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Gas Dynamics: The Riemann Problem and
Discontinuous Solutions: Application to the
Shock Tube Problem

Project Summary

Level of difficulty: 3
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Application fields: Shock tube, supersonic flows

The interest in studying the shock tube problem is threefold. From a fun-
damental point of view, it offers an interesting framework to introduce some
basic notions about nonlinear hyperbolic systems of partial differential equa-
tions (PDEs). From a numerical point of view, this problem constitutes, since
the exact solution is known, an inevitable and difficult test case for any numer-
ical method dealing with discontinuous solutions. Finally, there is a practical
interest, since this model is used to describe real shock tube experimental
devices.1

10.1 Physical Description of the Shock Tube Problem

The fundamental idea of the shock tube is the following: consider a long
one-dimensional (1D) tube, closed at its ends and divided into two equal
regions by a thin diaphragm (see Fig. 10.1). Each region is filled with the
same gas, but with different thermodynamic parameters (pressure, density,
and temperature). The region with the highest pressure is called the driven
1 The first shock tube facility was built in 1899 by Paul Vieille to study the defla-

gration of explosive charges. Nowadays, shock tubes are currently used as low-cost
high-speed wind tunnels, in which a wide variety of aerodynamic or aeroballistic
topics are studied: supersonic aircraft flight, gun performance, asteroid impacts,
shuttle atmospheric entry, etc.
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section of the tube, while the low-pressure part is the working section. The
gas being initially at rest, the sudden breakdown of the diaphragm generates
a high-speed flow, which propagates in the working section (this is the place
where the model of a free-flying object, such as a supersonic aircraft, will be
placed).
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Fig. 10.1. Sketch of the initial configuration of the shock tube (t = 0) and waves
propagating in the tube after the diaphragm breakdown (t > 0).

Let us get into a more detailed analysis of the problem. Consider (Fig. 10.1)
that the left part of the tube is the driven section, defined by the pressure pL,
the density ρL, the temperature TL, and the initial velocity UL = 0. Similarly,
the parameters of the (right part) working section are pR < pL, ρR, TR, and
UR = 0.

At time t = 0 the diaphragm breaks, generating a process that naturally
tends to equalize the pressure in the tube. The gas at high pressure expands
through an expansion (or rarefaction) wave and flows into the working section,
pushing the gas of this part. The rarefaction is a continuous process and takes
place inside a well-defined region (the expansion fan) that propagates to the
left (region (E) in Fig. 10.1); the width of the expansion fan grows in time.

The compression of the low-pressure gas generates a shock wave propagat-
ing to the right. The expanded gas is separated from the compressed gas by a
contact discontinuity, which can be regarded as a fictitious membrane travel-
ing to the right at constant speed. At this point of our simplified description,
we just note that some of the physical functions defining the flow in the tube
(p(x), ρ(x), T (x), and U(x)) are discontinuous across the shock wave and the
contact discontinuity. These discontinuities, which cause the difficulty of the
problem, will be described in greater detail in the following sections.
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10.2 Euler Equations of Gas Dynamics

To simplify the mathematical description of the shock tube problem we con-
sider an infinitely long tube (to avoid reflections at the tube ends) and neglect
viscous effects in the flow. We also suppose that the diaphragm is completely
removed from the flow at t = 0. Under these simplifying hypotheses, the
compressible flow in the shock tube is described by the one-dimensional (1D)
Euler system of PDEs (see, for instance, Hirsch, 1988; LeVeque, 1992)

∂

∂t

⎛⎝ ρ
ρU
E

⎞⎠
︸ ︷︷ ︸
W (x,t)

+
∂

∂x

⎛⎝ ρU
ρU2 + p
(E + p)U

⎞⎠
︸ ︷︷ ︸

F (W )

= 0, (10.1)

where ρ is the density of the gas and E the total energy:

E =
p

γ − 1
+

ρ

2
U2. (10.2)

To close this system of equations, we need to write the constitutive law of the
gas (or equation of state). Considering the perfect gas model, the equation of
state is

p = ρRT. (10.3)

The constants R and γ characterize the thermodynamic properties of the gas
(R is the universal gas constant divided by the molecular mass and γ is the
ratio of specific heat coefficients). It is also useful to define the local speed of
sound a, the Mach number M , and the total enthalpy H:

a =
√

γRT =
√

γ
p

ρ
, M =

U

a
, H =

E + p

ρ
=

a2

γ − 1
+

1
2
U2. (10.4)

Considering the column vector of unknowns W = (ρ, ρU, E)t, the Euler
system of equations (10.1) can be written in the following conservative form:

∂W

∂t
+

∂

∂x
F (W ) = 0, (10.5)

with the initial condition (we denote by x0 the abscissa of the diaphragm):

W (x, 0) =

{
(ρL, ρLUL, EL), x ≤ x0,

(ρR, ρRUR, ER), x > x0.
(10.6)

The vector W contains the conserved variables and F (W ) the conserved fluxes.
Note that with this choice of the vector of unknowns W , the pressure is not
an unknown, since it can be derived from (10.2) using the components of W .
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The mathematical analysis of the Euler system of PDEs usually considers
its quasilinear form:2

