# RT in the presence of magnetic field and ray tracing with Monte Carlo

Special environments where RT solvers discussed so far will fail

# Magnetic fields and polarization

- In the presence of magnetic field the interaction of light and matter leads to polarization
- Polarization is characterized by the four Stokes parameters: I, Q, U and V (intensity, linear and circular polarization)
- These can be introduced by considering the electric field oscillation treating light as a wave propagating in z-direction:

$$E_x(t) = a_x \cdot e^{i(\phi_x - 2\pi tc/\lambda + 2\pi z/\lambda)}$$
  

$$E_y(t) = a_y \cdot e^{i(\phi_y - 2\pi tc/\lambda + 2\pi z/\lambda)}$$

### Defining Stokes parameters

- *x* and *y* are two orthogonal directions in the plane perpendicular to the wave propagation (right-handed coordinate system).
- For a fixed point *z* the tip of the electric vector for a fully polarized wave will draw an ellipse:

  The convention is that *a clockwise rotation* of the electric vector as seen by the observer is right-handed (as in the figure).
- The direction of rotation is determined by the phase difference right-handed:  $\delta \equiv \phi_x \phi_y > 0$

### Defining Stokes parameters

- With optical tools we can (1) change the phase difference and (2) measure the amplitudes along *x* and *y* axes.
- Let's call  $I_{\rightarrow}$ ,  $I_{\uparrow}$  measurements taken along x and y and  $I_{\nwarrow}$ ,  $I_{\nearrow}$  along directions rotated by 45°. This will cover linear polarization.
- Shifting phase difference by 90 will convert circularly polarized to linear. The shift can be done along the x=y line resulting  $I_{\circlearrowleft}$  measured along x and  $I_{\circlearrowleft}$  along y axis.

# Beam splitter and retarder



## Defining Stokes parameters

 The measured intensities are directly related to the Stokes parameters:

$$I = I_{\rightarrow} + I_{\uparrow} = I_{\nwarrow} + I_{\nearrow} = I_{\circlearrowleft} + I_{\circlearrowleft}$$
 $Q = I_{\rightarrow} - I_{\uparrow}$ 
 $U = I_{\nwarrow} - I_{\nearrow}$ 
 $V = I_{\circlearrowleft} - I_{\circlearrowleft}$ 

 We can also re-write this "instrumental" definition with the formal expressions for the amplitudes:

$$I = a_x^2 + a_y^2$$

$$Q = a_x^2 - a_y^2$$

$$U = 2a_x a_y \cos \delta$$

$$V = 2a_x a_y \sin \delta$$

# Properties of Stokes parameters

- Stokes parameters are additive:  $(I, Q, U, V)_1 + (I, Q, U, V)_2 = (I, Q, U, V)_{1+2}$
- I and V are invariant against rotation around the propagation direction z
- Q and U are not invariant but transform in a simple fashion:

$$Q' = Q\cos 2\chi + U\sin 2\chi$$
$$U' = U\cos 2\chi - Q\sin 2\chi$$

# RT equation for the Stokes vector

• Due to additive properties of the Stokes vector the equation looks similar to non-magnetic case:

$$\frac{d\mathbf{I}}{dz} = -\mathbb{K} \cdot (\mathbf{I} - \mathbf{S})$$

• The absorption is now a 4x4 matrix:

$$\mathbb{K} = \kappa_c \mathbf{1} + \kappa_l \mathbf{\Phi}$$
 and in LTE  $\mathbf{S} = (B_\lambda, 0, 0, 0)^\dagger$ 

$$oldsymbol{\Phi} = \left( egin{array}{cccc} \phi_I & \phi_Q & \phi_U & \phi_V \ \phi_Q & \phi_I & \psi_V & -\psi_U \ \phi_U & -\psi_V & \phi_I & \psi_Q \ \phi_V & \psi_U & -\psi_Q & \phi_I \end{array} 
ight)$$

