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Lecture 5:

Formal solvers of
ation




//I-oﬁal RT solvers

* Runge-Kutta (reference solver)
Piskunov N.: 1979, Master Thesis

* Long characteristics (Feautrier scheme)
Cannon C.J.: 1970, Ap] 161, 255

» Short characteristics (Hermitian scheme)
Bellot Rubio et al.: 1998, Ap] 506, 8os

» Short characteristics (Bezier attenuation operator)
de la Cruz Rodriguez & Piskunov: 2013, ApJ 764, 33
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hy we need a formal solver?

What is a formal solver? We assume that we
know the source function and the opacities
along our ray. This is sufficient to compute the
intensities (as function of wavelength).

—W

In practice, local opacities and source function
may also depend on the intensities coming
from different directions. This will require
iterations.

In the next lecture we will talk about how to
get to self-consistency.



~——Solving RT with RK —

Simple minded approach:

% =—f(x)-y+g(x); y(xp)=yp
X

ko =—f(x) y; +g(x)
9 =_f(xi +ﬁ)'()’i "'&)"'g(xi +ﬁ)

7 2 2

h hk h
k3 =—f(xi+§)'(yi+72)+g(xi+§)
ky==f(x;+h)-(y; + hky)+g(x; +h)

h
Vit =yi+g(k1+2k2 +2k3 +k4)
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— More clever RK. Previous example suffers from
all problems inherent to RK, specially when
dealing with complex medium where fand g
have sharp variations. Instead one can solve RT
analytically: "

A T’V "
L@ =L@y e ™+ (B0
T,

14
In particular, this is useful for a half-infinite
medium where we can easily use Gauss
quadratures for the integral:

0 N
1,(0)= [B,(t)-¢'dt = 0B, (7, ;)
0 i=1
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- __—The nodes and weights-for Laguerre polynomials:
0.137793470540| 3.08441115765E-01

0.729454549503 4.01119929155E-01

- 1.808342901740 2.18068287612E-01 §

= 3.401433697855 6.20874560987E-02 c,g

Z. 5.552496140064 9.50151697518E-03 =
8.330152746764 7.53008388588E-04
11.843785837900 2.82592334960E-05

16.279257831378 4.24931398496E-07

The only problem is that values of T are not
known in 7,, We can find them solving ODE
for optical deptHX _ 1 . .

&, Lo &Y
Advantages: simple boundary condition, RHS
does not depend on unknown function and RHS
is always non-negative.
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— 4th order Runge-Kutta for the geometrical depth

ax 1
dt. o ()
1 1
a, (x; +hk; /2)
1 1
) k4 =
a, (x; +hky /2) a, (x; + hks )
Xit]l = X +%(k1 +2k2 +2k3 +k4)
We integrate the equation for x from 0 to each of
the 7, ; consecutively. For each x; we tind the
temperature and then intensity using Gauss

quadratures.

XO=0

ki

=av(xi);

ks =
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Requirements for a formal solver

RK is good to study the properties of your
environment, selecting the grid etc.

For practical applications the solver must be quick
and stable. It should be able to achieve good

accuracy on the prescribed grid.

The formal solver should not propagate/amplify
errors which may be deadly of we need iterations.

These requirements force us to use finite
differences schemes.
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ethod classification

RT is solved along rays or characteristics that
do not necessarily coincide with the selected

grid.
Individual ray can be followed through the
whole medium boundary-to-boundary or over

a sﬁlort part extending the length of one grid
cell.

RT solvers based on complete rays are known
as long characteristics methods.

RT solvers that follow radiation through a
single grid cell at a time are called short
characteristics methods.

In 1D there is obviously no difference between
short and long characteristic methods



Short characteristics

Method classification

DN 4
NN
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Comparison of long versus short
Long:

Use both boundary conditions
Get intensities in both directions
Mean of the two intensities is actually a component of ]

Expansive in 2D or 3D if the geometrical grid does match
the ray directions

Short:

Fast
Follow the geometrical grid no matter what

Need two-directional integration to evaluate ]

Suffers from numerical “light defocussing”



/fmwdefocussing -




—Feautrier RT solver

Equation of radiative transfer (again)

dl
Y=—a, ([, -8§
dx V(V 1/)

where x is a geometrical distance along the ray

Let’s split the intensity in two flows: I*in the
direction of increasing x and I -in the opposite
direction. The RT equation can be written for
each direction:

dl’
C=—a, (I -S
dx 14 (V V)
_d[v =_av°(]v__Sv)

dx



.

We define two new variables U="2(I*+ [ ) and
V="2(I*- I ). Now we can add/subtract the two

equations of RT and divide the results by 2:

dl’ . g

=-a, ([ -5 E Y =—a, ([ -8
dx v ( v V) : dx aV ( 1 %4 V)
- .
dl’ : ! dl”
4 — s ] _S : L — . e
dx v ( v v) E dx 0{1/ (]v Sv)
dU .
v =_a .V : v O\ S, —
dx 14 v : dx aV (UV SV)



— 2nd grder form of RT

e We substitute the derivative of V in the 27 equation
using the expression for V from the 1%t equation:

dV.