∂W

∂t
+ A

∂W

∂x
= 0, (10.7)

with the Jacobian matrix

A =
∂F

∂W
=

⎛⎝ 0 1 0
1
2 (γ − 3)U2 (3 − γ)U γ − 1

1
2 (γ − 1)U3 − UH H − (γ − 1)U2 γU

⎞⎠ . (10.8)

It is interesting to note that the matrix A satisfies the following remarkable
relationship:

AW = F (W ). (10.9)

Furthermore, we can easily calculate its eigenvalues

λ0 = U, λ+ = U + a, λ− = U − a, (10.10)

and the corresponding eigenvectors

v0 =

⎛⎝ 1
U

1
2U2

⎞⎠ , v+ =

⎛⎝ 1
U + a

H + aU

⎞⎠ , v− =

⎛⎝ 1
U − a

H − aU

⎞⎠ . (10.11)

We conclude that the Jacobian matrix A is diagonalizable, i.e., it can be
decomposed as A = PΛP−1, where

Λ =

⎛⎝U − a 0 0
0 U 0
0 0 U + a

⎞⎠ , P =

⎛⎝ 1 1 1
U − a U U + a

H − aU 1
2U2 H + aU

⎞⎠ . (10.12)

We can easily verify that

P−1 =

⎛⎝ 1
2

(
α1 + U

a

)
− 1

2

(
α2U + 1

a

)
α2
2

1 − α1 α2U −α2
1
2

(
α1 − U

a

)
− 1

2

(
α2U − 1

a

)
α2
2

⎞⎠ , (10.13)

where α1 = (γ − 1)U2/(2a2) and α2 = (γ − 1)/a2.

Definition 10.1. The system (10.7) with the matrix A diagonalizable with
real eigenvalues is called hyperbolic.

The hyperbolic character of the system (10.7) has important consequences
on the propagation of the information in the flow field. Certain quantities,

2 The reader who has already explored Chap. 1 of this book may notice that this
form is similar to that of the convection equation. The underlying idea is here to
generalize the analysis of characteristics in the case of a system of PDEs.
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called invariants,3 are transported along particular curves in the plane (x, t),
called characteristics. From a numerical point of view, this suggests a simple
way to calculate the solution in any point P (x, t) by gathering all the in-
formation transported through the characteristics starting from P and going
back to regions where the solution is already known (imposed by the initial
condition, for example).

The general form of the equation defining a characteristic is dx/dt = λ,
where λ is an eigenvalue of the Jacobian matrix A. Since the corresponding
invariant r is constant along the characteristic, it satisfies

dr

dt
=

∂r

∂t
+

∂r

∂x

dx

dt
= 0, or

∂r

∂t
+ λ

∂r

∂x
= 0. (10.14)

In the simplest case of the convection equation ∂u/∂t + c ∂u/∂x = 0, with
constant transport velocity c, there exists a single characteristic curve, which
is the line x = c t, and the corresponding invariant is the solution itself, r = u
(see also Chap. 1). From (10.10) we infer that the system (10.7) has three
distinct characteristics:

C0 :
dx

dt
= U, C+ :

dx

dt
= U + a, C− :

dx

dt
= U − a. (10.15)

The invariants can be generally expressed as differential relations (see, for
instance, Hirsch (1988); Godlewski and Raviart (1996) for details)

dr0 = dp − a2 dρ = 0, dr+ = dp + ρa dU = 0, dr− = dp − ρa dU = 0,

which have to be integrated along the corresponding characteristic curves. In
the case of an isentropic flow4 we obtain

r0 = p/ργ , r+ = U +
2a

γ − 1
, r− = U − 2a

γ − 1
. (10.16)

The above relations will be used in the following to derive the exact solution
of the shock tube problem.

Definition 10.2. The nonlinear hyperbolic system of PDEs (10.5) and piece-
wise constant initial condition (10.6) define the Riemann problem.

3 For a rigorous analysis of hyperbolic systems of PDEs and related definitions (in
particular the definition of Riemann invariants), the reader can refer to Hirsch
(1988); LeVeque (1992); Godlewski and Raviart (1996).

4 The entropy variation of a perfect gas during its evolution starting from a ref-
erence state A is s − sA = Cv ln

(
p/pA

(ρ/ρA)γ

)
, where Cv = R/(γ − 1) is the heat

coefficient under constant volume. For an isentropic flow, since the entropy re-
mains unchanged (s = sA), we deduce that the ratio p/ργ is constant.
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10.2.1 Dimensionless Equations

When building numerical applications we usually prefer to remove physical
units from equations and work with dimensionless variables. This simplifies the
problem formulation and may reduce computational round-off errors. Physical
variables in previous equations are nondimensionalized (or scaled) using a
reference state defined by the parameters of the working section:

ρ∗ = ρ/ρR, U∗ = U/aR, a∗ = a/aR, T ∗ = T/(γTR),
p∗ = p/(ρRa2

R) = p/(γpR), E∗ = E/(ρRa2
R), H∗ = H/a2

R. (10.17)

We also nondimensionalize space and time variables as x∗ = x/L, t∗ =
t/(L/aR), where L is the length of the tube.

