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Non-linear least square fit
 The (conjugate) gradient search has one 

important problem which often occurs during 
Least Square Fit (LSF): the value of 
discrepancy       has not enough dynamic range 
to hold the contribution from all data points.  
This can be illustrated using the DI problem: 
the elements below the equator have significant 
contribution in just a few phases but when all 
wavelength and phases are combined, the 
contribution of such elements may be 
vanishingly small.
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• One could notice that the corresponding 
components of the gradient are small but 
not negligible while the        does not 
change if we modify (a little) the 
corresponding surface elements. 

• In case when we compare the observations 
with synthetic values the discrepancy does 
not have to be characterized by a single 
number. Instead we can try to keep the 
differences in each individual data point  
(        , in case of DI) in a single vector.
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Second order optimization
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• If we can find a way to compute second 
derivatives we should be able to obtain the 
corrections to the f ’s and we don’t need to 
search for the step size! 

• In practice this is close to impossible: 
• Very seldom we can compute second 

derivative analytically, approximate 
calculations are major source of numerical 
errors; 

• For large number of free parameters the size of 
the matrices becomes prohibitively large.



Levenberg-Marquardt method
Compare the quadratic approximation:  
 
 
 
with the gradient search:  
 
 
where:
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The expression for the second derivatives 
consists of two parts: 
 
 
 
 
 
 
The first part is nothing new compared to 
the gradient search. The result is a 
symmetric matrix. The second part is the 
main source of numerical errors but it will 
become negligible close to the minimum.
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• We will ignore the second derivatives of 
g’s as the main source of numerical errors 
assuming that out model calculations is 
realistic enough and close to minimum the 
second part (summed over all observations) 
will vanish anyway. 

• Far from minimum our quadratic 
approximation is probably bad and the 
simple gradient search seems to converge 
robustly there, so let’s try to combine the 
two methods with a smooth transition from 
gradient search far from the minimum to 
the quadratic method close in.



 First, let us write the two methods in the 
matrix form:
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 In fact, this will work better if would use 
additional information about the step size 
along different directions:



• With large c  the system turns to gradient 
search while for small c  it follows the 2nd 
order approximation. 

• Clever way of adjusting c is as following: 
 
1° Select the initial (large) value of c  
2° Compute gradient of  
3° Construct matrix         and RHS  
4° Try smaller/larger c - whichever  
    decreases  
5° Once optimal  c  is found, re-compute  
    gradient and continue from 3°
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• In practice, there is more than one way of selecting 
parameter c and, therefore, calculating the next 
step. Often it is worth adjusting c as we go: 
compute gradient, construct        and keep 
adjusting c until minimum of        is found. 

• The matrix         is symmetric. LU decomposition 
can be stored in place of the original matrix and 
allows for quick solution. Thus for the adjustment 
of c we don’t need to solve the whole system of 
linear equations from scratch or even to restore the 
original matrix.
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Parallelization
• MPI – Message Passing Interface 
• MPI is better suited for problems where individual 

processors need access to a small fraction of the 
computational domain and communication takes 
small time compared to the calculations 

• MPI allows each processor to figure out its number 
and perform two type of communications: 
processor to processor and  
processor to all processors 

• Two models: Single-Program-Multiple-Data and 
Multiple-Program-Multiple-Data



Gradient of  
 Partial derivative of       over abundance in 

surface element u,v (latitude, longitude) is:  
 
 
 
 
 
and the derivative of the flux is given by:
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Numerical aspects
• The convolution with the instrumental 

profile can be interchanged with the disk 
integration 

• The gradient can be computed in the same 
loop as the flux:
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FORTRAN implementation SPMD
      NTOT=<total job size>!
C!
C Initialization/communication section!
C!
      CALL MPI_INIT(IERR)!
      CALL MPI_COMM_SIZE(MPI_COMM_WORLD, N_PROC,IERR)!
      CALL MPI_COMM_RANK(MPI_COMM_WORLD, MY_PROC,IERR)!
      NCHUNK=NTOTAL/N_PROC!
C!
C Receive from previous processor modify and send to the next!
C!
      IF(MY_PROC.GT.0) THEN!
        CALL MPI_Recv(MY_PROC-1,1,MPI_DOUBLE,VAR,101,MPI_COMM_WORLD,IE)!
        VAR=func(VAR,NCHUNK)!
      ELSE!
        VAR=0.D0!
      ENDIF!
      IF(MY_PROC.LT.N_PROC-1) THEN!
        CALL MPI_Send(MY_PROC+1,1,MPI_DOUBLE,VAR,101,MPI_COMM_WORLD,IE)!
      ENDDO!
  …!
      CALL MPI_FINALIZE(IERR)



Message passing

• Communication sends one variable at the time 
(scalar or array) 

• If the receiving process is not ready, sending 
process waits (blocking communication) 

• Data is temporary stored in a buffer – one for each 
computer 

• Works well on a single machine with multiple 
processors or many machines



MPMD

• Much more complicated 
• Simplest incarnation is Master-Worker(s) 
• Make sense when you can distribute “job 

order” out-of-order 
• One can use “non-blocking” communication 

and the synchronization mechanisms



Parallelization  
(automatic load balance)



Optional:

• For those who are interested I have a demo 
implementation for MPMD in form of two 
FORTRAN programs m.f and p.f 

• You can look at them - they are very 
minimalistic - compile and run them on any 
Linux machine or Mac with MPI installed. 

http://www.astro.uu.se/~piskunov/TEACHING/INVERSE_PROBLEMS/m.f
http://www.astro.uu.se/~piskunov/TEACHING/INVERSE_PROBLEMS/p.f

