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e ol N = 7
The goals of this part:
7o get a consistent picture of radiative
energy transport as part of hydrodynamics

of complex media using examples of typical
astrophysical environment

* 70 learn numerical methods and
approximations describing hydrodynamics
and radiative transfer

70 understand the advantages and limitations
of different techniques

e 70 obtain initial experience in programming
RT and HD by getting acquainted with
advanced codes
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Course structure and grading

Structure: The course consists of 2 parts: lectures

and a few exercises.

Grading: In order to complete the course students

would have to attend most of t
the home work, and successftul!

ne lectures, do all
y complete the

basic level exercises in RT and
in 15 points.

HD. This will result



— Logical Sequence
e Basics of RT and Numerical Methods

e Numerical Models of Stellar Atmospheres —
microphysics — NLTE calculations

e Hydro-dynamical equations — detailed description
in 1D — generalization to 3D

e Combining of HD and RT in a single model
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Lecture 1:

Total Recall Radiative transfer
and basic math



mative transfer:

Main Concepts and Definitions

dE, = dA dw dt dv

dEy = dA dw dt d)\ }deﬁmtlon of intensity

[,dA=1,dv, units I, [erg/(s‘cm*rad*Hz)]

b/

dA
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~—Usetul quantities -

Intensity AE =1, [erg/s-cm® - Hz - ster]-At- Ao~ Av-AQ =
= [erg/s-cm2 -/f~ster] At-Ao-AL-AQ
I =1,A%c
Flux [erg/s cm? Hz]

Mean intensity | J, [erg/s-cm? - Hz], Jy [erg/s - cm? - A]

Absorption Al =-a,1,Ax = —k,pl,Ax

coefficient a,=a, -cm'l]; k =k, [cm’® -g_l]
Emission AE = j¥ [erg/s-cm’ - Hz - ster]-At-AV-Av-AQ =
coefficient = o -[erg /s g+ Hzster] A A A D

Optical path Cl"L’V =, (x)-dx = kv (x): 0 dx [unitless!]

Source functiOn Sv = ]1/ / kv [units of intensity!]
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——" Absorption and emission-contain the “true”

part (energy is transferred between the kinetic
energy of the gas and the radiation field) and
the scattering part (energy of absorbed photon
which is returned to the radiation field).

Radiation-dominated gas: pure scattering.

Collision-dominated gas: pure absorption.

In general case:

K\ —k‘)\_l_O')\, S)\ _S)\ _|_S)\
For isotropic scattering and T
thermal equlibrium:

O.

S, =—"—J, +
I L I Lo
VvV 1% 1 % 1%
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One can distinguish 3 types of absorption

processes: Cont
o o Oontnuum
b-b - radiative transitions

- collisional transitions

b-f - ionization and Excited
recombination level

f-f -absorption/emission
Ground

Radiative b-b transitions: absorption, |evel
spontaneous and stimulated emission.

Collisional b-b transitions: excitation and de-
excitation




II/(T;,) = IV(TL) : 6—(75—75) e /

Equation of radiative transfer connects the change
in intensity along a ray as function of absorption

and emission:

dl, = —k,pl, dx + j,pdx

or
dl
— = —1 > S v
dT,

The formal solution (home work 1a: derive this):

/7
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— Critical dependencies

Geometrical, angular, frequency dependence of
opacity k,and source function S,

Dependence of the source function S, on the
radiation field

Number of absorbers (how many absorbers
there is on a given energy level) depend on
local physical conditions and radiation field

Velocity distribution of the absorbers affects
the frequency dependence of x, and S,

Home work 1b: think of some where one of the
above has dramatic effects on radiation field
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Our initial approximations

Time: No time dependence (static)
Geometry: plane-parallel or spherical medium
[sotropy at any depth

Absorbers: Boltzmann level population, Saha
ionization balance, Maxwellian velocity
distribution

Line shapes: identical absorption and emission
profiles = Voigt profile

Local Thermodynamic Equilibrium (LTE, how
good is it?)

