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Regularization 
•  An ill-posed problem can be made 

well-posed by restricting a subset of 
possible solutions 

•  Two questions: 
– How to make sure the subset contains 

only one solution? 
– Will that be the “correct” one? 

•  We can choose a strategy and try to 
answer those question for specific 
method. 



Two methods: 
1.  Search for quasi-solution. Quasi-

solution is the solution that is 
searched for on a subset of all 
possible solutions. 

2.  Replacing the original problem with a 
similar well-posed problem. We replace 
the kernel with the one that gives 
very close g’s for the same f ’s but 
is well behaved. 



• Quasi-solutions. 
One typical problem that is often 
solved with this method is 
deconvolution or the removal of the 
instrumental profile. The original signal 
is registered by an equipment 
described with a PSF           : 
 
 
 
The PSF (kernel) usually quickly drops 
away from the center but never goes 
below zero.  
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In many cases a Gaussian is a good 
model for the PSF: 
 
 
The Fourier transform is defined as: 
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One interesting property of Fourier 
transform is relevant for the convolution: 
 
 
 
Another interesting property is that the 
Fourier transform of a Gaussian is a 
Gaussian. Assuming that we know the 
instrumental profile (PSF) we can formally 
perform deconvolution: 
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In practice, the     and     are known on a 
discrete grid with certain measurement 
errors. The noise has frequency-
independent spectrum, so the Fourier 
transform of the kernel and the 
measurements would look something like 
this: 
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Quasi-solution: Let’s restrict ourselves with 
solutions containing only low frequencies, for 
example, from 0 up to the point where the 
transform of the kernel becomes equal to    . 
In more sophisticated cases one may try to 
create a model for the noise spectrum and 
use that for the cut-off. The solution is stable 
and unique and it will actually approach the 
true f, as the S/N is improved. 
Note, that narrow spectrum of K means that 
the kernel decays slowly making our 
constraints on the solution more strict. 
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One excellent example of use of Quasi-solution 
method: the study of extended atmosphere of red 
giant stars in eclipsing binary systems. We observe 
light curves of the secondary as it shines through 
the atmosphere of the giant star and derive T and P 
as functions of radius. Unique solution is found if T 
and P are assumed to be monotonous functions of 
the radius decreasing outwards. 
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Let look at the iterations: 
•  Get T(r) and P(r) from a model 

atmosphere 
•  Compute molecular-ionization equilibrium 

to get partial number densities 
•  Get opacities and optical path 
•  Adjust source function, get new 

temperature structure 
•  Re-compute model atmosphere 
•  Iterate  



Regularized functional 
•  We are going to replace the functional 

which results in an ill-posed problem with 
another functional which is close, has better 
properties and behaves in a predictable way. 

•  Strictly speaking we want to replace          with 
              where for measurement error             
there are numbers     and           such that for 
all measurements within the error bars                           
the solutions minimizing       form a compact 
set around the true solution:  
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One example of using regularization in numerical 
methods is the approximate calculation of 
derivative: 
 
 
Assuming that a sequence of f  will converge to the 
true derivative as              we find an ill-posed 
problem. If a numerical representation can be split 
in a true value and rounding error 
then the approximation can be re-written as: 
 
 
 
and                                             but 
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•  In order to keep our estimate reasonable we 
have to keep                          . 
For smaller     the errors will dominate our 
estimates. 

•  We can generalize this idea and introduce a 
positive functional               that is defined for 
all f ’s and has a property that for a given     
only a compact subset of f ’s fulfills the 
condition: 

•  The compactness means that for a given d any 
pair of f ‘s such that:                and 
                is closer than certain 
and for   
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•  In 1943 Tikhonov proved that if such 
can be found 
 
 
is a regularized functional, stable against 
small perturbations in g’s. 

•  The idea behind is that we may have many 
solutions f  such that 
but only a compact number of them will 
result in small    ‘s. If more then one solution 
exists they would be close to each other and     
can be selected such as to make the 
solution unique. 
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      is called the regularizing functional. Now 
instead of solving the problem searching for 
minimum of      , we will search for the 
minimum of      . One can also think of this as 
of conditional minimization where the relative 
weight of additional condition(s) is 
determined by Lagrangian multiplier     also 
known as the regularization parameter. 
We would like to find the regularization 
function such that it will make the search for 
minimum of      a well-posed problem while     
can be adjusted depending on 
measurements to ensure uniqueness. 
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3 big questions: 

•  Is there a general form of      that will ensure 
the stability and uniqueness of the solution? 

•  How do we choose the regularization 
parameter    ? 

•  Can we say anything about the relation 
between the properties of g’s and resulting 
solution for f ’s minimizing     ? 
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Tikhonov theorem: regularizing 
functional 

 In 1D case for functions defined on a finite 
interval: 
 
 
 
the functional: 
 
 
 
with any non-negative functions         and          
regularizes the problem. 

∫ ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

b

a

dyyqfypf
dy
df

2
2 )()()(R

∫ ==
b

a

xgdyyfyxKf )()(),(K

)(xq p(x)



 Can we prove that? For a linear operator: Yes. 
Suppose we have two different solutions       and 
      that minimize     . Let’s construct a linear 
combination: 
The regularized functional becomes now a 
simple quadratic function of     : 
 
 
with: 
 
 
 
 
 
Thus           has only one minimum! 
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•  In case of nonlinear kernel the prove is not 
that easy. One can define special classes of 
kernels for which the uniqueness can be 
proven. One class important for 
astrophysical applications is when the kernel 
is a monotonous in f . 

•  The regularization parameter      in theory 
can be predicted if the error bars of the 
measurements are known. Unfortunately, in 
practice the model often contains additional 
tuning parameters, systematic errors etc. 
Instead we adjust     as we approach the 
solution. 
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•  The regularizing functional above is called 
Tikhonov regularization. Other regularizing 
functional forms: 
–  Maximum entropy (MEM) 
–  Maximum likelyhood 

•  MEM. Entropy in information theory has 
been introduced by Shannon in 1948 as the 
information content of the probability 
distribution: 
The information content does not depend on 
the physical units so       are unitless, e.g.: 
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•  The regularization is achieved by 
maximizing the entropy so the 
regularized functional will be: 
 
 

•  Home work: 
Implement Tikhonov regularization 
assuming                  and 
and MEM regularization. 
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