#### Opacity matrix components

$$\phi_{I} = 1/2[\phi_{p} \sin^{2} \gamma + 1/2(\phi_{r} + \phi_{b})(1 + \cos^{2} \gamma)]$$

$$\phi_{Q} = 1/2[\phi_{p} - 1/2(\phi_{r} + \phi_{b})] \sin^{2} \gamma \cos 2\chi$$

$$\phi_{U} = 1/2[\phi_{p} - 1/2(\phi_{r} + \phi_{b})] \sin^{2} \gamma \sin 2\chi$$

$$\phi_{V} = 1/2(\phi_{r} - \phi_{b}) \cos \gamma$$

$$\psi_{Q} = 1/2[\psi_{p} - 1/2(\psi_{r} + \psi_{b})] \sin^{2} \gamma \cos 2\chi$$

$$\psi_{U} = 1/2[\psi_{p} - 1/2(\psi_{r} + \psi_{b})] \sin^{2} \gamma \sin 2\chi$$

$$\psi_{V} = 1/2[\psi_{p} - 1/2(\psi_{r} + \psi_{b})] \sin^{2} \gamma \sin 2\chi$$

$$\psi_{V} = 1/2[\psi_{r} - \psi_{b}) \cos \gamma$$

Indices b and r refer to blue- and red-shifted  $\sigma$  components corresponding to transitions with  $\Delta m = +1$  and -1. p indicates  $\pi$  components with  $\Delta m = 0$ .

#### Relation to Zeeman splitting and line profiles

$$\phi_b = \sum_b A_b H(a, v - \Delta \lambda_b / \Delta \lambda_{Dop})$$

$$\phi_p = \sum_p A_p H(a, v - \Delta \lambda_p / \Delta \lambda_{Dop})$$

$$\phi_r = \sum_r A_r H(a, v - \Delta \lambda_r / \Delta \lambda_{Dop})$$

$$\psi_b = 2 \sum_b A_b F(a, v - \Delta \lambda_b / \Delta \lambda_{Dop})$$

$$\psi_p = 2 \sum_p A_p F(a, v - \Delta \lambda_p / \Delta \lambda_{Dop})$$

$$\psi_r = 2 \sum_p A_r F(a, v - \Delta \lambda_r / \Delta \lambda_{Dop})$$

### Voigt and Faradey-Voigt profiles

$$H(a,v) = \frac{a}{\pi} \int_{-\infty}^{\infty} \frac{e^{-y^2}}{(v-y)^2 + a^2} dy$$

$$F(a,v) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{(v-y)e^{-y^2}}{(v-y)^2 + a^2} dy$$

Jan Humlicek (1982, J.Q.S.R.T. 27, 437) came up with a great numerical approximations that generates both  $\mathbf{H}$  and  $\mathbf{F}$  in the same time.

# Solving polarized RT

- Runge-Kutta (of course)
- Feautrier

Attenuation operator

# Ray tracing and Monte Carlo

Sending bunch of photons evolving them according to the local conditions



# Frequency dependent opacity

Sending bunch of photons with different frequencies (each arrow is a bunch)



# Multi-dimensions



#### Interaction with matter

• Absorption:

$$n^{phot}(\lambda, \vec{z}) \to \kappa_{\lambda} \cdot N_{part} \to \tilde{n}^{phot}(\lambda, \vec{z})$$

Source function:

$$S(\lambda, \vec{z}) = (\sigma_{\lambda} \cdot J_{\lambda} + k_{\lambda} B_{\lambda}) / \kappa_{\lambda}$$

Level population:

$$\delta n_i^A = \sum_{j \neq i} n_j^A B_{ji} n_\lambda^{phot} + \sum_{j > i} n_j^A A_{ji}$$

$$-n_i^A \cdot \sum_{j \neq i} B_{ij} n_\lambda^{phot} - n_i^A \cdot \sum_{j < i} A_{ij}$$

$$+ \sum_{j \neq i} n_j^A C_{ji} - n_i^A \cdot \sum_{j \neq i} C_{ij}$$

#### How does MC work?

- Generate "super-photons" covering frequency, and directions for all sources. Each super-photon is assigned a weight indicating the actual number of photons.
- Calculate the propagation length by integrating a

simple ODE: 
$$\frac{dl}{d\tau} = \frac{1}{\kappa(x)\rho}$$

to find geometrical length matching the limiting increment in optical depth.

- Compute changes in weights (absorption, emission) for the photons.
- Update mean intensity and source function.
- Compute changes in level population.

# Summary of MC techniques (1)

- Easy, no differential equations to solve.
- Fast, for each ray.
- Can account for velocity field.
- Well fitted for 3D geometries, especially with point sources.
- Scattering is implicit: no ALI is needed.
- In fact, computing statistical equilibrium is straightforward.
- Easily combines radiation effect on matter, e.g. dust acceleration and sublimation.

# Summary of MC techniques (2)

- Advanced random number generators can help describing complex boundary conditions (anisotropy, wavelength dependence etc.).
- Embarrassingly parallel, good for grid computing.
- Fails in optically thick regime (no photons is coming through).
- Difficult to partition the medium: step size selection can be done in the optical path. Integration is needed to get geometrical step.
- Hard to know when convergence is achieved.