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Now that we know the theory, 
let’s try an application: 

•  Problem: Optimal filtering of 1D and 2D data 
 

•  Solution: formulate an inverse problem 
 

•  Refinement: add regularization 
 

•  See what happens 



Problem 
•  In 1D we have a bunch of measured 

points on some grid 
•  We simplicity, let’s assume an equispaced 

grid 
•  Thus we have a vector of measurements: 

 
with associated uncertainties 

•  Let’s formulate an inverse problem: 

gi ⇡ fi
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Analysis 

•  This looks too trivial, but we know the 
solution may not be unique since we have 
measurement errors 

•  Let’s look for the smoothest solution that 
still matches the error bars: 
 
 

•  We actually use Tikhonov regularization to 
impose extra constraint 
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Formal solution 

•  Now the solution becomes non-trivial 
•  Let’s take the derivatives and set them to zero: 

 
 
 

•  This is a system of n linear equations 
•  We can rewrite it in a more familiar form: 

!1f1 + ⇤(f1 � f2) = !1g1
!ifi + ⇤(2fi � fi�1 � fi+1) = !igi
!nfn + ⇤(fn � fn�1) = !ngn
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!i (fi � gi) + ⇤(fi � fi+1) i = 1
!i (fi � gi) + ⇤(2fi � fi�1 + fi+1) 1 < i < n
!i (fi � gi) + ⇤(fi � fi�1) i = n



Formal solution (cont’d) 

•  The matrix is tri-diagonal; other elements are 0 
•  Off-main-diagonal elements are all 
•  Main diagonal contains              for the first and 

the last equation and                elsewhere 
•  This is easy to solve – no iterations needed 
•  Uncertainty-based weights adjust the balance 

between measurements and regularization: 
precise measurement has higher weight and 
dominates local gradient control 
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Generalization 
•  What happens if we would like to apply higher 

order regularization? 
•  E.g. if we want to constrain also the amplitude 

and the 2nd derivative? 
 
 
 
 
 
 
 

•  The matrix now has 5 non-zero diagonals! 
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Adding dimensions 
•  What happens in 2D? 

 
 
 
 

•  Nothing really, just more book keeping 
•  If we decide to number grid points with i running 

faster (0<i<ni+1) then sub-diagonals immediately 
below and above will contain 

•  There will be two more sub-diagonals ni with 
elements below and above the main diagonal 
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Subtracting background from 
the 2D FUSE spectra 

•  Observation 
 

•  Background 
model based on 
optimal filtering 
 
 

•  Clean spectrum 



Questions 

•  What will happen if we add 2nd derivatives 
in 2D case? 

 
•  What happens in places where the 

weights are zero? 
 

•  Can you program this and try? 
 



Relation to Singular Value 
Decomposition 

•  In SVD the matrix of a linear problem is 
represented by a product of three matrices. 
 

•  The middle one is diagonal and consists of 
 eigenvalues of A 

•  The SVD solution is found as: 
 
where D is the inverse of B with all zero 
eigenvalues replaced by a constant 

Af = UBVT f = g

f = VDUT g



Relation to Singular Value 
Decomposition 

•  One have shown that replacing the original 
problem with a regularized one (Tikhonov): 
 
results in modifying the diagonal elements of D: 
 
 
 

•  Thus the inversion of B will not lead to division 
by 0 and the problem will have a unique solution 
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Relation to optimal (Wiener) 
filtering 

•  The formulation for the optimal filtering is 
somewhat different. We assume that we 
measure a signal g=f +w where w is a 
normally distributed noise. Noise is 
additive and uncorrelated with the signal! 

•  The problem is to find a filter F that damps 
the noise in the most probable sense. The 
expectation estimate is: 

Ekf � F(f + w)k = max



Relation to optimal (Wiener) 
filtering 

•  The optimal filter function F is what we try to construct 
•  For discrete sampling the filter function can be 

represented as a matrix: 
 
 
 
where matrix u is constructed based on the noise 
spectrum while p are the so-called Wiener factors. Using 
Tikhonov regularization sets them to: 
 
 
where sigma’s are eigenvalues of matrix u making 
solution unique. 
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Next step 

•  We will look at more advanced 
optimization techniques 
 

•  Then we will start looking into very 
relevant astrophysical examples 


