and neglecting the ε terms.

The second part is much more complicated. This is where the evolution of the system is
governed by effects of close encounters – so-called relaxation effects. One way to describe
this is to say that the correlation terms can no longer be neglected. They may be small, but
they have a cumulative effect over a long time, so that the probability functions evolve in a
distinctly different way. Another way to describe it is to realize that there are singularities
in the potential function corresponding to the potential wells of individual stars, and when a
star passes through such a well, its motion is affected by a deflection of its velocity vector.
This happens very quickly, so the star effectively “jumps” from one phase space trajectory to
another one. The corresponding thing of course happens to the other star, so both stars are
jumping.

Thus the Liouville equation is no longer valid, because stars are able to jump into and out
of any phase space volume because of close encounters – or collisions, as they are sometimes
erroneously referred to. If we want to take those effects into account while using the statistical
theory, we should replace 0 in the right-hand member of Eq. (25) by

(

∂Ψ

∂t

)

coll

,

and the expression for this extra term is unfortunately complicated. The critical time scale,
over which relaxation effects become important for a stellar system, is called the relaxation

time.
In the following we shall deal, in turn, with the dynamics of collision-free and collisional

systems.
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2 Collision-free systems

2.1 Dynamical mixing

The first question we ask is about time scales. In particular, what is the time typically required
for a stellar system to change its distribution function considerably? More specifically, if a
system starts from a configuration that is not in virial equilibrium, how long does it take for
the distribution function to approach the steady state?

Essentially, it is a question of individual stars traversing the system and thereby exchanging
their potential and kinetic energies. Therefore, the fundamental time scale that we look for
must be the one of orbital motion within the system. This can be expressed by using the mean

radius 〈r〉 (cf. Sect. 1.3.3) and the mean velocity, which we can take to be: 〈v〉 '
√

〈v2〉. We
thus get:

tc =
〈r〉
〈v〉 (27)

and tc is usually called the crossing time, i.e., the time it takes an average star to cross the
system.

We use the practical form of the virial theorem in Eq. (17), and hence obtain the crossing
time as:

tc =

√

2〈r〉3
GM

(28)

as a function of the mass and size of the system. Using the previous estimates for open and
globular clusters, we derive tc ∼ 1 Myr in both cases. This is in general much less than the age
of these clusters, so we conclude that they should have had more than time enough to evolve
into equilibrium configurations. Indeed, the regular shapes observed in particular for globulars
verify this expectation.

Now, let us illustrate the phenomenon of phase space mixing that is intimately connected
with the settling into a steady state. For such an illustration we take a very simple example,
i.e., a system whose motions occur in only one dimension (of course, not realistic at all!) If
we do not care about the masses of the objects, the phase space is then 2-dimensional, and we
denote the coordinates by x and u.

Let us further assume that the potential U is given and has the
shape indicated to the left. This corresponds to an attractive
force toward the origin, and the system of our example is
similar to that of a pendulum. The objects of this system will
therefore oscillate around the origin with different amplitudes,
periods and phases. The orbit in this case is a rectilinear
segment along the x axis.

The trajectory, on the other hand, is an oval curve in the (x, u)
plane. If we start with x > 0, u = 0, the object starts moving to
the left with u < 0 while x decreases, and so on. The trajectory
becomes a closed curve because of energy conservation. Starting
from another point, we get a different trajectory with the same
general appearance – an oval pattern described in the same way.
The periods of different trajectories will in general be different.
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Let us now consider a parcel of objects (“stars”) that ini-
tially have approximately the same position and velocity –
they cover a small area in phase space. In the course of time
this parcel will move in the direction of the arrows, and thus
the state is clearly non-stationary. As it moves, it also gets
deformed due to the differences in period between different
stars. Note that, in spite of this deformation, the area of the
parcel remains the same according to the Liouville theorem.
After one full revolution, it may have become significantly
extended, and after another few revolutions the extension be-
comes extreme. Eventually the parcel will look like a narrow,
winding spiral.

As this spiral continues to wind, the different rounds get squeezed
closer together, and since the number of stars is finite, after some
time it becomes in practice impossible to separate the rounds from
each other. For all practical purposes, the distribution of stars
looks uniform within the band defined by the initial parcel. We
have a distribution function that is constant along the trajectories
and does not change with time. This is the stationary state that
corresponds to “virial equilibrium”.

We can learn from this example that the establishment of a stationary state is accomplished
by phase space mixing, which may be loosely called “virialization”. After some number of
crossing times, we may consider that any stellar system will be essentially in a stationary state,
which is determined by how quantities like the energies and angular momenta are distributed.
For practical purposes we may take 30 crossing times as a maximum in order to reach this
equilibrium. In the remainder of this chapter we will limit ourselves strictly to equilibrium
configurations.

2.2 The Jeans theorem

Let us first make use of the fact that we are neglecting close encounters by eliminating the
stellar masses from the distribution function. We define the reduced distribution function

as:
ϕ =

∫ ∞

0
Ψmdm

The density equation can now be written:

ρ =
∫ ∫ ∫ +∞

−∞
ϕdudvdw

and the Poisson equation – Eq. (21) – remains unchanged. The Liouville equation can be
multiplied by mdm and integrated from 0 to ∞, yielding the same equation featuring ϕ instead
of Ψ:

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
+ w

∂ϕ

∂z
− ∂U

∂x

∂ϕ

∂u
− ∂U

∂y

∂ϕ

∂v
− ∂U

∂z

∂ϕ

∂w
= 0 (29)

Note that ϕ physically means the mass density in a 6-dimensional reduced phase space
(x, y, z, u, v, w). Also note that getting rid of the masses was easy with the collision-free Boltz-
mann equation, but it would have been impossible, if the ‘collision term’ due to close encounters
had been retained in the right-hand member. This term would have featured the stellar masses
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in a complicated way. A curious fact is that, by eliminating the masses in a collision-free system
as above, we have shown that it does not matter at all, how the mass is distributed between
different stars, as long as the total mass per unit volume is conserved. The dynamics is the
same, whether we deal with stars or planets or dust grains!

Now return to the equations governing the motion of a star:

dx

dt
= u ; . . . ;

du

dt
= −∂U

∂x
; . . .

and assume that U(x, y, z, t) is known. This is a sixth order system of differential equations.
Let us repeat a few mathematical concepts concerning such a system. An integral of the

system is a function I(x, y, z, u, v, w, t), which has a constant value, when inserting an arbitrary
solution x(t), . . . , w(t) of the system. Several integrals I1, I2, . . . , In are called independent, if
there is no relation g(I1, I2, . . . , In) ≡ 0 between them. For a system of order γ one may find γ
independent integrals, but no more. In the present case we have γ = 6 and thus there are six
independent integrals I1, . . . , I6.

Now let I be any arbitrary integral. The seven integrals I1, . . . , I6, I cannot be independent,
and thus there is a relation:

g(I1, . . . , I6, I) ≡ 0

which can be solved for I:
I = f(I1, . . . , I6) (30)

Hence every integral is a function of the six independent integrals. And conversely, every such
function is an integral – since each of the arguments is constant, the function is constant too.
Therefore, Eq. (30) is the general expression for all integrals of the system, if f is an arbitrary
function. We see that it suffices to find six independent integrals in order to know them all.

