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Finding minimum
 Conjugate gradient search. In a simple 

gradient search we follow the direction of the 
local gradient on each iteration ignoring the 
information from previous steps: 
 
 
The algorithm is not very efficient as the 
linear approximation is no good for the 
search in multiple dimensions. One can 
notice that the consecutive steps are going 
in the right direction, so combining 
consecutive gradients may speed up 
convergence.



 Instead of searching along the 
gradient, we will construct the search 
direction step-by-step: 
 
 
The simplest way is to linearly combine 
all the gradients with highest weight 
assign to the latest one:
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 Other popular forms of linear 
combination were proposed by 
Fletcher & Reeves: 
 
 
 
and Polak & Ribière: 





Example in 2D

Gradient search needs 30 iterations 
following complex zigzag path  

Conjugate gradients reach the same 
goal in 19 iterations  
 
You can find my IDL code here

http://www.astro.uu.se/~piskunov/TEACHING/INVERSE_PROBLEMS/conjugate_gradients.pro


• The theory predicts that the number of 
iterations equal to the number of 
variables is needed to achieve nearly 
quadratic approximation to the 
minimized function. 

• After that it is worth resetting the 
direction to the pure gradient to avoid 
excessive accumulation of numerical 
errors. 

• There are many different ways of 
combining gradients but the gain is 
marginal.



Higher order methods

• Newton 
• Levenberg-Marquardt 

We will visit them later in the course



Selecting the regularization parameter

1. When the observation errors are 
known the regularization parameter 
    is selected so that             matches 
the errors 

2. Otherwise we should study a sequence 
of    . For each      we find minimum  
of      and the corresponding    .  The 
key dependence is           .
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Selecting the regularization parameter

 We would expect       to decrease with 
decreasing     until certain level where it 
start behaving erratically:
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Testing stability of the solution

Once the optimal     is selected on can run 
two tests: 

1. Changing the initial guess 
2. Perturbing the observations
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 Testing stability against the observational 
errors: 
 In practice g’s are measured with 

certain accuracy. We can simulate that 
in our model by adding noise: 
 
Without regularization the solution 
becomes unstable, that is for each 
realization of errors  get very different 
solutions. The following example shows 
one realisation of errors corresponding 
to signal-to-noise ratio of 10.
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Regularization is too low



Regularization is optimal. 
When regularization is added in the 
right proportion we get a stable solution 
reasonably close to the true one:



Now trying a different initial guess



Maximum Entropy Regularization 
 
Regularization 
is given by: 
 

where: 
 
 
The gradient 
is then:
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A Simplified form of Maximum Entropy 
Regularization 
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Maximum entropy regularization
• Since we have to “maximize” the entropy, 

the corresponding functional  has to 
subtracted when constructing 

• The           “encourages” the solution to 
be close to the mean value, so a good 
test is to increase     and see if the 
solution comes closer to a horizontal line 

• MEM regularization cannot handle non-
positive values: apply an offset! 
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MEM regularization with different initial guesses



MEM regularization with different initial guesses



• Unfortunately MEM can create multiple 
local spurious minima (unlike Tikhonov 
regularization). The tactical approach is to 
start with large regularization parameter 
and decrease it as we are getting close to 
the solution. The procedure should stop 
when       reaches the level of 
observational errors. 

• With Tikhonov regularization that is not 
necessary: we can use constant 
regularization parameter for the whole 
search.
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Maximum likelihood
• For linear inverse problems the functional is 

represented by a rectangular matrix. In that 
case we would have to solve a system of 
linear equations where the number of 
equations is often larger than the number of 
unknowns. 

• The method of choice is the Singular Value 
Decomposition (SVD, Num. Rec.). 

• The statistical interpretation is that this 
method gives “the most likely” of all possible 
solutions (median of the distribution).



Next more serious example
• The PSF of a spectrometer is very important 

for detailed studies of line shapes and radial 
velocities. How to determine the PSF? 

• Consider observations of a known 
absorption or emission spectrum. If the lines 
are unresolved (but not too dense) such 
spectrum can be used to derive the PSF. 



 The problem is a typical convolution 
type integral equation: 
 
 
 
 
where      is the known spectrum (e.g. 
Iodine cell at +75° C measured with an 
Fourier Transform Spectrometer),       
is the unknown PSF and the measured 
spectrum is    .
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Home work for the next time

• Upgrade your minimization code to 
conjugate gradients search 

• Try minimization with the noise in g‘s 
and Tikhonov regularization 

• Start thinking about application of 
inverse problem to your research


