
Inverse problems  
 

High-order optimization  
and parallel computing  

Lecture 7
Nikolai Piskunov  
2014

Non-linear least square fit
 The (conjugate) gradient search has one

important problem which often occurs during
Least Square Fit (LSF): the value of
discrepancy has not enough dynamic range
to hold the contribution from all data points.  
This can be illustrated using the DI problem:
the elements below the equator have significant
contribution in just a few phases but when all
wavelength and phases are combined, the
contribution of such elements may be
vanishingly small.

Ω

• One could notice that the corresponding
components of the gradient are small but
not negligible while the does not
change if we modify (a little) the
corresponding surface elements.

• In case when we compare the observations
with synthetic values the discrepancy does
not have to be characterized by a single
number. Instead we can try to keep the
differences in each individual data point  
(, in case of DI) in a single vector.

Ω

φλ,

Second order optimization

2Calc Obs

Calc
Calc Obs

Calc Calc 2 Calc2
Calc Obs

2

min

() min

2 ()

2

1 10
2 2

i i

i
i i

ij j

i i i
i i

ij k j k j k

k
kj j k j

g f g

gg f g
f f

g g gg g
f f f f f f

f
f f f f

Δ

" #Ω = − =& '

∂∂Ω " #= −& '∂ ∂

) *∂ ∂ ∂∂ Ω + +" #= + −, -& '∂ ∂ ∂ ∂ ∂ ∂+ +. /

∂Ω ∂ Ω ∂Ω
= ⇒ = −

∂ ∂ ∂ ∂

∑

∑

∑

∑

!

!

• If we can find a way to compute second
derivatives we should be able to obtain the
corrections to the f ’s and we don’t need to
search for the step size!

• In practice this is close to impossible:
• Very seldom we can compute second

derivative analytically, approximate
calculations are major source of numerical
errors;

• For large number of free parameters the size of
the matrices becomes prohibitively large.

Levenberg-Marquardt method
Compare the quadratic approximation:  
 
 
 
with the gradient search:  
 
 
where:

∑ =Δ

k
jkjk f bA

1
j jf

step
Δ× = b

j
j

kj
jk fff ∂

Ω∂
−=

∂∂

Ω∂
=

2
1 ,

2
1 2

bA

The expression for the second derivatives
consists of two parts: 
 
 
 
 
 
 
The first part is nothing new compared to
the gradient search. The result is a
symmetric matrix. The second part is the
main source of numerical errors but it will
become negligible close to the minimum.

[]
!"

!
#
$

∂∂

∂
−+

!'

!
(
)

+
∂

∂

∂

∂
=∑

kj

i
ii

i k

i

j

i
jk

ff
ggg

f
g

f
g

Calc2
ObsCalc

CalcCalc

A

• We will ignore the second derivatives of
g’s as the main source of numerical errors
assuming that out model calculations is
realistic enough and close to minimum the
second part (summed over all observations)
will vanish anyway.

• Far from minimum our quadratic
approximation is probably bad and the
simple gradient search seems to converge
robustly there, so let’s try to combine the
two methods with a smooth transition from
gradient search far from the minimum to
the quadratic method close in.

 First, let us write the two methods in the
matrix form:

()1
2

jk k j
k

jk k j
k

jk jk k j
k

f

c f

c f

δ

δ

Δ

Δ

Δ

=

⋅ =

+ ⋅ =

∑

∑

∑

A b

b

A b

 In fact, this will work better if would use
additional information about the step size
along different directions:

• With large c the system turns to gradient
search while for small c it follows the 2nd
order approximation.

• Clever way of adjusting c is as following: 
 
1° Select the initial (large) value of c  
2° Compute gradient of  
3° Construct matrix and RHS  
4° Try smaller/larger c - whichever  
 decreases  
5° Once optimal c is found, re-compute  
 gradient and continue from 3°

jkA jkb

Ω

Ω

• In practice, there is more than one way of selecting
parameter c and, therefore, calculating the next
step. Often it is worth adjusting c as we go:
compute gradient, construct and keep
adjusting c until minimum of is found.

• The matrix is symmetric. LU decomposition
can be stored in place of the original matrix and
allows for quick solution. Thus for the adjustment
of c we don’t need to solve the whole system of
linear equations from scratch or even to restore the
original matrix.

jkA

jkA
Ω

Parallelization
• MPI – Message Passing Interface
• MPI is better suited for problems where individual

processors need access to a small fraction of the
computational domain and communication takes
small time compared to the calculations

• MPI allows each processor to figure out its number
and perform two type of communications:
processor to processor and  
processor to all processors

• Two models: Single-Program-Multiple-Data and
Multiple-Program-Multiple-Data

Gradient of
 Partial derivative of over abundance in

surface element u,v (latitude, longitude) is:  
 
 
 
 
 
and the derivative of the flux is given by:

Ω

Calc
Calc Obs

1 1 1 1

2

2 (4)
uv uv

uv u v u v uv uv

R
R R

Z Z
Z Z Z Z Z

λφ
λφ λφ

λφ

− + − +

∂∂Ω
& '= ⋅ − +) *∂ ∂

+ Λ ⋅ − − − −

∑

Ω

Calc (, ,)
uv

uv uv

R dI u v
Z dZ
λφ λ λ µ

µ σ+Δ
∂

= ⋅ Δ
∂

Surface
element

Numerical aspects
• The convolution with the instrumental

profile can be interchanged with the disk
integration

• The gradient can be computed in the same
loop as the flux:

Calc

loop over :
 loop over v:
 (, ,)

(, ,)
 uv

uv uv

u

F F I u v
R dI u v
Z dZ

λφ λφ λ λ

λφ λ λ

µ µ σ

µ
µ σ

+Δ

+Δ

= + Δ

∂
= ⋅ Δ

∂

FORTRAN implementation SPMD
 NTOT=<total job size>!
C!
C Initialization/communication section!
C!
 CALL MPI_INIT(IERR)!
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, N_PROC,IERR)!
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, MY_PROC,IERR)!
 NCHUNK=NTOTAL/N_PROC!
C!
C Receive from previous processor modify and send to the next!
C!
 IF(MY_PROC.GT.0) THEN!
 CALL MPI_Recv(MY_PROC-1,1,MPI_DOUBLE,VAR,101,MPI_COMM_WORLD,IE)!
 VAR=func(VAR,NCHUNK)!
 ELSE!
 VAR=0.D0!
 ENDIF!
 IF(MY_PROC.LT.N_PROC-1) THEN!
 CALL MPI_Send(MY_PROC+1,1,MPI_DOUBLE,VAR,101,MPI_COMM_WORLD,IE)!
 ENDDO!
 …!
 CALL MPI_FINALIZE(IERR)

Message passing

• Communication sends one variable at the time
(scalar or array)

• If the receiving process is not ready, sending
process waits (blocking communication)

• Data is temporary stored in a buffer – one for each
computer

• Works well on a single machine with multiple
processors or many machines

MPMD

• Much more complicated
• Simplest incarnation is Master-Worker(s)
• Make sense when you can distribute “job

order” out-of-order
• One can use “non-blocking” communication

and the synchronization mechanisms

Parallelization  
(automatic load balance)

Optional:

• For those who are interested I have a demo
implementation for MPMD in form of two
FORTRAN programs m.f and p.f

• You can look at them - they are very
minimalistic - compile and run them on any
Linux machine or Mac with MPI installed.

http://www.astro.uu.se/~piskunov/TEACHING/INVERSE_PROBLEMS/m.f
http://www.astro.uu.se/~piskunov/TEACHING/INVERSE_PROBLEMS/p.f

