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Now that we know the theory,
let’s try an application:

* Problem: Optimal filtering of 1D and 2D data
« Solution: formulate an inverse problem
* Refinement: add regularization

« See what happens



Problem

In 1D we have a bunch of measured
points on some grid

We simplicity, let's assume an equispaced
grid
Thus we have a vector of measurements:

gi = [
with associated uncertainties o; (wq; =3 / 02-2 )

Let's formulate an inverse problem:

Zwi i — 9@]2 = min



Analysis

* This looks too trivial, but we know the

solution may not be unique since we have
measurement errors

» Let's look for the smoothest solution that
still matches the error bars:
Q(f) = Z wi [fi — g7 + A Z (fir1 — fi)°
i=1,n i=1,n—1
* We actually use Tikhonov regularization to
Impose extra constraint



Formal solution

 Now the solution becomes non-trivial
o |et’'s take the derivatives and set them to zero:

a0 wi (fi = gi) + A(fi = fir) i—1
E:O: wi (fi —gi) +A2Cfi — fici+ fiy1) 1<i<n
Z wi (fi —gi) + A(fi — fiz1) i=n

* This is a system of 7 linear equations
* We can rewrite it in a more familiar form:

wif1  + A(fl — f2) — Wi1dg1
w; [ T A(in — Jic1 — fi—l—l) —  Wig;
Wnfn A(fn — fn—l) —  Wndn




Formal solution (cont’'d)

The matrix is tri-diagonal; other elements are 0
Off-main-diagonal elements are all —A

Main diagonal contains w; + A for the first and
the last equation and w; + 2A elsewhere

This is easy to solve — no iterations needed

Uncertainty-based weights adjust the balance
between measurements and regularization:
precise measurement has higher weight and
dominates local gradient control



Generalization

 What happens if we would like to apply higher
order regularization?

« E.g. if we want to constrain also the amplitude
and the 2"d derivative?

Q(f) = Z wi [fi — i +

1=1,n

+A02f¢2+/\1 Z (fix1 — fi)*+

i=1,n—1
#As 7 (forr o+ fior — 2£)* = min
1=2,n—1

* The matrix now has 5 non-zero diagonalis!



Adding dimensions
What happens in 2D?

Qf) =

D i Wi [ fig — 9@;‘]2 +
A Y (fig1y — fig)*+
Ao > (fiie1 — fij)? = min

Nothing really, just more book keeping

If we decide to number grid points with i running
faster (0<i<n+1) then sub-diagonals immediately
below and above will contain A;

There will be two more sub-diagonals »; with A
elements below and above the main diagonal



Subtracting background from
the 2D FUSE ¢

 Observation

« Background
model based on
optimal filtering

* Clean spectrum



Questions

« What will happen if we add 2"9 derivatives
in 2D case”?

* What happens in places where the
weights are zero?

« Can you program this and try?



Relation to Singular Value
Decomposition

* |n SVD the matrix of a linear problem is
represented by a product of three matrices.

Af=UBV'f=g
* The middle one is diagonal and consists of
eigenvalues of A

 The SVD solution is found as:
f=VDU!yg
where D is the inverse of B with all zero
eigenvalues replaced by a constant



Relation to Singular Value
Decomposition

* One have shown that replacing the original
problem with a regularized one (Tikhonov):
Af=g—Af+ARf =g

results in modifying the diagonal elements of D:

1 0

\
/4

; O',L-2—|—A2

 Thus the inversion of B will not lead to division
by 0 and the problem will have a unique solution



Relation to optimal (Wiener)
filtering

* The formulation for the optimal filtering is
somewhat different. We assume that we
measure a signal g=f+w where w is a
normally distributed noise. Noise is
additive and uncorrelated with the signal!

* The problem is to find a filter F that damps
the noise in the most probable sense. The
expectation estimate is:

E|f—F(f +w)|| = max



Relation to optimal (Wiener)
filtering

« The optimal filter function F is what we try to construct

* For discrete sampling the filter function can be
represented as a matrix:

F(g)l, =) piujg.

where matrix u is constructed based on the noise

spectrum while p are the so-called Wiener factors. Using

Tikhonov regularization sets them to:

2
o

0% + A2
where sigma’s are eigenvalues of matrix ¥ making
solution unique.

Pi =



Next step

* We will look at more advanced
optimization techniques

* Then we will start looking into very
relevant astrophysical examples