The Euler equations for the dimensionless variables (denoted by the star
superscript) keep the same differential form as previously:

∂

∂t∗

⎛⎝ ρ∗

ρ∗U∗

E∗

⎞⎠
︸ ︷︷ ︸
W ∗(x∗,t∗)

+
∂

∂x∗

⎛⎝ ρ∗U∗

ρ∗U∗2 + p∗

(E∗ + p∗)U∗

⎞⎠
︸ ︷︷ ︸

F ∗(W ∗)

= 0. (10.18)

Dimensionless total energy E∗ and total enthalpy H∗ become

E∗ =
p∗

γ − 1
+

ρ∗

2
U∗2, H∗ =

(a∗)2

γ − 1
+

1
2
U∗2. (10.19)

Differences with respect to previous physical equations appear in the equation
of state

p∗ = ρ∗T ∗, (10.20)

and in the definition of the speed of sound

a∗ =
√

γ
p∗

ρ∗ =
√

γT ∗. (10.21)

In the interests of simplicity, we drop the star superscript in subsequent equa-
tions; only dimensionless variables will be considered in the following sections.

10.2.2 Exact Solution

The exact solution of the shock tube problem follows the physical and math-
ematical descriptions given in previous sections. The tube is separated (see
Fig. 10.1) into four uniform regions, i.e., with constant parameters (pressure,
density, temperature, and velocity): the left (L) and right (R) regions (which
keep the parameters imposed by the initial condition) and two intermediate
regions, denoted by subscripts 1 and 2.
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It is important to identify these regions in the (x, t) plane (see Fig. 10.2).
All the waves are centered at the initial position of the diaphragm (t = 0, x =
x0). Since the shock and the contact discontinuity propagate in uniform zones,
they have constant velocities and hence are displayed as lines in the (x, t) di-
agram. The expansion wave extends through the new zone (E), the expansion
fan, in which the flow parameters vary continuously (see below). We remem-
ber that the shock wave and the contact discontinuity propagate to the right,
while the expansion fan moves to the left.

C+

C+

C+

C−

C−

C− C0

C0

C0

x x x x x0 4321

x

(L) (2) (1)

x

t
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fan

contact
discontinuity

shock
wave

(R)

O A

Q

O B

t

(E)

Fig. 10.2. Diagram in the (x, t) plane of the exact solution of the shock tube
problem (left). Characteristics used to calculate the exact solution (right).

We start the calculation of the exact solution by writing the dimensionless
parameters of the (L) and (R) regions (which are in fact the input parameters
for a computer program):

Region (R): ρR = 1, pR = 1/γ, TR = 1/γ, aR = 1, UR = 0, (10.22)
Region (L): ρL, pL, TL, aL, UL = 0 (given quantities). (10.23)

We then use the jump relations across the discontinuities and take into account
the propagation of the information along the characteristics, as follows:

1. The shock wave implies the discontinuity of all the parameters of the
flow. The jump between regions (1) and (R) is described by the Rankine–
Hugoniot relations (see, for example, Hirsch (1988)):

p1

pR
=

2γ

γ + 1
M2

s − γ − 1
γ + 1

, (10.24)

ρR

ρ1
=

2
γ + 1

1
M2

s

+
γ − 1
γ + 1

, (10.25)

U1 =
2

γ + 1

(
Ms − 1

Ms

)
, (10.26)

where Ms is the Mach number of the shock, defined in physical units as
Ms = Uphys

s /aphys
R . We note that using our scaling, Ms = Us, where Us is

the dimensionless propagation speed of the shock. We remember that Us

is constant.
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2. The contact discontinuity is in fact a discontinuity of the density function,
the pressure and the velocity being continuous. Hence

U2 = U1, p2 = p1. (10.27)

3. We now link the parameters of region (2) to those of region (L). For
this purpose, we consider a point P inside the region (2) and draw the
characteristics passing through this point (see Fig. 10.2). We notice that
only C0 and C+ characteristics will cross the expansion fan to search the
information in region (L). Using the expressions (10.15) for the invariants
r0 and r+ and taking into account that UL = 0, we obtain

ρ2

ρL
=

(
p2

pL

)1/γ

, U2 =
2

γ − 1
(aL − a2). (10.28)

4. Finally, we combine the previous relations to obtain an implicit equation
for the unknown Ms. The detailed calculation follows:

Ms − 1
Ms

(10.26)
=

γ + 1
2

U1

(10.27)
=

γ + 1
2

U2

(10.28)
= aL

γ + 1
γ − 1

(
1 − a2

aL

)
.

Since

a2

aL

(10.21)
=

(
p2

pL

ρL

ρ2

)1/2 (10.28)
=

(
p2

pL

) γ−1
2γ (10.27)

=
(

p1

pL

) γ−1
2γ

,

we replace p1/pL from (10.24) and finally get the following compatibility
equation:

Ms − 1
Ms

= aL
γ + 1
γ − 1

{
1 −

[
pR

pL

(
2γ

γ + 1
M2

s − γ − 1
γ + 1

)] γ−1
2γ

}
. (10.29)

Once this implicit nonlinear equation is solved (using an iterative Newton
method, for example), the value of Ms will be used in previous relations
to determine all the parameters of uniform regions (1) and (2).

