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Ordinary diff. equations

* First order ODE, one boundary/initial
Condition

a—f(x Y) V(%) =Y,

* Second order ODE

d2
—+f(x y) = g(x,y)
dx
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DEs contn’d

2" order ODE can be replaced with a system of
1st order ODEs:

i

— =0 9(x)
% = h(x,u)

Typical situation in RT involves two-point
boundary conditions
(%) = Yy (%)=
... or initial condition
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~— Runge-Kutta—
For the 1st order ODE the Euler method gives:
1= T (xi+1 _xi)f(xiayi)
this also happens to be first order RK scheme

4th order RK:

ki=h-f(x,y)

k,=h- f(x,+0.5h, y, +0.5k,)

k. =h- f(x +0.5h,y, +0.5k)

Ky=h f(x +hy +k;)
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Note that RK is directly applicable to a system of ODE

and therefore to any order ODE with initial conditions




inite-differences
e For the 1st order ODE:

-
dx _f(xay)
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-
=
e —EL (% 7)

(xk+1+xk) (xk T X 1)
2



_
2nd order scheme

d2

—+f(X) —g(X)+Oty

dx?

This partlcular form of the 2" order ODE can be
approximated by the following simple FD scheme:
AYVen+ By + Gy =D, for k=2,N-1

For k=1 and k£ =N equations are given by boundary
condjitions.

Home work 2a:

Derive the value for coefficients in the numerical
scheme above
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This numerical scheme results in 3-diagonal
matrix:

(b ¢ ‘(v [
a, b, «c, . H /5
CN-1
\ a o

Solving a system of ODEs leads to a block-diagonal
SLE!



~~ RK versus Finite-diff.

RK typically has homogeneous convergence,
allows higher orders, has good round-off stability
(because errors are controlled on every step).

?High accuracy my be very expensive, specially in
multidimensions (fast increase of the number of
steps).

¢ FD converges (if it does) much faster. More

complex schemes (2nd order and higher) gain
stability and convergence speed.

?Expensive and difficult to check maximum error.

v Cook-book: to study solution locally when you
have time use RK. When high accuracy must be
combined with high performance use FD.
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~ Partial Differential Equations

PDEs come in three flavors: hyperbolic, parabolic,
and elliptic
A typical example of a hyperbolic equation is a

wave equation:
2
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where v is the velocity of wave propagation



~~ PDEs examples

An example of parabolic equation is the diffusion

equation:

Gu_ 0 D&_u
or  dxr 0x

where D(>0) is the diffusion coefficient



PDEs examples

Poisson equation is an example of elliptic type:

¢

= o 1% (X >V )

dr  dy
where p is the source function (density of charges).
If p is zero for the whole domain we get a special
case of Laplace equation
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Numerical schemes

Numerically, the first two types are initial value
problems (Cauchy problems):
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Initial values

Boundary conditions
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Numerical schemes

An elliptic equation is a boundary condition problem:

©) ©)
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Boundary conditions



~ " Numerical scheme for
Poisson equation

Assuming an equispaced rectangular grid in 2D
with stepsize A:

u —2u  tU

i+1,j i,j+1

A’ A

In matrix form the scheme looks like this:

i vl
9 _19
i i ]+

— /Oi,j

>
Wan i T v ) T T Y du, = A" p,

which is a 5-diagonal SLE \l\l




Boundaries and
generalization

The scheme on the previous slide only holds
inside the domain. The points for
i=1,N,and j=1,N, are described by the

=) . .
boundary conditions leading to a system of linear
equation Au = b.

In our case, elements on each diagonal of A are

constant. In general case, matrix elements along
diagonals change.

In 3D more diagonals are present.



/

e

.

Convergence and stability

Approximation — the accuracy of approximation of
the analytical equation(s) by numerical scheme.

Convergence - the property of the numerical
scheme to get closer to the exact solution when the
grid becomes denser in some regular way.

Stability - the stability of numerical scheme
characterizes the way errors (e.g. finite difference
approximation of derivatives) are accumulated
during the integration. Stability of the computer
implementation of numerical scheme also includes
round-off error accumulation.
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Computational errors

Floating point numbers are stored in 32- or 64-bit
long words (IEEE):
01101000011011011110111001000011

sign
exponent
mantissa

Al OO O OO AR O O ORI O LG I O e

sign
exponent
mantissa

Multiplications/divisions do not loose much
precision but subtraction/addition is a danger
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HOME WORK 2b: convergence

Numerical differentiating:

ﬂzynl_yi. 1‘myi+1_yi=()

dx = X =% Xial T K

l l

[s there an optimal Ax?



Diffusion equation

Initial value problem:
Explicit Implicit

=
ou 0°u :
nople L
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can be approx1mated as: =
j+l J
Mi _ui =D z+1 21/l +Mz 1 +
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At Ax
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Stability analysis of numerical schemes

We represent the approximation errors our
solution u;" with Fourier components:

meom —m am/At ikl Ax
ou' =u, —u, =¢ e Zv,{e

Substituting individual components to the finite
difference scheme we find the condition that
results in ‘5u’lm+1 / 5ulm| > 1 corresponding to the
unlimited error growth. For the diffusion equation
this conditionis:  DA¢ Courant

sz <C condition




~ Explicit or implicit?

New sense of stability: how dramatic will be the
solution after many time steps if we change the
initial conditions a little bit?

Explicit schemes (o=1, f=0) tend to have better
convergence

Purely implicit schemes (x=0, f=1) tend to be more
stable

Combining the two (o0, B>0) helps to get the
optimal scheme
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Integration: Gauss quadratures

For any “reasonable” function f{x) the integral with
kernel K(x) can be approximated as a sum of
function values in nodes x; multiplied by weights.

K@= 3 0,7 (5)

If f(x) can be represented by a polynomial of
order 2 - N, the quadrature formula is exact.
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Non-linear equations

For system of non-linear equations we
often use Newton-Raphson scheme:

F (x,,x

e

0 F(xilox)— F(x)+z

\
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—Home work 2:

Write a simple program for 4x4 matrix
inversion with Gauss-Jordan elimination and
partial pivoting. Test round-off stability by
doing many inversions of a random 4 by 4
matrix.

Propose the scheme (flow chart) for solving SLE
with 4x4 block-diagonal matrix with 1 row
overlap between blocks

Write (or use NR routine) 4th order RK and FD
scheme for the equation:

2
Zx -