14

dx

e The equations for U and V can be combined into a
single 2nd order ODE:

d | 1dU,
I (%) 7

=a1/ .(UV _SV)




~Boundary Conditions

Boundary conditions are set in the two ends of the
medium. For the smallest x we can write:

(0{ )—1 dU

14

1
-V, == (0 - 1}) =
X |4 2

1
- - b
2

For the opposite end we have:

(a )—1 de

1
S o Ty
dx . 2(V )

B

|
=——('+ L)+ =-U, +I-
2
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Finite differences equation have familiar form
(note the sign in the definitions of a; and c;):

-aU, _ +bU.-cU, =d for i=2K N -1

B e

al. =
Xivl — Xl Xi =X
o] -1
1 (av,i+1 ) 15 (av,z )
Cl. =
e o Xy — X
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For i=1 we can write a linear boundary condition:
U,+U T,-7,) dU
(/'1 w 2 1 zUl +( 2 1) _ i
= 2 2 d‘L’l
(7, - 7))
=U +2 LU -I
2
(7, - 7)) - (o, +ay) x,-x
2 2 %

-1+ (o, ;ral) - —xl)]—E/Uz

. ={(0{2 +a,)
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~ ... Oor we can write quadratic boundary condition:
U +U, dU 57: d°U
U +0t— +...
2 dr ;. 2 dtr’ T

S (o, +a)) , (x, —x,)
2 2
U,=U, +26t-(U -1+ 6t° (U, -S)

&l
U, [1 + 20T + O1T° ]}% =

={2(5r-1A + 01’8,

bi

The case of i=N is similar d,
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- For semi-infinite medium boundary
condition at oo looks a bit different:
(dU :
= UV Wi Iv
dt
r[: zfoo S, (H)e " dt = - oL, S, + 4y,
v . ds, dt dt
A dS :>] deep=SV+ d
St)=ST)+(t- T)_t r
bl
Cy=———
or 2 This 1s known as diffusion
; L boundary condition
N
OT. 2
S =S
dN_é(Sle'FS N)+( v,N-1 v,N)
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—How does this work?

Select direction.

Setup a 1D grid and compute opacities, sources
function and optical steps.

Compute the Feautrier coefficients including those
given by the boundary conditions.

Solve 3-diagonal SLE

As free lunch you get the contribution of this ray
to the angle-averaged intensity ] which is U and to
the flux divergence which is V.



l.,=q1 +Dp,

—Hermitian method "
Taylor expansion for the intensity in point t;:
~N0" d'l
Ii+1 =]i +; n' dTn
. g d d’1 d*l
I = +16 —+1¢ -8,/2
. dr3+6’dr4x( /2
» d’l ﬂ 1 od'l 2
I  dt? _ i 2 20 dtr* xd, /12
I,=I+3(E+L )+%(0-L )
I =a'(1—S)
["=a-[a-([—S)—S']+a'-(I—S)



— Attenuation operator solver

Solution of RT over one grid cell can be written:
[v (Ti+1) i e—(Ti+1‘Ti) .Iv (Ti) 4

+[S,(t) et

where t is the optiéal path along the ray

Suppose S slowly changes with T which can be
approximated bY a linear function. Then we can
take the integral analytically!

-(Ti+l_T)S (T_Ti) q

ok .
(ri+1_Ti) - (Ti+1_rz’) V’Hl_

L,)=L@)e ™ ey

5, (7) =




———
e

Source Function Approximation

Quadratic approximation for the source
function is better than linear, but ...

- Parabola
04 Quadratic Bezier spline Baiar <plines ave a much
B Cubic Bezier spline / g

1 more robust alternative

February 2, 2015 3D Radiative Transport
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—How does this work?

Short characteristics result in recurrence relation
between [ and [

Select direction
For starting grid points incoming intensity is given
by boundary conditions

Compute the opacity and the source function in
the grid points and interpolate for the up-stream
and down-stream points (for quadratic schemes).

Compute intensities for all points in the next layer.



~——Comparison of the solver

Continuum intensity calculations with different RTS

lm I Al L] Ll ' Al L] Ll I

e Hemmmeeen deemeeee -+

- " » »

OO -0

A & A A
[ = O

B (8

700

Intensity

lIIIIIIIIIIIlIllllIllIlllll]III][lIIFllIlIlllllllIIIII]II[]TIIIIIIIIIIIII

-
-
-
—
-
-
-
—
=
-
-
-
-
-
=
b
-
—
-

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

L L4 T l T L4 T I T T T l T L4 Ll l T '— ; l
Runge-Kutta
Feautrier (0.45%)
DELO linear (0.26%)

DELO parabolic (0.16%)
Hermitian (1.46%)

ot
W=



g

Home work 4

Compute spectral synthesis using a method of
your choice for a static 1D model atmosphere of
the Sun. For a fixed geometrical depth grid and
wavelength grid you are given a 2D array of
opacities and 2D array of source function. The
boundary conditions: no radiation enters through
the surface and the flux spectrum at the deepest
atmosphere point is given.