To complete the exact solution, we need to determine the extent of each region
(i.e., calculate the values of the abscissas x1, x2, x3, x4 in Fig. 10.2) for a given
time value t. We proceed as follows:

• The expansion fan (E) is left-bounded by the C− characteristic starting
from the point B, considered to belong to region (L), i.e., the line of
slope dx/dt = −aL. The right bound of the expansion fan is the C−

characteristic starting from the same point B, but considered this time to
belong to region (2), i.e., the line of slope dx/dt = U2 − a2. The values of
x1 and x2 are consequently

x1 = x0 − aLt, x2 = x0 + (U2 − a2)t. (10.30)
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Consider now a point (x, t) inside the region (E), i.e., x1 ≤ x ≤ x2. Since
this point belongs to a C− characteristic starting from B, necessarily (x−
x0)/t = U − a. Using the C+ characteristic coming from region (L), we
also get that a + (γ − 1)U/2 = aL. Combining these two relations and
remembering that the flow is isentropic, we can conclude that the exact
solution inside the expansion fan is

U =
2

γ + 1

(
aL +

x − x0

t

)
, a = aL − (γ − 1)

U

2
, p = pL

(
a

aL

) 2γ
γ−1

.

(10.31)
• The contact discontinuity is transported at constant velocity U2 = U1, so

x3 = x0 + U2t. (10.32)

• Since the shock wave also propagates at constant dimensionless velocity
Us = Ms, we finally obtain

x4 = x0 + Mst. (10.33)

Remark 10.1. The exact solution W (x, t) of the shock tube problem depends
only on the ratio x/t, as one would have expected from the characteristics
analysis of the Euler system of PDEs.

Exercise 10.1. Write a MATLAB function to compute the exact solution
of the shock tube problem. The definition header of the function will be as
follows:

function uex=HYP shock_exact(x,x0,t)
% Input arguments:
% x vector of abscissas of dimension M
% x0 the initial position of the diaphragm
% t time at which the solution is calculated
% Output arguments:
% uex vector of dimensions (3,n) containing the solution as
% uex(1,1:M) the density
% uex(2,1:M) the velocity
% uex(3,1:M) the pressure

Plot the dimensionless exact solution (ρ(x), U(x) and p(x)) at time t = 0.2.
Consider x ∈ [0, 1], x0 = 0.5, and a regular (equidistant) grid with M = 81
computational points. The physical parameters correspond to those used by
Sod (see also Hirsch, 1988): γ = 1.4, ρL = 8, pL = 10/γ.
Hint: define all the physical parameters as global variables; use the MAT-
LAB built-in function fzero to solve the compatibility equation (10.29).

The expected result is displayed in Fig. 10.3. This solution was obtained
using the MATLAB program presented in Sect. 10.4 at page 232.
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Fig. 10.3. Exact solution of the shock tube problem (Sod’s data) at time t = 0.2.

10.3 Numerical Solution

The first idea one would have in mind when attempting to numerically solve
the Euler system of PDEs (10.18) is to use elementary discretization methods
discussed in Chap. 1 for scalar PDEs, for example, an Euler or a Runge–Kutta
method for the time integration and centered finite differences for the space
discretization. We shall see, however, that such methods are not appropriate
to compute discontinuous solutions, since they generate nonphysical oscilla-
tions. This drawback of the space-centered schemes for computing the shock
tube problem will be illustrated using the more sophisticated Lax–Wendroff
and MacCormack schemes. We shall also give a quick description of upwind
schemes that take into account the hyperbolic character of the system and
allow a better numerical solution. Results using Roe’s upwind scheme will be
discussed at the end.

10.3.1 Lax–Wendroff and MacCormack Centered Schemes

The space-centered schemes were historically the first to be derived to solve
hyperbolic systems. The two most popular schemes, the Lax and Wendroff
scheme and the MacCormack scheme, are still used in some industrial numer-
ical codes. We shall apply these schemes to solve the Euler system (10.18)
written in the conservative form

∂W

∂t
+

∂

∂x
F (W ) = 0. (10.34)

We use a regular (or equidistant) discretization of the domain of definition of
the problem (x, t) ∈ [0, 1] × [0, T ]:

• in space

xj = (j − 1)δx, δx =
1

M − 1
, j = 1, 2, . . . , M, (10.35)

• and in time

tn = (n − 1)δt, δt =
T

N − 1
, n = 1, 2, . . . , N. (10.36)
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For both schemes, the numerical solution Wn+1
j (at time tn+1 and space posi-

tion xj) is computed in two steps (a predictor and a corrector step) following
the formulas displayed in Fig. 10.4.

Lax–Wendroff

W̃j+1/2 =
W n

j + W n
j+1

2
− δt

2δx

[
F (W n

j+1) − F (W n
j )

]

W n+1
j = W n

j − δt

δx

[
F (W̃j+1/2) − F (W̃j−1/2)

]

M−2n n

W
n+1

W  , F(W )
n n

W
n+1

1 2 3

W, F(W)
~~

1 2 3

W, F(W)
~~

2

Lax−Wendroff

M

M−1

M−1
W  , F(W )

MacCormack

W̃j = W n
j − δt

δx

[
F (W n

j+1) − F (W n
j )

]

W n+1
j =

W n
j + W̃ n

j

2
− δt

2δx

[
F (W̃j) − F (W̃j−1)

]

M−2n n

W
n+1

W
n+1

MacCormack

W, F(W)
~~

W, F(W)
~~

1 2 3

M−12

MM−1
W  , F(W )

Fig. 10.4. Formulas of Lax–Wendroff and MacCormack space-centered schemes.
Schematic representation of their predictor and corrector steps.