We have by definition: I[x(t), . . . , w(t), t] ≡ const., if x(t) etc. describe the motion of any
star. If we differentiate, we obtain:

∂I

∂x

dx

dt
+ · · · + ∂I

∂w

dw

dt
+

∂I

∂t
= 0

or, using the equations of motion:

∂I

∂x
u + · · · − ∂I

∂u

∂U

∂x
− · · · + ∂I

∂t
= 0

But this is exactly the Liouville equation, if we replace I by ϕ. In other words: The distri-

bution function is an integral of the equations of motion. Of course, we had already
seen that ϕ is conserved, when following the motion, so indeed it has to be an integral.

Summarizing:
The general solution of the Liouville equation is:

ϕ = f(I1, I2, . . . , I6) (31)

where the I’s are six independent integrals of the equations of motion and f is an arbitrary
function. This result is known as the Jeans theorem.

Note that in the formal expressions for I, we have not constrained them to be explicitly
independent of time. However, we are interested in stellar systems that have reached equilibrium
and are in stationary states. Hence we consider systems for which ∂ϕ/∂t = 0. In this case ρ
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and U are also independent of time, and we shall show that the six independent integrals can
be chosen in such a way that only one of them depends explicitly on time.

Proof: We can eliminate dt between the equations of motion:

dx

u
=

dy

v
=

dz

w
=

du

−∂U
∂x

=
dv

−∂U
∂y

=
dw

−∂U
∂z

Since U does not depend on time, this system of equations is independent of time. These are
the equations of the trajectory – i.e., they determine the curves followed by the representative
points in phase space. We may take any of the variables, e.g., x, as independent variable and
the others as dependent, so we can write the system:

dy

dx
=

v

u
;

dz

dx
=

w

u
; . . .

and we see that this system is of fifth order.
Hence there are five independent integrals, i.e., quantities Ii(x, y, z, u, v, w) that remain

constant along any trajectory. But a quantity that is explicitly independent of time and constant
along a trajectory is obviously also constant, when following the motion – thus, these five time-
independent integrals are also integrals of the equations of motion. Q.E.D.

Among the six integrals we thus distinguish five (I1, . . . , I5) that are explicitly independent
of time and are called conservative integrals, and one integral (I6) that does depend on time
and is called a non-conservative integral. But now we return to the requirement that ϕ
should be independent of time. A necessary and sufficient condition for this is that ϕ does not
depend on I6, since only I6 depends on time. Thus we have the following result:

In a stationary system the general form of the distribution function is:

ϕ = f(I1, I2, . . . , I5) (32)

where the I’s are five independent, conservative integrals of the equations of motion, and f is
an arbitrary function. This specialized version of the Jeans theorem is the one that is most
used in practice.

In terms of geometry, consider a conservative integral I(x, . . . , w). The equation I = c (a
constant) thus defines a 5-dimensional hyperplane within the 6-dimensional phase space. If
we let c take all possible values, we get a family of hyperplanes, which fills up the whole phase
space. If we have γ equations: I1(x, . . . , w) = c1, . . ., Iγ(x, . . . , w) = cγ – each one defining a
hyperplane, then the intersection of these hyperplanes becomes a subspace of 6−γ dimensions.
Specifically, if γ = 5, we have a one-dimensional subspace, i.e., a curve.

Now, consider a trajectory. Each one of the independent, conservative integrals has a
constant value along this trajectory. We thus have: I1 = c1, . . ., I5 = c5 at all points on the
trajectory. We conclude that the trajectory is part of the intersection of the five hyperplanes
I1 = c1, . . ., I5 = c5. We say ‘part of’, because the trajectory is one curve, but the intersection
may consist of two or more separate curves.

2.2.1 Isolating and non-isolating integrals

We shall now see that there is no equality between conservative integrals. They are actually
of two kinds with very different properties, called isolating integrals and non-isolating

integrals. We will make a simple illustration using a system moving in two dimensions (x, y).
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The phase space thus has four dimensions, and we have four independent integrals of the
equations of motion, whereof three are conservative. Let us take a simple form for the potential:

U =
1

2

(

a2x2 + b2y2
)

where a and b are constants. The equations of motion are:

ẋ = u ẏ = v

u̇ = −a2x v̇ = −b2y

These are easily integrated, and the general solution is:

x = xo sin a(t − t1)

y = yo sin b(t − t2)

u = axo cos a(t − t1)

v = byo cos b(t − t2)

where xo, yo, t1 and t2 are four integration constants. We easily find four independent integrals:

I1 = xo = ±
√

x2 + u2/a2

I2 = yo = ±
√

y2 + v2/b2

I3 = t1 = t − 1

a
arctan(ax/u)

I4 = t2 = t − 1

b
arctan(by/v)

These are functions of x, y, u, v, t. Note that there is a close connection between integrals and
integration constants.

Only two of the above integrals are conservative, but we can easily produce a third one from
them:

I ′
3 = I4 − I3 =

1

a
arctan(ax/u) − 1

b
arctan(by/v)

The Jeans theorem tells us that the general form of the distribution function is ϕ = f(I1, I2, I
′
3),

f being an arbitrary function.
But when scrutinizing the integral I ′

3, we find that it has rather peculiar properties. Recall
that each arctan function has an infinity of values, being defined only disregarding multiples
kπ (k is an arbitrary integer). If we thus let I ′

3,0 be one special value of I ′
3, the others are given

by:

I ′
3 = I ′

3,0 +
kπ

a
+

`π

b

where k and ` are arbitrary integers.
At any given point in phase space, I ′

3 thus has an infinity of values. If the ratio a/b is
irrational, the set of these values is everywhere compact, i.e., in whatever interval, no matter
how small, we can always find values of I ′

3. Conversely, consider the equation I ′
3 = c′3 (a

constant). In principle, this defines a 3-dimensional hyperplane in the 4-dimensional phase
space. But if we solve this equation for one of the variables, e.g., x, we get:

x =
u

a
tan

[

a
(

c′3 +
1

b
arctan(by/v)

)]
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and – once again – since the arctan function has an infinity of
values, and if b/a is irrational (which is the general case), we
get an infinity of values of x, which is everywhere compact.
This means, by a 2-dimensional analogy, that the hyperplane
consists of an infinite set of “sheets” situated infinitely close to
each other, somewhat like the pages of a book. These sheets
fill up the whole phase space. Thus, in practice, the subspace
I ′
3 = c′3 coincides with phase space, i.e., the condition I ′

3 =
c′3 is like no condition at all. We call the integral I ′

3 non-

isolating.

Definition: An integral I is called non-isolating, if the set of points satisfying I = c
is everywhere compact in phase space.

