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Lecture 4:
3D hydrodynamic models



Motivation

Basically, what we model in 1D 1s this:

but we really should model 1s this:




Generalization to 3D dynamical models

* Now we have to solve different problem and
different set of time-dependent equations
instead of hydrostatic equilibrium

* The equations describe mass, momentum and
energy conservation:
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Coupling with radiation

The equations get two additional terms
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where the radiative pressure and the radiative
energy flux are given by:
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Complex numerical hydro schemes
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RT Solver: Long & Short Characteristics

Short characteristics
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Long characteristics: Feautrier

We define two new variables U=%21"+ I")

and 1"=Y2(I"- I "). Now we can add/subtract
the two equations of RT and divide the

results by 2:
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2nd grder form of RT

— We substitute the detivative of 17 in the 27d
equation using the expression for | from the 1*
equation:
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— The equations for U and I can be combined to a
single 2n(_i order ODE: n
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Boundary Conditions

Boundary conditions are set in the two ends of
the medium. For the smallest x we can write:

(av)—l d;]v :_sz—é(];’—]v_):
XA

1
=—(I'+1)-I'=U,—-1"
2

For the opposite end we have:
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Finite differences equation have familiar form
(note the sign change):
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Short characteristics:
Attenuation Operator

Solution of RT over one grid cell can be written as:
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T 1s the optical path along the ray, S is a source function

If S can be approximated by a polynomial in T we
can take the integral above analytically:

I(z)=1,(z, ) e ") 4
+ av,iSv,i—l + IBV,iSV,i + 7V,iS

Vv.,i+l

11



A-operator

e Formal solution:
I (T,)=¢" 1b0““d+js (t, 1) e -d

e Source functlon W1th scattering:

S (T)——II (t,u)du+éeB (T)

* Integral equation for the source function:
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We can re-write this in operator form also
known as A (lambda) operator

A = <ﬁ> de e " dt
0

S (t)=(1—-¢€)AS, +€B, (T)+(1-¢€)-e S

Vv

A -operator 1s linear:

Aa-S,+0-S,)=a-AS,+ S-AS,
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N\-iterations

* Recurrency relation:
S, =€B,

Si+1 = (I- g)ASi T SBV+ (1- g)e—TSll/Dound

* Convergence rate:
S™M =(1-€)AS" + B+ (1—¢g)e "™
S"=(1-&)AS"" +eB+(1-g)e 7S
AS" =(1—8)A(AS”_1) (T>1)
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Results

0.00Mm

Relative intensaity

1.5

L
Ln

.G

o

Solar model

Spatially resolved profiles

""""" A L L L L L L
-_-___-‘I-
E— ]
e
= == 1% ]
e b 5
o
: ;_ !
L Fal . —
i % = 808271 [nm] 4 |
L ¥ o= 2223 [ev] §
L log gf = —3.5248 _
L log e = 7.50 4
IIIIIIIII I 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I 1
BOA, 26D BOE.270 EB0E.2E0 08,290

Wavelength [nrm]

15



e 1D static:

* 3D dynamic:
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Supergiants: Betelgeuse

Time evolution

of brightness




Supergiants: Betelgeuse

Star at different wavelengths:

Model: st352m04n33
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Synthetic observables
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Evolution of models

Models started from analytical approach but quickly became
numerical because of complexity of physical processes involved:
nuclear reactions, radiative energy transport, opacities,
convection, turbulence, ionization, magnetic fields, chemistry.

The numerical models are reaching the next level of realism
extending to 3D dynamics and radiative transport. They

reproduce observed properties that could not be possibly
described 1n 1D.

Verification of the models led to more and more sophisticated
simulations of observations (synthetic observables) and to the
analysis of sensitivity of various observables to stellar properties
(e.g. temperature, mass, chemical composition).

Understanding of such relations is so advanced now that we can
formulate and solve inverse problems where we start from

observations and derive stellar parameters. -



Next lecture:

Doaoppler Imaging
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