We discuss in the following some remarkable features of these schemes.
1. (Boundary values.) From the schematic representation of the predictor

and corrector steps in Fig. 10.4, we notice that only the components j =
2, . . . , (M − 1) of the solution are calculated. The remaining components for
j = 1 and j = M need to be prescribed by appropriate boundary conditions.
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Since the tube is assumed infinite, we impose Wn
1 = WL and Wn

M = WR at
any time level tn. Practically, this is equivalent to leaving unchanged the first
and last components of the solution vector. Meanwhile, it is obvious that the
computation must stop before one of the waves (expansion or shock) hits the
boundary.

2. (Propagation of information.) The predictor step of the Lax–Wendroff
scheme computes an intermediate solution at interfaces

(
j + 1

2

)
and

(
j − 1

2

)
using forward finite differences. These intermediate values are then used in
the centered finite difference scheme of the corrector step.

The MacCormack scheme combines backward differences for the predictor
step with forward differences for the corrector step. We can show in fact that
the idea behind this scheme is the following Taylor expansion:

Wn+1
j = Wn

j +
(

∂W

∂t

)
j

δt, (10.37)

where(
∂W

∂t

)
j

=
1
2

⎡⎣(∂W

∂t

)n

j

+

(
∂W̃

∂t

)
j

⎤⎦ =
1
2

[
W̃j − Wn

j

δt
− F (W̃j) − F (W̃j−1)

δx

]

is an approximation of the first derivative in time.
In conclusion, the information is searched on both sides of the computed

point j. The information propagation along characteristics is not taken into
account, since no distinction is made between upstream and downstream in-
fluences. We shall see that this lack of physics in the numerical schemes will
generate unwanted (nonphysical) oscillations of the solution.

3. (Accuracy.) Both schemes use a three-point stencil (j − 1, j, j + 1) to
reach second-order accuracy in time and space.

4. (Stability.) Both schemes are explicit and consequently subject to sta-
bility conditions. Similar to the (scalar) convection equation (see Chap. 1),
we can write the stability (or CFL5) condition in the general form

max
i

{|λi|}· δt

δx
≤ 1,

where λi, i = 1, 2, 3, are the eigenvalues of the Jacobian matrix ∂F/∂W ,
regarded here as propagation speeds of the corresponding characteristic waves
(dx/dt = λ). Using (10.15), we obtain the stability condition

(|U | + a)
δt

δx
≤ 1. (10.38)

For numerical applications, this condition is used to compute the time step

δt = cfl· δx

|U | + a
, with cfl < 1. (10.39)

5 Courant–Friedrichs–Lewy
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Exercise 10.2. For the same physical and numerical parameters as in the
previous exercise, compute the numerical solution of the shock tube problem
at t = 0.2 using Lax–Wendroff and MacCormack centered schemes. Compare
to the exact solution and comment on the results. Hints:
• set an array w(1:3,1:M) to store the discrete values of the vector W =
(ρ, ρU, E)t of conservative variables;
• using (10.39) with cfl = 0.95, compute the time step in a separate function
function dt = HYP calc dt(w,dx,cfl);
• write a function to compute F (W );
• use vectorial programming to translate the formulas in Fig. 10.4 into MAT-
LAB program lines (avoid loops!); for example, the predictor step of the Lax–
Wendroff scheme will be coded in a single line:

wtilde=0.5*(w(:,1:M-1)+w(:,2:M))-0.5*dt/dx*(F(:,2:M)-F(:,1:M-1));

• for each scheme, superimpose numerical and exact solutions for (ρ, U, p) as
in Fig. 10.5.
A solution of this exercise is proposed in Sect. 10.4 at page 232.

The numerical results of both schemes, displayed in Fig. 10.5, show good
accuracy in smooth regions, whereas unwanted oscillations appear at the in-
terfaces between different regions of the solution. The contact discontinuity is
also poorly captured. The MacCormack scheme seems to capture the shock
discontinuity better, but introduces higher-amplitude oscillations at the end
of the expansion wave where the flow is strongly accelerated.
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Fig. 10.5. Numerical results for the shock tube problem (Sod’s parameters) using
centered schemes. Lax–Wendroff scheme (up) and MacCormack scheme (down).
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Artificial Dissipation

The oscillations generated by the centered schemes around discontinuities can
be damped by adding a supplementary term to the initial equation (10.34):

∂W

∂t
+

∂

∂x
F (W ) − δx2 ∂

∂x

(
D(x)

∂W

∂x

)
= 0. (10.40)

The mathematical form of this term is inspired by the heat equation (dis-
cussed in Chap. 1). The idea is to simulate the effects of a physical dissipation
(or diffusion) process which is well known to have a smoothing effect6 on the
solution. Since the dissipation term is proportional to the gradient ∂W/∂x
of the solution, the smoothing will be important in regions with sharp gradi-
ents (as the shock discontinuity) where numerical oscillations are expected to
disappear.

The coefficient D(x), also called artificial viscosity by analogy with Navier–
Stokes equations (see Chap. 12), has to be positive to ensure a stabilizing
effect7 on the numerical solution. Moreover, its value has to be chosen such
that the influence of the artificial term is negligible (i.e., of an order greater
than or equal to the truncation error) in the smooth regions of the solution.