On the other hand, the other integrals of the above example define “normal” hyperplanes
consisting of separate sheets. For instance, I1 = c1 gives:

x = ±
√

c2
1 − a2u2

i.e., two sheets. These are isolating integrals.
We have seen that a trajectory is part of the intersection of the three hyperplanes I1 = c1;

I2 = c2; I ′
3 = c′3. In principle, this intersection should be a curve. But since I ′

3 is non-isolating,
we have in practice only two hyperplanes. Their intersection is a subspace with dimension
4 − 2 = 2, i.e., a surface.
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Will the trajectory cover this surface? Yes, it will, as
demonstrated by the orbit plotted to the left for one
particular case. This orbit arises from the combination
of a sinusoidal movement in x and one in y with different
periods – a Lissajous figure. If b/a is irrational, it
will eventually fill the whole rectangle. But the orbit
is actually a projection of the trajectory onto the (x, y)
plane, so if it fills up a surface, this must be because the
trajectory also fills up a surface.

Hence, in practice, everything appears as if the non-isolating integral did not exist. In fact,
one can easily prove that the distribution function ϕ, which according to the previous results
should have the general form for a stationary state: ϕ = f(I1, I2, I

′
3), in fact cannot depend on

I ′
3.

One might think that we have come across a very special case and that the non-isolating
integrals are exceptional in occurrence. But this is not so, as we shall see later on – by contrast,
they appear in almost all situations. Thus we have the following, final version of the Jeans
theorem:

In a stationary state, the general form of the distribution function is ϕ = f(I1, . . . , Iγ),
where the I’s are the independent, conservative and isolating integrals of the equa-

tions of motion.

2.2.2 The energy integral

From what we have just seen, we are forced to look for conservative and isolating integrals in
order to build models of stationary systems, i.e., select appropriate distribution functions. But,
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alas, there is only one such integral that is generally known! This is the total energy of a star
per unit mass:

E =
1

2

(

u2 + v2 + w2
)

+ U(x, y, z) (33)

Note that the system is stationary, and therefore the time does not appear in the potential
energy term. We easily verify that this is an integral. The requirement is:

u
∂E
∂x

+ · · · − ∂U

∂x

∂E
∂u

− · · · = 0

i.e., using Eq. (33),

u
∂U

∂x
+ · · · − ∂U

∂x
u − · · · = 0

which is obviously satisfied. As we easily see, this integral is both conservative and isolating.
In the general case, unfortunately, we know next to nothing about the remaining four

conservative integrals. Long ago a hypothesis was advanced, according to which these integrals
are in general non-isolating – this is the ergodic hypothesis, borrowed from the statistical
theory of gases. But in fact it cannot be true, at least not for an isolated system. To see this,
suppose that there is no other conservative, isolating integral than E . Then we have necessarily:
ϕ = f(E). But in such a case it can be shown from the symmetric appearance of the velocity
components in E that the position coordinates have to appear symmetrically too, so the system
has spherical symmetry. However, we shall soon see that such systems have three more isolating
integrals, so we have reached a contradiction.

In the following we will investigate a number of cases, where the potential has some special,
symmetric form and which seem to be of practical interest for real stellar systems.

In fact, many systems exhibit a rather striking spherical symmetry. This holds for
globular clusters as well as old open clusters, and to some extent for galaxy clusters. Even
more general is the occurrence of rotational symmetry, of which spherical symmetry is a
special case. The fact that most real systems exhibit rotational symmetry can be intuitively
understood as a result of dynamical mixing, which tends to reduce any irregularities and give
maximum symmetry to the system. But in the presence of rotation, and thus a conserved total
angular momentum, this vector will enforce a privileged direction to the system. The maximum
symmetry that is consistent with such a privileged direction is rotational symmetry.

But this is not a proof. In fact, it has been found that a stationary system does not
necessarily possess any axis of symmetry. Triaxial models can be constructed for elliptical
galaxies in a stationary state, and real galaxies may also have such shapes.

2.3 Spherical symmetry

Globular clusters are prime examples of stellar systems
with spherical symmetry. In reality, of course, nothing
is perfect, and we do not need to take for granted that
all globulars are perfectly spherical in shape. But dy-
namical models that assume spherical symmetry will at
least be good approximations, and this Section will deal
with the construction of such models. The picture to the
left shows Messier 22 as a typical example of a globular
cluster in our Galaxy.
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2.3.1 Integrals

We assume that all the basic quantities have spherical symmetry about the origin, which is of
course at the center of the system. For instance, the density – generally an arbitrary function
of x, y, z – shall now be constant on each sphere centered on the origin, i.e., we have ρ = ρ(r),
where r =

√
x2 + y2 + z2 is the distance from the origin. Likewise with the potential: U = U(r).

Thus the force acting on a star is always directed toward the origin. By consequence, the angular
momentum about the origin per unit mass is constant, since we have:

A = r × ṙ

and thus:
dA

dt
= ṙ × ṙ + r × r̈ = 0

The three components of the vector A hence remain constant in the course of the motion and
provide three integrals. So, in addition to the energy integral I1 = E as given by Eq. (33), we
have:

I2 = Ax = yw − zv

I3 = Ay = zu − xw

I4 = Az = xv − yu

We easily verify that these quantities are integrals. For instance:

u
∂Ax

∂x
+ · · · − ∂U

∂x

∂Ax

∂u
− · · · = 0

can be written:

vw − wv +
∂U

∂y
z − ∂U

∂z
y = 0

But we have:
∂U

∂y
=

dU

dr
· ∂r

∂y
=

dU

dr
· y

r

and likewise for ∂U/∂z, so the equality is obvious.

These integrals are seen to be conservative and isolating. One can also verify that they are
independent internally as well as of E . Thus we know all conservative integrals except I5. We
shall see that this is in general non-isolating. Therefore we can write the reduced distribution
function:

ϕ = f(E , Ax, Ay, Az)

But the spherical symmetry tells us that ϕ must be the same for any given absolute value of
the angular momentum independent of direction. In other words, ϕ may only depend on the
absolute value A of the angular momentum:

A = |A| =
√

A2
x + A2

y + A2
z

Hence:
ϕ = f(E , A) (34)
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2.3.2 Stellar orbits

The vector A is always perpendicular to r. Therefore, A = const. implies that the motion
stays in a plane orthogonal to A. So we conclude that stellar orbits are planar.

Let us take a polar coordinate frame in the plane of the
orbit. The velocity vector has two components:

radial velocity vr = ṙ

transverse velocity vt = rθ̇

The energy integral can be written in polar coordinates:

E = U(r) +
1

2

(

v2
r + v2

t

)

= U(r) +
1

2

(

ṙ2 + r2θ̇2
)

(35)

and the absolute value of the angular momentum:

A = rvt = r2θ̇ (36)

We can solve for θ̇ and ṙ from these equations:







θ̇=A/r2

ṙ=±
√

2E − 2U(r) − A2/r2

Concerning integrals of motion, two of them correspond to the angles defining the plane of
the orbit. E and A are two of the four remaining ones, and we can now easily integrate the
above equations to find the last two. We start by the second one, which only features r and t:

t = to +
∫ dr

±
√

2E − 2U(r) − A2/r2
(37)

Then we can divide the first equation by the second, thus eliminating dt and obtaining an
equation for the dependence between θ and r. Integrating this, we get:

θ = θo + A
∫ dr

±r2
√

2E − 2U(r) − A2/r2
(38)

This completes the solution of the problem, and the last two integrals are the new constants of
integration: to and θo. We see from Eq. (38) that θo is conservative, while Eq. (37) shows that
to is not. Both of them can be given the value zero by a proper choice of the origin of time and
of angle in the orbital plane, but we are not free to assign special values to E and A in such a
manner. In fact, they determine the size and shape of the orbit.