We will gradually drop some of the assumptions
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/ Examples

* Photospheres of solar-like stars (convection)

e Giant stars (spherical, anisotropic radiation field,
giant convectiv cells)

e Stellar winds (complex geometry, velocity field,
anisotropic radiation field, NLTE, dynamic)

e Gas clouds (LTE?, external radiation field, different

T, qand Tyag Presence of dust)
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Solar convection and
emerging soectra

1.5

Relative intensity

Qo
tn

Q.G

Spatially resolved profiles

k=

- Fel

. » = 608.271 [nm]
_ X = 2223 [ev]

E log gf = —3.548
s log e = 7.50

608,260 608.270

Wavelength [nm]

Courtesy of Martin Asplund
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/ Examples

e Photospheres of solar-like stars (convection)

* Giant stars (spherical, anisotropic radiation field,
giant convection cells)

e Stellar winds (complex geometry, velocity field,
anisotropic radiation field, NLTE, dynamic)

e Gas clouds (LTE?, external radiation field, different
T, qand Tyag Presence of dust)
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tion on Betelgeuse

e %
Convec

Courtesy of Bernd Freytag
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* Photospheres of solar-like stars (convection)

e Giant stars (spherical, anisotropic radiation field,
giant convection cells)

* Stellar winds (complex geometry, velocity field,
anisotropic radiation field, NLTE, dynamic)

e Gas clouds (LTE?, external radiation field, different
T, qand Tyag Presence of dust)
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- Dynamic spectra

9

log(flux)
8

0.5

log(wavelength) [um)]

Courtesy of Susanne Hofner
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/ Examples

e Photospheres of solar-like stars (convection)

e Giant stars (spherical, anisotropic radiation field,
giant convection cells)

e Stellar winds (complex geometry, velocity field,
anisotropic radiation field, NLTE, dynamic)

» Gas clouds (LTE?, external radiation field, different
T, qand Tgas, presence of dust)
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Protostars

A — water 1ce

L&)
A

B — methanol ice

C & E — amorphous
silicates

D — carbon-dioxide ice

5 10 i5 20
Wavelength (um)

Watson et al.: 2004, Astrophysical Journal Supp Series 154, 391
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Next part

Math: first and second order ordinary differential
equations, partial differential equations, boundary
conditions, direct integration schemes, finite
differences, convergence and stability, vector ODE.
Gauss quadratures, solving systems of linear
equations. Non-linear equations.

Press et al. “Numerical Recipes: The Art of
Scientific Computing”
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Math, part 1

System of Linear Equations (SLE):

|
O
|_\

a0 B e e bN
Ax=Db

Two important algorithms: Gauss-Jordan
elimination and LU decomposition
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~ Gauss-Jordan Eliminatio

Simple rules:

Changing places of any two rows in A
requires only a similar change in b.

Replacing any row in A and D with a linear

combination of itself and other rows does
not change the solution.

Interchanging two columns in A is

equivalent to changing the sequence of X,
therefore the solution must be sorted to
get the original sequence.
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No pivoting
0+ (85m@1,851/811) Xt =by,-bja,/ay,
O (fa.~a a2 /a, )xt =b-ba /a.
a/11X1+a/12X2+ XX _— b,l
g% - b
a X - =0



= Partial pivoting

a{1X{ta,x,+ = D
a,1Xta,,xX,+ - =
a31X;tag,x,+ - b
k: |ay|=max(laj;|) for j=i,i+l,.. N
Ay X1ta, %X+ =
0+ (a.—a,. 6 /o2 12 b-ba /o
0+ ¢ - - - . b o [
a/11x1+a:12x2+ . = b:l

a 5,,X,+ = o

a 3%yt -



o et - .
Full pivoting
k,1: |a,;|=max(l|la,|) for n,m=i,i+l,.. N
a 11X1ta px,t = b/1
a,22x2+ = b/2
a 3,X,t = b
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LU decomposition

A = L-U where L and U are
triangular matrices L: [ U: B\

Ax=(L-U)x=L((UXx)=b
Ly=bandUx=y

Solving these systems is easy:

Y4=b4/Ly4; Yo=(bo-y -Lyg)lLy, etc.

See Num. Rec. Section 2.3 on how to compute L and U.

Home work 1c: Write the algorithm for constructing L and
U and explain why LU is faster than GJ
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Special matrices

Tri-diagonal: forward and back-substitution,
(no difference between Gauss-Jordan and LU
decomposition schemes)

Band-diagonal %\
Block-diagonal E

Iterative improvement of the solution:
A(x-x)=Ax -b