Several methods have been proposed to prescribe the artificial viscosity
D(x) and to modify classical centered schemes accordingly (see, for instance,
Hirsch (1988), Fletcher (1991)). We illustrate the simplest technique, which
considers a constant coefficient D(x) = D and writes (10.40) in the conserva-
tive form (10.34) with a modified flux F ∗(W ):

∂W

∂t
+

∂

∂x
F ∗(W ) = 0, where F ∗(W ) = F (W ) − Dδx2 ∂W

∂x
. (10.41)

In order to use the same three-points stencil to define the schemes, the new
vector F ∗(W ) will be discretized

• using backward differences in the predictor step

F ∗(Wj) = F (Wj) − (Dδx)(Wj − Wj−1), (10.42)

• and forward differences in the corrector step

F ∗(W̃j) = F (W̃j) − (Dδx)(W̃j+1 − W̃j). (10.43)

Exercise 10.3. Modify the previous program by adding an artificial dissi-
pation term to both Lax–Wendroff and MacCormack schemes. Use (10.42)–
(10.43) to modify the flux F (W ). Discuss the effect of the value of the artificial
viscosity D (take 0 ≤ D ≤ 10). What is the influence of D on the value of the
time step?
6 This smoothing effect is nicely illustrated for the heat equation in Chap. 1, Ex-

ercise 1.10.
7 The heat equation with negative diffusivity has physically unstable solutions!
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The results obtained with an artificial dissipation term are displayed in
Fig. 10.6. Numerical oscillations are reduced near the shock and expansion
waves, but large dissipation is also introduced in other regions of the solution.
In particular, the contact discontinuity (see the graph for ρ(x)) is consider-
ably smeared. Increasing the value of D allows one to completely remove the
oscillations, but the overall accuracy is not satisfactory. More sophisticated
methods have been proposed (see the references at the end of the chapter) to
render the dissipation more selective with respect to the nature of disconti-
nuities, but the general tradeoff between damping the oscillations and overall
accuracy suggests that the artificial dissipation does not bring a real solution
to the problem. A different approach, including more physics in the numerical
approximation, is presented in the next section.
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Fig. 10.6. Numerical results for the shock tube problem (Sod’s parameters) using
centered schemes with artificial dissipation. Lax–Wendroff scheme (up) and Mac-
Cormack scheme (down).

10.3.2 Upwind Schemes (Roe’s Approximate Solver)

The origin of the numerical oscillations generated by the centered schemes
discussed in the previous section comes from complete ignorance of the hy-
perbolic character of the Euler system of PDEs, in particular the propagation
of the information along characteristics. These important (physical) features
will be considered in deriving upwind schemes.

Physical information can be introduced at different levels of the numerical
approximation. We distinguish between:
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1. flux splitting upwind schemes, which use different directional discretiza-
tion of the flux F (W ), depending on the sign of the eigenvalues λ of the
Jacobian matrix (10.8); since λ corresponds to the propagation speed of
the associated characteristic, these schemes include only the information
on the direction of propagation of waves (up- or downstream);

2. Godunov-type schemes, which introduce a higher level of physical approx-
imation by considering a discretization based on the exact solution of the
Riemann problem at each interface between computational points; when
the local Riemann problem is solved approximatively, we talk about Rie-
mann solvers.

The following sections present the basic principle of Godunov schemes and
the Riemann approximate solver of Roe.

Godunov-Type Schemes

The basic principle of a Godunov-type scheme is the following: the solution
Wn is considered to be piecewise constant over each grid cell defined as the
interval

]
xj−1/2, xj+1/2

[
; this allows us to define locally a Riemann problem

at each interface between the cells; each local Riemann problem is solved
exactly to calculate the solution Wn+1 at the next time level.

n+1

j−1 j+1jx

t

W
W

W

n
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n
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~

x

W
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Fig. 10.7. Principle of a Godunov-type scheme.

More precisely, the numerical solution is advanced from time level tn = nδt
to tn+1 = tn + δt in three steps (see Fig. 10.7):

Step 1. Using the known values Wn
j , define the piecewise constant function

Wn(x) = Wn
j , x ∈ ](j − 1/2)δx, (j + 1/2)δx[ . (10.44)



10.3 Numerical Solution 229

Step 2. Calculate the solution function W̃n+1(x), x ∈ ](j − 1/2)δx, (j +
1/2)δx [ by gathering the exact solutions of the two Riemann problems
defined at interfaces

(
j − 1

2

)
and

(
j + 1

2

)
. This step requires that the waves

issued from the two neighboring Riemann problems not intersect. This
implies that the time step should be limited such that

max
j

(|U | + a)n
j+1/2

δt

δx
≤ 1

2
. (10.45)

Step 3. Obtain the solution Wn+1(x), which is also a piecewise constant
function, by averaging W̃n+1(x) over each cell:

Wn+1
j =

1
δx

∫ (j+1/2)δx

(j−1/2)δx

W̃n+1(x)dx. (10.46)

We can show that the Godunov scheme can be written in the following
conservative form:

Wn+1
j − Wn

j

δt
+

Φ(Wn
j , Wn

j+1) − Φ(Wn
j , Wn

j−1)
δx

= 0, (10.47)

where the flux vector is generally defined as

Φ(Wn
j , Wn

j+1) = F (W̃n+1
j+1/2). (10.48)

The advantage of the conservative form is that it is valid over the entire domain
of definition of the problem, even though the solution is discontinuous. This
form is also used to derive approximate Riemann solvers. The exact form of
the flux vector will be presented in the next section for the Roe solver.