The equation for ṙ shows that we must have:

2E − 2U(r) − A2

r2
≥ 0

i.e.,

2U(r) +
A2

r2
≤ 2E (39)
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The smoothed potential function should look roughly as
shown to the left, with a minimum at the center and slowly ris-
ing toward zero as the distance grows toward infinity. Thus, as
concerns the curve f(r) = 2U(r)+A2/r2, the second term will
dominate close to the origin, but the first term will dominate
at very large distances, where we can expect U(r) ∝ −1/r.
Somewhere in between there is a minimum. This is the gen-
eral behaviour of the curve.

If we assume a given value of A, and thus a given curve as
shown above, the value of E determines the limits of the orbit.
For the value indicated, we see that the condition of Eq. (39)
is satisfied only for distances from r1 to r2. At these special
values, the radial velocity vanishes. We easily realize that the
variation of r with time is a periodic oscillation between the
extreme values r1 and r2.

If we combine this oscillation with a steady rotation in θ, as
given by Eq. (38), we obtain the orbit. This has the general
form of a rosette, drawn within a circular annulus with radii
r1 and r2. One can show that the orbital segments A2A3 and
A1A2 are symmetric with respect to the line A2O, etc.

The angle α (A1OA2) in general does not take an even value, but it can be shown to be
in the interval [π/2, π]. If the ratio α/π is rational, the orbit will close upon itself (e.g., in the
case indicated in the above figure, where α = 3π/4). But in general this ratio is irrational, so
the orbit never repeats and gradually fills up the whole circular annulus. This corresponds to
the existence of a non-isolating integral, as we have already foreseen.

In fact there are only two shapes of the potential U(r), for which all orbits are closed,
namely, the following ones.

• Homogeneous system: ρ(r) = const, from which we
may derive: U(r) = U(0) + ar2 with a = const. In this case
the orbits are ellipses with O at their centres, and α = π/2
for all these orbits.

• Point mass system: The whole mass is gathered in the
centre, so ρ(r) = δ(r), where δ is the Dirac delta function.
Thus U(r) = −GM/r for the two-body problem. All the
orbits are ellipses with O at one of their foci, and α = π.
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These two cases do not occur in reality, because in real stellar systems the mass is dis-
tributed in space, and the density decreases outward. However, the first case may serve as an
approximation for the central part of a stellar cluster, i.e., for stars moving at small r, and the
second may serve as an approximation for stars moving at large r in the outskirts of the cluster.
It appears that in real stellar clusters α should vary continuously from π/2 near the center to
π for distant orbits.

2.3.3 Plummer model

We have seen that ϕ = f(E , A). Let us suppose that f is given with some arbitrary expression,
and then try to derive ρ and U . We have:

ϕ = f

[

U(r) +
v2

r + v2
t

2
, rvt

]

If U(r) were known, ϕ would be a known function of r, vr and vt. But since this is not the
case, we instead write:

ϕ = g(U, r, vr, vt)

with the intention to substitute U = U(r) later on. As f is given, g is also given. We then
obtain the density from:

ρ =
∫ ∫ ∫

ϕdudvdw = 2π
∫ ∫

g dvrdvt

so we can write:
ρ = h(U, r)

where h can also be computed from the given expression for f . We insert this into the Poisson
equation, which due to spherical symmetry may be written:

d2U

dr2
+

2

r

dU

dr
= 4πGh(U, r) (40)

This is an ordinary differential equation for U(r), which may be solved. Due to the boundary
condition U(∞) = 0, the solution is generally unique. If we substitute this solution into g and h,
we thus obtain ϕ(r, vr, vt) as well as ρ(r). We then have a model satisfying all the fundamental
equations.

We started out with an arbitrary function f , so in a sense there are as many models for a
spherical system as there are functions of two variables! However, some functions are forbidden
because f has to be non-negative everywhere, and some are unphysical since f should be zero
for positive energies (such stars would quickly escape from the system). In spite of this, a large
number of models (some even unphysical) have been proposed by different authors. We shall
only dwell upon the Plummer model, which is used very frequently and was historically the
first. In this case our ansatz is:

ϕ =

{

a(−E)7/2; E < 0
0 ; E ≥ 0

(41)

where a is a positive constant. Note that this model assumes a distribution function that does
not depend on angular momentum but only on energy. In this case the g function has a simple
expression:

ϕ = g(U, V ) = a(−U − V 2/2)7/2
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where V is the absolute value of the total velocity, which is limited to values less than V` in
order to avoid positive energies. We get:

ρ =
∫ ∫ ∫

ϕdudvdw = 4π
∫

ϕV 2 dV

using spherical coordinates in velocity space, and this can be expressed:

ρ = 4π
∫ V`

0
a

(

−U − V 2

2

)7/2

V 2 dV

with

V` =

{ √
−2U ; U < 0
0 ; U ≥ 0

We put:

V = τ
√
−U ⇒ ρ = 4πa(−U)5

∫

√
2

0

(

1 − τ 2

2

)7/2

τ 2 dτ

The integral has a definite value, and thus: ρ = C(−U)5. The Poisson equation then yields:

d2U

dr2
+

2

r

dU

dr
=

{

4πGC(−U)5; U < 0
0 ; U ≥ 0

This equation is known also from the theory of the interior structure of stars. The solution is
called a polytrope of index 5. It is expressed analytically:

U =
Uo

(1 + r2/r2
o)

1/2

where Uo and ro are constants, which yields:

ρ =
ρo

(1 + r2/r2
o)

5/2
(42)

with

ρo = const. = − 3Uo

4πGr2
o

2.3.4 Other models

The Plummer model is characterized by the simple power-law dependences as described above
and provides a reasonable fit to the observed structure of stellar clusters. But we also need
to mention another category of models, which has a completely different physical background.
Generally speaking, we can call these isothermal models. We will come to the explanation
in later Sections, but the underlying idea is that many clusters may be collisionally evolved or
thermalized, so that a multitude of close encounters between stars have set up a characteristic
energy distribution reminiscent of the Boltzmann distribution of kinetic gas theory. Thus the
repartition of energies is like that of an equilibrium gas and can be described by means of a
unique temperature.

In the simplest of such models one puts:

ϕ = a · e−bE (43)
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with two constants a and b. Since this yields

ϕ = a · e−bU · e−bV 2/2,

we see that the velocity distribution is Maxwellian everywhere with a constant dispersion. This
shows the analogy with the molecules of a gas and that the ‘temperature’ is constant everywhere
– thus the name of this kind of model.

However, it can be shown that the above assumption leads to unrealistic consequences. In
particular, the potential function derived from Eq. (43) diverges for r → ∞ and the total mass
becomes infinite. The reason is that we have allowed not only negative energies but positive
ones as well, whilst in a real system the size is limited amd the stars with positive energies have
already escaped and are no longer part of the system.

There are several kinds of modifications in common use, where this inconvenience has been
removed by cutting the energy distribution such that positive energies are excluded. A typical
example is the King model introduced by the stellar dynamicist Ivan King, which uses:

ϕ = a
{

eb(Et−E) − 1
}

; E < Et (44)

Here Et is a “tidal energy”, corresponding to a tidal radius of the cluster. As we shall see later,
this comes from the fact that the tidal force of the Galactic potential, into which a stellar
cluster is immersed, sets a limit to the size of the cluster. Stars that venture too far away get
stripped away from the cluster by this tidal force.

Another kind of model building on the isothermal assumption is called the Eddington model
after Arthur Eddington. Here the modification consists in accounting also for the angular
momentum integral by writing:

ϕ = a · e−bE−cA2

(45)

This is unrealistic in the same way as the above isothermal model, so one may modify it similar
to what was done in the King model. But the essential property of the Eddington model is that
the velocity distribution is no longer isotropic (like in a gas). It can easily be shown that, for
positive values of b and c, the Gaussian distribution of the radial component (i.e., velocities in
the inward or outward directions with respect to the center of the cluster) is larger than those
of the transverse components. The reason for such an asymmetry could be due to the way the
cluster was formed, e.g., by radial collapse of a parent gas cloud.

2.4 Plane-parallel systems

The picture to the left shows the disk galaxy NGC 4565,
seen edge-on. Such systems exhibit another kind of sym-
metry, where there seems to be a central plane, and the
distribution of stars seems symmetric with respect to
that plane. Furthermore, considering a local region of
the disk, the number density of stars does not seem to
vary along the disk but only perpendicular to it. This
means that we have plane-parallel geometry. Our own
Galaxy is of course a disk galaxy too, and one often
uses this plane-parallel geometry to study the dynamics
of stellar motions perpendicular to the Galactic disk in
the solar neighbourhood.
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2.4.1 Integrals

We assume that ϕ, ρ and U depend only on z but not on x
or y:

ρ = ρ(z) ; U = U(z)

and for a stationary system:

ϕ = ϕ(z, u, v, w)

The density and potential are constants on each horizontal
plane.

Let us integrate the distribution function over u and v:

ϕ1(z, w) =
∫ ∫

ϕ du dv

We then have:
ρ =

∫

ϕ1 dw

The Poisson equation is written:

∇
2U =

∂2U

∂z2
= 4πGρ

and the Liouville equation reduces to:

w
∂ϕ1

∂z
− ∂U

∂z

∂ϕ1

∂w
= 0

Thus, by eliminating the variations in the x and y directions, we have got a one-dimensional
motion with a two-dimensional phase space. There are two independent integrals, whereof one is
conservative. But we already know this integral, i.e., the energy integral, whose one-dimensional
appearance is:

E = U(z) +
w2

2
Hence we immediately have the general solution:

ϕ1 = f(E) (46)

where f is an arbitrary function. There are no non-isolating integrals.

2.4.2 Stellar orbits

Since U = U(z), the force acting on a star is vertical. Thus the horizontal velocity components
u and v are constants – the projection of the motion onto the (x, y) plane is uniform and
rectilinear. The vertical motion is what interests us, and this is given by:

ż = w ; ẇ = −∂U

∂z
or : z̈ = −∂U

∂z

The Poisson equation shows that U(z) is a concave function;
it has a unique minimum at z = zo. Thus we have a restoring
force toward the plane z = zo, and the motion consists of
oscillations around this plane. In reality, of course, zo should
correspond to the central plane of the disk, and we can take
it to be zero.
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To integrate the motion, we make use of the energy equa-
tion, which yields:

ż = ±
√

2E − 2U(z)

and hence:

t = to +
∫

dz

±
√

2E − 2U(z)

providing the relation between z and t. E and to are the two integration constants. We must
have: U < E , and hence z is confined between the two extrema z1 and z2. For these values the
vertical velocity vanishes. The motion is thus a periodic oscillation between z1 and z2.

2.4.3 An isothermal model

As an example of model construction in plane-parallel geometry, let us take the isothermal
model that we mentioned in the spherically symmetric case. We apply Eq. (43), this time
considering only the vertical motion, and we get:

ϕ1 = a · e−bU · e−bw2/2

Next we integrate this to derive the relation between density and potential:

ρ = a e−bU
∫ +∞

−∞
e−bw2/2 dw = a

√

2π

b
e−bU

and inserting this into the Poisson equation, we get:

∂2U

∂z2
= 4πGa

√

2π

b
e−bU

The general solution of this differential equation is:

U = Uo +
2

b
ln coth

z − zo

h
(47)

where zo and h are two integration constants, and Uo is a third constant, related to h by:

Uo =
1

2b
ln
(

8π3G2a2bh4
)

(48)

We can take zo = 0 without loss of generality, and the solution
for U(z) has the shape indicated to the right. We have U(0) =
Uo, and the function is symmetric so that U(−z) = U(z)
everywhere. For z → ∞ the hyperbolic cotangent function is
approximated by coth(z/h) ' ez/h/2, so that:

U ' Uo +
2

b
ln

1

2
+

2

bh
z

which describes the asymptotic behaviour seen in the figure. Note that this is the same problem
that was mentioned above for the spherically symmetric case – the isothermal system has an
infinite extent and a diverging gravitational potential. But in reality this is no problem in the
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present case, because the plane-parallel approximation can only be used for small distances
from the central plane, i.e., small values of |z|. We have to imagine that the real potential
function flattens out at large |z|, but this happens outside the region that we are interested in.
The density function obtained by using Eqs. (47) and (48) is:

ρ =
1

2πGbh2
· 1

coth2(z/h)
, (49)

and this is a quasi-Gaussian function with a relatively flat central peak and a very rapid decrease
at large distances.

The vertical acceleration −∂U/∂z vanishes in the central plane and is approximately propor-
tional to −z at small distances. Thus the vertical motions with small amplitude are practically
sinusoidal oscillations.

2.4.4 The local Galactic disk

The above-described isothermal model is a reasonable approximation to the local Galactic disk,
but it does not provide all the answers. In particular one needs to determine the scale height h
and the actual midplane density ρo. This has to be done using observations of stars. However,
the practical work involved complications that will now be described.

First of all, the census of nearby stars is not at all complete, and even if it were, one would
also have to include other possible contributors, like interstellar gas or even dark matter, which
of course we can not observe. The solution is to use a particular kind of stars as a tracer
population. These should be relatively common so as to be observable in large numbers, and
also relatively luminous in order to be observable at fairly large distances. Typical examples
may be F or K giants.