Roe’s Approximate Solver

The approximate solver of Roe is based on a simple and ingenious idea: the
Riemann problem (10.7) at interface

(
j + 1

2

)
is replaced by the linear Riemann

problem

∂W̃

∂t
+ Aj+1/2

∂W̃

∂x
= 0, W̃ (x, nδt) =

{
Wn

j , x ≤
(
j + 1

2

)
δx

Wn
j+1, x >

(
j + 1

2

)
δx

(10.49)

The first question raised by this approach is how to properly define the matrix
Aj+1/2, which depends on Wn

j and Wn
j+1. This matrix is a priori chosen such

that:

1. The hyperbolic character of the initial equation is conserved by the linear
problem; hence Aj+1/2 admits a decomposition similar to (10.12):

Aj+1/2 = Pj+1/2 Λj+1/2 P−1
j+1/2. (10.50)

In order to take into account the sign of the propagation speed of charac-
teristic waves, it is useful to define the matrices following:
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• sign(Aj+1/2) = Pj+1/2 (sign(Λ)) P−1
j+1/2, where sign(Λ) is the di-

agonal matrix defined by the signs of the eigenvalues λl: sign(Λ) =
diag(signλl).
• |Aj+1/2| = Pj+1/2|Λ|P−1

j+1/2, where |Λ| = diag(|λl|).
2. The linear Riemann problem is consistent with the initial problem, i.e.,

for all variables u,
Aj+1/2(u, u) = A(u, u). (10.51)

3. The numerical scheme is conservative, i.e., for all variables u and v,

F (u) − F (v) = Aj+1/2(u, v)(u − v). (10.52)

For the practical calculation of the matrix Aj+1/2, the original idea of Roe
was to express the conservative variables W and conservative fluxes F (W )
in (10.18) as quadratic forms of the components of the column vector Z =√

ρ(1, U, H)t = (z1, z2, z3)t:

W =

⎛⎝ z2
1

z1z2
1
γ z1z3 + γ−1

2γ z2
2

⎞⎠ , F (W ) =

⎛⎝ z1z2
γ−1

γ z1z3 + γ−1
2γ z2

2
z2z3

⎞⎠ . (10.53)

Using the following identity, valid for arbitrary quadratic functions f, g,

(fg)j+1 − (fg)j = f̄(gj+1 − gj) + ḡ(fj+1 − fj), where f̄ =
fj+1 + fj

2
,

we can find two matrices B̄ and C̄ such that{
Wj+1 − Wj = B̄(Zj+1 − Zj),
F (Wj+1) − F (Wj) = C̄(Zj+1 − Zj).

(10.54)

This implies that

F (Wj+1) − F (Wj) = (C̄ B̄−1)(Wj+1 − Wj), (10.55)

which corresponds exactly to (10.52). Consequently, a natural choice for the
matrix Aj+1/2 will be

Aj+1/2 = C̄ B̄−1. (10.56)

A remarkable property of this matrix (the reader is invited to derive it as an
exercise!) is that it can be calculated from (10.8) by replacing the variables
(ρ, U, H) with the corresponding Roe’s averages

ρ̄j+1/2 = Rj+1/2ρj , Ūj+1/2 =
Rj+1/2Uj+1 + Uj

1 + Rj+1/2
, H̄j+1/2 =

Rj+1/2Hj+1 + Hj

1 + Rj+1/2
,

ā2
j+1/2 = (γ − 1)

(
H̄j+1/2 −

Ū2
j+1/2

2

)
, where Rj+1/2 =

√
ρj+1

ρj
. (10.57)
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It is also remarkable that eigenvalue and eigenvector formulas (10.10) and
(10.11) still apply to Aj+1/2 if one uses the corresponding Roe’s averaged
variables. This considerably simplifies the calculation of matrices sign(Aj+1/2)
and |Aj+1/2|, which accounts for the popularity of Roe’s approximate solver.

Once the matrix Aj+1/2 is defined, the upwinding in Roe’s scheme follows
the general principle of first-order upwind schemes applied to linear systems
(see, for instance, Hirsch (1988) for more details). The flux in the general
conservative form (10.47) becomes for Roe’s solver

Φ(Wn
j , Wn

j+1) =
1
2
{
F (Wn

j ) + F (Wn
j+1) − sign(Aj+1/2)[F (Wn

j+1) − F (Wn
j )]

}
,

(10.58)
or, if we use (10.52),

Φ(Wn
j , Wn

j+1) =
1
2
{
F (Wn

j ) + F (Wn
j+1) − |A|j+1/2[Wn

j+1 − Wn
j ]

}
. (10.59)

To summarize, Roe’s scheme will be used in the form

Wn+1
j = Wn

j − δt

δx

[
Φ(Wn

j , Wn
j+1) − Φ(Wn

j , Wn
j−1)

]
, (10.60)

with the flux Φ given by (10.59); the matrix |Aj+1/2| = Pj+1/2|Λ|P−1
j+1/2 will

be calculated using Roe’s averages (10.57) in (10.12) and (10.13).