Observing the closest stars, e.g., the closest K giants, we can determine their distribution
of w velocities, and since the Sun is situated just a few parsecs from the Galactic midplane,
we can assume z = 0 in this case. Thus we get the local distribution function ϕ1K(0, w), from
which we derive the function fK(E). Then we use the following relation for the density:

ρK(z) =
∫

fK

[

U +
w2

2

]

dw = hK(U) (50)

The above integral can be evaluated for all values of U . Thus we determine the function hK ,
i.e., the relation between ρK and U . We now use observations of ρK(z), i.e., the fall-off of the
number density of K giants with |z|, and from this we derive U(z), i.e., the total gravitational
potential including all contributions. Finally, we may differentiate U(z) twice and, using the
Poisson equation, derive the variation of the total density ρ(z). This includes the local density
ρo.

This kind of analysis was pioneered in the 1930’s by Jan Oort, but even relatively recently
the observational material was not of sufficient quality to obtain accurate results. An example
is an in-depth study by John Bahcall in 1984, which gave ρo = 0.185±0.02 M�/pc3. By adding
up the mass of observed stars and interstellar material, one could only account for part of this
density, which led to the suspicion of a substantial amount of dark matter in the Galactic disk.
However, after the Hipparcos satellite led to a great improvement of the knowledge of stellar
distances and velocities in the 1990’s, a new analysis by Johan Holmberg and Chris Flynn in
2000 instead yielded ρo = 0.102±0.01 M�/pc3, thus effectively removing the need for any dark
matter in the local disk.
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2.5 Axial symmetry

Now assume that the system is axially symmetric, i.e., that the distribution function is invari-
able under rotation around a given axis.

Let us take a cylindrical coordinate frame (R, θ, z) as sketched
in the figure to the left. The density and potential are hence
functions ρ(R, z) and U(R, z), and the meridional plane is the
plane that passes through the given point and the z axis. An
immediate consequence of the axial symmetry of U is that the
force acting on any star is confined to the meridional plane,
but it does not have to point toward the origin, and in gen-
eral it does not. Hence the torque is perpendicular to the
meridional plane and in particular the z axis, so the angular
momentum component along the z axis (the z-component) is
conserved. Thus we have an integral:

Az = xv − yu = R2θ̇ (51)

2.5.1 The third integral

Apart from E and Az, no other integrals are known in the general case. A lot of effort has been
devoted to the question whether all three remaining conservative integrals are non-isolating, or
if one of them – usually called the third integral – may in fact be isolating. One important
piece of evidence has come from the velocity ellipsoid, i.e., an ellipsoidal figure in velocity
space, whose axes are proportional to the corresponding velocity dispersions. Such a figure
with axes oriented along the radial direction toward or away from the Galactic centre, the
transverse direction in the Galactic plane, and the normal direction perpendicular to the plane
has traditionally been used to describe the velocity distribution of stars in the solar neighbour-
hood. Different kinds of stars sampling different stellar populations turn out to have somewhat
different velocity ellipsoids. The mathematical expression for such a velocity distribution is:

f(u, v, w) ∝ exp

[

−
(

u2

2σ2
u

+
v2

2σ2
v

+
w2

2σ2
w

)]

(52)

where u, v and w are the radial, transverse and normal components of the velocity vector of a
star referred to the average motion of the whole population. The distribution is a combination
of three independent Gaussians, whose standard deviations (“velocity dispersions”) are denoted
by σu, σv and σw, respectively.

As seen in the above diagrams, the real distributions are only approximately Gaussian,
but the point to note is that the radial components – shown to the left – have a much larger

31



dispersion than the normal components – shown to the right (the transverse components are
shown in the middle). This is a clear indication that the third integral is isolating, at least as
far as the orbits of local stars are concerned. The argument goes as follows. Assume that E and
Az are the only two isolating integrals. Then, according to the Jeans theorem, the distribution
function is ϕ = f(E , Az). If we take the x axis to be along the Sun’s radial direction, and Ro

is the distance to the Galactic centre, we can write

ϕ = f
[

1

2

(

u2 + v2 + w2
)

+ U(Ro, 0), Rov
]

(53)

for stars close to the Sun. It is easily seen that u and w appear in a completely symmetric way
in Eq. (53), and therefore, in case we use an ellipsoidal distribution like in Eq. (52), we have
to put σu = σw so that the velocity ellipsoid has axial symmetry about the v axis. Thus the
observed inequality of the axes indicates that a third integral must influence the actual velocity
distribution.

Analytic expressions for this integral are known only for certain, special forms of the po-
tential. We have already encountered the case of spherical symmetry, where

U(R, z) = f(R2 + z2)

and Ay and Ax are also integrals. Another such case is a separable potential, where

U(R, z) = f(R) + g(z)

where f and g are arbitrary functions. We then have:

z̈ = −∂U

∂z
= −∂g

∂z
,

showing that the z motion can be integrated separately. The third integral is thus the energy
of the z motion:

Ez = g(z) +
1

2
w2,

which is sometimes called the Lindblad integral. It reminds us of the case of plane-parallel
geometry, treated in the preceding chapter. Thus, we see that there is a connection between
the two assumptions such that both of them may be applicable, when we study motions near
the central plane of a disk galaxy. We shall return to this connection below.

In a famous paper from 1964, Michel Hénon and Carl Heiles
studied motions in another potential with a simple mathemat-
ical expression, chosen so as not to allow any trivial integral
like in the cases just described. They instead performed nu-
merical integrations and discovered that, for many values of
the energy, the third integral would be both isolating and
non-isolating, depending on which particular trajectory one
considers. Looking at suitable projections of phase space, as
in the plot to the left, one sees a mixture of ‘integrable is-
lands’ with separate, closed curves, and an ‘ergodic sea’ where
the orbit jumps around chaotically. This was one of the first
demonstrations of chaotic behaviour in dynamical systems and
is thus of great historical interest.
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2.5.2 Planar, circular orbits

The aim of the rest of this chapter is to develop a theory for the motions of disk stars in the
Galaxy – or similar stars in other spiral galaxies, of course. Thus we will consider a system,
where the potential U has both axial symmetry and mirror symmetry around the central plane,
i.e., U(R,−z) ≡ U(R, z). The orbits to be considered will be close to the plane of symmetry
and nearly circular.

Let us start with circular orbits. From our assumption it follows that the vertical force
component is zero everywhere in the central plane, so that if a star is situated in the plane with
zero vertical velocity at a given moment, it will always stay in the plane. Moreover, thanks
to the axial symmetry, the in-plane force component −∂U/∂R (R, 0) is always directed toward
the origin, i.e., the Galactic centre. We are thus back at the problem of planar motion under a
central force, which we treated above for spherically symmetric systems. Hence, among the set
of all possible orbits – in general 3-dimensional – there is a special class of planar, rosette-shaped
orbits, and within this class there is a special family of circular orbits.

For any given radius R there is one such circular orbit, and we can compute the velocity Vc

for this orbit by balancing the centrifugal and gravitational forces, which gives:

V 2
c = R

∂U

∂R
(54)

This is called the circular velocity. In terms of angular velocity, the corresponding quantity
is ωc = Vc/R:

ω2
c =

1

R

∂U

∂R
(55)

As far as observations of stellar motions in the solar neighbourhood are concerned, we can
summarize the most important ones as follows.

• While different spectral types of stars have different average velocities with respect to
the Sun (i.e., the Sun has different apex motions relative to the different types), these
velocities are almost always much smaller than our velocity relative to the Galactic centre.

• Therefore, we conclude that these stars (including the Sun) are moving with velocities
close to the circular velocity, so their orbits can be treated as nearly circular in the
above sense. The local, circular velocity defines what is often called the dynamical Local
Standard of Rest (LSR), while the average velocity of a given stellar type is the kinematic
LSR of those stars.

• There is a trend for older stellar types to have larger velocity dispersions and to have
mean velocities that lag behind the Galactic rotation. The latter phenomenon is called
the asymmetric drift, and it is caused by the systematic deviation from circular orbits –
in particular the ellipticities of the Galactic orbits.

Observations of stars outside the immediate solar neighbourhood reveal some features of
the rotation curve of the Galaxy, i.e., how Vc or ωc vary as functions of R. Let us first show
the theoretically expected appearance of this curve, based on the limiting cases of very small
and very large orbits.
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Close to the Galactic centre we can assume a potential
close to that of spherical symmetry, so from the Poisson
equation:

3
∂2U

∂r2
' 4πGρc

and consequently:

U ' Uc +
2

3
πGρcR

2

At large distances we have:

U ' −GM

R

where M is the total mass of the Galaxy, which in this
case acts like a point mass. From the above we realize
the general shape of U(R). We can also derive ∂U/∂R,
which has the asymptotic expressions:

4

3
πGρcR and +

GM

R2

From this we can derive Vc(R) and ωc(R), as shown below. Note that Vc passes through
a maximum and eventually drops toward zero like R−1/2, as appropriate for Keplerian orbits.
However, comparison with the observed rotation curve of the Galaxy shows a poor fit. The
observed curve exhibits a very flat and extended maximum and, as far out as the observations
extend, does not approach the expected Keplerian decrease. The circular velocity stays at
∼ 250−300 km/s in a very broad interval. There is a clear disagreement between this behaviour
and the distribution of luminous matter (i.e., mainly stars), which drops much faster in the
outward direction. Such a disagreement is also seen in other disk galaxies like M31, and the
preferred solution is to introduce a dark halo component into the potential functions. The
large extent of these dark haloes allows the rotation curves to stay at a high level even at the
outskirts of the visible stellar disks.
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The circular angular velocity decreases outward in both the theoretical and observed cases.
Thus the Galaxy does not at all rotate like a rigid body – the central parts rotate much faster
than the exterior parts. This is a general phenomenon in many astrophysical contexts and is
called differential rotation. We shall deal with it in the next Section. Let us now state the
commonly accepted values for the dynamical LSR velocity, i.e., the circular velocity of the solar
neighbourhood. Recent measurements indicate:

Ro ' 8 kpc
Vo ' 220 km/s

i.e., ωo ' 27 km/s/kpc, and the revolution period Po = 2π/ωo ' 240 Myr.

2.5.3 Differential rotation and the Oort constants

If we look at the Galaxy from the south pole so that it rotates
clockwise, and if we place ourselves in a frame that rotates with the
local circular angular velocity so that the dynamical LSR is at rest,
the surrounding parts of the Galaxy will feature a shearing motion
as indicated to the left. This is of course under the assumption
of circular orbits. Outside the solar circle, the objects will drift
counterclockwise due to their smaller angular velocity, and inside
this circle the drift is clockwise.

From the observational point of view it is convenient to divide the motion of a star into
the radial velocity (projection on the line of sight) and the proper motion (projection
perpendicular to the line of sight). The methods of observing are of course very different in
the two cases. Let us now calculate these two velocity components relative to the dynamical
LSR for a star, which we assume to be moving in the Galactic plane on a circular orbit. The
position of the star is given by its distance r and its longitude ` with respect to the Galactic
centre, i.e., the Galactic longitude. If the star is at a galactocentric distance R that is close to
Ro, we have to first approximation:

ωc − ωo '
(

dωc

dR

)

o

· (R − Ro) (56)

yielding the apparent angular velocity around the origin. Multiplying by R, we get the apparent
linear velocity:

u ' R

(

dωc

dR

)

o

· (R − Ro)

The components of this velocity are:

{

ṙ = u sin `

r ˙̀ = u cos `

Since R ' Ro and R − Ro ' −r cos `, we get:

{

ṙ = −Ro (dωc/dR)o r sin ` cos `
˙̀ = −Ro (dωc/dR)o cos2 `

(57)
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Here ṙ corresponds to the observed radial velocity, but ˙̀ does not correspond to the observed
proper motion, because this angular velocity is defined in a rotating frame, while observed
proper motions refer to a fixed frame. Since the ˙̀ frame rotates with angular velocity −ωo, we
would get the proper motion from: µ = ˙̀− ωo.

But, moreover, note that reality is not that simple. Observed velocities also include the
Sun’s motion relative to the dynamical LSR, and the corresponding residual velocities of the
observed stars. One must therefore correct for these before applying the above formulae.

We now introduce:
A = −1

2
Ro (dωc/dR)o

B = A − ωo
(58)

and Eqs. (57) thus transform into:

ṙ = Ar sin 2`
µ = A cos 2` + B

(59)

A and B are called the Oort constants. These formulae have been quite important for
revealing the local part of the Galactic rotation curve. The method is to plot the corrected
stellar velocities against Galactic longitude – in the case of ṙ also dividing by the distance –
and derive A and B from these plots. As seen from Eqs. (58), knowledge of Ro, A and B allows
us to calculate ωo and (dωc/dR)o.

By rearranging Eqs. (58), we get:

A − B = ωo

A + B = − (dVc/dR)o

(60)

i.e., expressed in words, the difference of the Oort constants gives the local, circular angular
velocity of Galactic rotation, and the sum gives minus the local slope of the rotation curve.
The values of A and B are not known very accurately, but indications are that the rotation
curve is locally flat to a good approximation, and thus A ' −B. From the above value of
ωo = 27 km/s/kpc, we then get

A ' 13.5 km/s/kpc
B ' −13.5 km/s/kpc

Let us finally see how the Oort constants may be used to express the Poisson equation in
the solar neighbourhood. In cylindrical coordinates, this equation reads:

1

R

∂

∂R

(

R
∂U

∂R

)

+
1

R2

∂2U

∂θ2
+

∂2U

∂z2
= 4πGρ

Due to the axial symmetry, the θ term vanishes, and the radial term can be written:

1

R

dV 2
c

dR
= 2ωc

dVc

dR
,

so in the solar neighbourhood we get:

∂2U

∂z2
− 2

(

A2 − B2
)

= 4πGρ (61)

This shows that for a locally flat rotation curve, the Poisson equation holds in exactly the same
form as we treated in the case of plane-parallel geometry. Any small deviation from this flat
behaviour, if compatible with the observations, would require a small extra term in the Poisson
equation, as given above with A2 − B2 6= 0.
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2.5.4 Epicyclic description of nearly circular orbits

For a perfectly circular orbit we would have:











R = Ro

θ = ωo t
z = 0

for an arbitrary value of Ro and ωo = ωc(Ro). For the vicinity
of such an orbit we can write:











R = Ro + ξ
θ = ωo t + η/Ro

z = z

Note that η is a distance measured along a circle. The quantities ξ, η, z can be interpreted as
coordinates in a reference frame that rotates with the angular velocity ωo. We assume that all
of them are very small in comparison to Ro, so that the particle moves on a nearly circular
orbit close to the circle with radius Ro.