Remark 10.2. Roe’s scheme is first-order accurate in time and space.

Exercise 10.4. Use Roe’s scheme (10.60) to solve numerically the shock tube
problem (Sod’s parameters). Compare to the numerical results previously ob-
tained using centered schemes.

The results obtained using Roe’s scheme are displayed in Fig. 10.8. Com-
pared to centered schemes, the numerical solution is smooth, without oscilla-
tions. The shock wave is accurately and sharply captured, but the scheme
proves too dissipative around the contact discontinuity, which is strongly
smeared.

More accurate Riemann solvers can be derived in the framework of
Godunov-type schemes by increasing the space accuracy. For example, we
can use piecewise linear functions in steps 1 and 3 of the Godunov scheme to
obtain solvers of second order in space. Several other approaches have been
proposed in the literature to include more physics in the numerical discretiza-
tion, leading to other classes of numerical methods, including TVD (total
variation diminishing) and ENO (essentially nonoscillatory) schemes, which
are now currently used to solve hyperbolic systems of PDEs. The reader who
wishes to pursue the study of upwind schemes beyond this introductory pre-
sentation is referred to more specialized texts such as Fletcher (1991); Hirsch
(1988); LeVeque (1992); Saad (1998).
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Fig. 10.8. Numerical computation of the shock tube problem (Sod’s parameters)
using Roe’s approximate solver.

10.4 Solutions and Programs

The exact solution of the shock tube problem for a given time value t is
computed in the script HYP shock tube exact.m. The compatibility relation
(10.29) is implemented as an implicit function (i.e., f(x) = 0) in the script
HYP mach compat.m; this function is used as the first argument of the MAT-
LAB built-in function fzero to compute the root corresponding to the value of
Ms. The final solution, containing the discrete values for (ρ, U, p), is computed
according to relations in Sect. 10.2.2. Note the use of the MATLAB built-in
function find to compute the abscissas x separating the different regions of
the solution.

The main program resulting from successively solving all the exercises of
this project is HYP shock tube.m. After defining the input data (which are the
parameters of regions (L) and (R)) as global variables, the space discretization
is built and the solution is initialized using Sod’s parameters. Three main
arrays are used for the computation:

usol(1:3,1:M) to store the nonconservative variables (ρ, U, p)t,
w(1:3,1:M) for the conservative vector W = (ρ, ρU, E)t,
and F(1:3,1:M) for the conservative fluxes F (W ).

The program allows one to choose among three numerical schemes: Lax–
Wendroff, MacCormack, and Roe. When a centered scheme is selected, the
value of the artificial dissipation is requested. The numerical solution is su-
perimposed on the exact solution using the function HYP plot graph imple-
mented in the script HYP plot graph.m. The most important functions called
from the main program are:

• HYP trans usol w: computes W = (ρ, ρU, E)t from usol = (ρ, U, p)t;
• HYP trans w usol: computes usol = (ρ, U, p)t from W = (ρ, ρU, E)t;
• HYP trans w f: computes F = (ρU, ρU2 + p, (E + p)U)t from W =

(ρ, ρU, E)t;
• HYP calc dt: computes δt = cfl·δx/(|U | + a) from W = (ρ, ρU, E)t.

All these functions are written with a concern for transparency with respect
to the mathematical formulas. For this purpose, the vectorial programming
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capabilities of MATLAB were used. Let us explain in detail this technique for
the predictor step of the Lax–Wendroff scheme (see Fig. 10.4):
• the flux F (W ) is computed from W values for all j = 1, . . . , M components

F = HYP trans_w_f(w);

• the artificial dissipation vector is added following (10.42); we use the MAT-
LAB built-in function diff to compute differences Wj − Wj−1; these differ-
ences are computed along the rows of the array w and only for j ≥ 2; according
to the left-boundary conditions, the artificial dissipation vector will be com-
pleted by zeros for j = 1:

F = F-Ddx*[zeros(3,1) diff(w,1,2)];

• the intermediate solution W̃ is computed only for the components j =
1, . . . , M − 1:

wtilde=0.5*(w(:,1:M-1)+w(:,2:M))-0.5*dt/dx*(F(:,2:M)-F(:,1:M-1));

A similar MATLAB code will be written for the corrector step, having in
mind that for this step, right-boundary conditions apply, and consequently,
only the components j = 2, . . . M − 1 of Wn+1 are computed:

Ftilde = HYP trans_w_f(wtilde);
Ftilde=Ftilde-Ddx*[diff(wtilde,1,2) zeros(3,1)];
w(:,2:M-1)=w(:,2:M-1)-dt/dx*(Ftilde(:,2:M-1)-Ftilde(:,1:M-2));

Particular attention was devoted to the implementation of Roe’s scheme,
which requires a separate function HYP flux roe to compute the conservative
flux Φ. In order to reduce memory storage, the flux at the interface

(
j + 1

2

)
is computed using this once (and once is not habit!) a for loop and several
local variables that can be easily identified from mathematical relations. Note
also that the analytical form (10.13) for P−1

j+1/2 was used instead of the (time-
consuming) MATLAB built-in function inv, which calculates the inverse of a
matrix.
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