The equations of motion in cylindrical coordinates are:






























R̈ − Rθ̇2 = −∂U/∂R

2Ṙθ̇ + Rθ̈ = 0

z̈ = −∂U/∂z

(62)

Substituting and developing the right-hand members in the neighbourhood of (Ro, 0):



































ξ̈ − (Ro + ξ)
(

ωo + η̇
Ro

)2
= −∂U

∂R
(Ro, 0) − ∂2U

∂R2 (Ro, 0) ξ − ∂2U
∂R∂z

(Ro, 0) z − . . .

2ξ̇
(

ωo + η̇
Ro

)

+ (Ro + ξ) η̈
Ro

= 0

z̈ = −∂U
∂z

(Ro, 0) − ∂2U
∂z∂R

(Ro, 0) ξ − ∂2U
∂z2 (Ro, 0) z − . . .

We linearize, thus neglecting all terms of second or higher order. Also, due to the mirror
symmetry about the z = 0 plane, we have:

∂U

∂z
(Ro, 0) =

∂2U

∂R∂z
(Ro, 0) =

∂2U

∂z∂R
(Ro, 0) = 0

Since we also have:

Roω
2
o =

∂U

∂R
(Ro, 0) ,

we finally get:






























ξ̈ − 2ωoη̇ − ω2
oξ = − (∂2U/∂R2)o · ξ

η̈ + 2ωoξ̇ = 0

z̈ = − (∂2U/∂z2)o · z

(63)
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The second derivatives of U are taken in a given point and are thus to be regarded as con-
stants. We have a homogeneous system of linear differential equations with constant coefficients
for ξ, η, z. Note that the above equations degenerate into those for a plane-parallel system in
case U depends only on z.

The system is separable – the first two equations only contain ξ and η, and the third one
only z. The latter can be integrated directly, yielding:

z = zo cosωz (t − t2) (64)

where zo and t2 are integration constants, and ω2
z = (∂2U/∂z2)o. This is a sinusoidal z motion

caused by a restoring force toward the Galactic plane that is proportional to the distance from
the plane. This behaviour is predicted, for instance, by the isothermal model discussed above.

The second equation can also be integrated:

η̇ + 2ωoξ = a (a = const.)

and the first one then becomes:

ξ̈ = −
[(

∂2U/∂R2
)

o
+ 3ω2

o

]

ξ + 2ωoa

Let us put:
κ2

o =
(

∂2U/∂R2
)

o
+ 3ω2

o , (65)

which is a constant. The solution of the last differential equation is hence an oscillation with
frequency κo, and we get the general solution for ξ and η as:

ξ = 2ωoa
κ2

o
+ c cosκo (t − to)

η = a
(

1 − 4ω2
o

κ2
o

)

(t − t1) − 2ωoc
κo

sin κo (t − to)

(66)

where a, c, to and t1 are integration constants.

Let us first assume that a = 0. The remaining terms
are proportional to c and yield a quasi-elliptic motion
in the (ξ, η) plane. The axial ratio is 2ωo/κo, and the
sense of motion is opposite to the orbital motion around
the Galactic centre. The angular velocity is κo, and this
is in general different from ωo. The curve described in
the (ξ, η) plane would be an ellipse if it were not for
the curvature of the η axis. It is called an epicycle in
analogy with the ancient description of planetary orbits
in terms of circles and epicycles, and κo is referred to as
the epicyclic frequency.

We have:

(∂U/∂R)o = Roω
2
o ;

(

∂2U/∂R2
)

o
= ω2

o + 2Roωo (∂ω/∂R)o

and thus:
κ2

o = 4ω2
o − 4ωoA = −4ωoB, (67)
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yielding the relation between κo and the Oort constants. We see that the epicyclic frequency is
determined by the local properties of the Galactic rotation curve. Using the above estimates,
we get κo ' 38 km/s/kpc. The axial ratio of the local epicycle is thus 54/38 ' 1.4.

If we instead assume c = 0 and let a take a non-zero
value, we get a constant value of ξ and a uniformly
changing value of η. This is a circular drift motion

around the Galactic centre. The reason is simply the
differential rotation of the Galaxy. If we choose a 6= 0,
we place the orbit at an average distance R 6= Ro, and
thus we get a drift in Galactic longitude. In general
we have to consider both a and c as non-zero, and the
drift and epicyclic motions have to be combined. This
is illustrated in the figure to the left.

Note that this appearance of the motion is due to our use of a rotating frame of reference.
In a fixed frame we would not find an epicycle but a rosette curve. Our ξ coordinate oscillates
between

2ωoa

κ2
o

± c

and if a > 0, ξ will on the average be positive, i.e., the orbit is on the average situated outside
Ro – the motion around the Galactic centre is thus slower, yielding the apparent retrograde
drift seen in the figure.

We can summarize the general motion, now seen in a fixed frame, as a combination of three
periodic motions:

1. a circular rotation around the Galactic centre;

2. a small-scale quasi-elliptic motion in the Galactic plane, opposite to the direction of
rotation;

3. an oscillation perpendicular to the plane.

The angular velocities are, respectively:

ω2
c = 1

R
∂U
∂R

κ2 = ∂2U
∂R2 + 3

R
∂U
∂R

ω2
z = ∂2U

∂z2

The three frequencies feature different derivatives of U
and are thus mutually independent and may have any
values. In general those values are not commensurable.
Therefore, for instance, after an even number of rota-
tions around the Galactic centre, the two other motions
have not completed an even number of periods. The
projection of the 3D orbit onto the (x, y) plane will fill
up an annulus in the way of a general rosette orbit, and
the orbit itself will fill up a toroidal volume with a rect-
angular cross-section.
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The fact that the orbit in general fills up a volume implies that there are two non-isolating
integrals. But we can also find three isolating integrals in the shape of integration constants:

a = 2ωoξ + η̇

c2 =
[(

1 − 4ω2
o

κ2
o

)

ξ − 2ωo

κ2
o
η̇
]2

+ ξ̇2

κ2
o

z2
o = z2 + ż2

ω2
z

Thus we arrive at an important conclusion: In the vicinity of circular Galactic orbits the

third integral is isolating. Returning to the velocity ellipsoid with its three different axes,
we see that this can be explained, as long as the above, linearized theory os nearly circular
motions is valid.

Instead of a we can use:

R = Ro +
2ωoa

κ2
o

This is simply the average value of R independent of which value we use for Ro. The three
integrals thus have a simple physical interpretation, namely, the average radius, the amplitude of
the radial oscillations, and the amplitude of the vertical oscillations. The distribution function
can be written:

ϕ = f
(

R, c2, z2
o

)

To be continued
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