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Outline

n Examples of astrophysical variability

n Key observational requirements
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Astrophysical variability

n Binary stars and exoplanets

n Star spots

n Stellar pulsations

n Transients

n Cosmology



Eclipsing binaries
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Periods 0.5-100 d
Photometric amplitudes 
~0.1-1.0 mag

The only source of model-free stellar parameters



Spectroscopic binaries
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RV amplitudes ~1-100 km/s



Long-period binaries
Eta Car: erupting massive binary, Porb=5.5 yr
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5.5 yr

9 mag



Exoplanets
Main discovery methods: precise RVs and transit photometry
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Exoplanet RVs

RV amplitudes 1-100 m/s; periods 1-1000 d

Sun’s RV variation due to Jupiter: 12.4 m/s, 12 yr
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Exoplanet transits

n w

9

Transit depth <1%



Star spots
Inhomogeneities => photometric variation

10

Photometric amplitudes 
≤0.1-0.2 mag, periods 0.5-50d,
activity cycles ~10 yr



Star spots
Inhomogeneities => RV and line profile variation
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High-resolution spectroscopy 
λ/Δλ≥50,000, S/N≥100



Star spots
Inhomogeneities => RV and line profile variation
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O. Kochukhov et al.: Abundance Doppler imaging of the roAp star HR 3831 941

Fig. 5. Comparison of the observed (thin lines) and computed (thick lines) variation of the Li I, C I, O I, Na I, Si II and Mg I line profiles in the
spectrum of HR 3831. Observations shown in this figure were obtained with the FEROS and CAT/CES instruments. Spectra for consecutive
rotation phases are shifted in the vertical direction. Rotation phases are indicated in the column to the left of the plot. The bar at the lower left
shows the horizontal and vertical scale (1 Å and 5% of the continuum intensity respectively).

spectra. This problem concerns the C I 8335.15 Å and the
Na I 5895.92 Å lines. Prior to analysing these spectral regions
we used an atlas of telluric lines from Wallace et al. (2000) to
model and subtract the contribution of the Earth atmosphere to
the observed stellar spectra.

The results of mapping HR 3831 are presented graphically
in figures comparing the observed and computed variability of
spectral lines (Figs. 5, 6 and 9) and in corresponding spherical
plots of chemical abundance distributions (Figs. 7, 8 and 10).
In the latter figures the star is always displayed at five rotation
phases (ϕ = 0.0, 0.2, 0.4, 0.6, 0.8) with vertically oriented rota-
tion axis. The darker areas in the greyscale images correspond
to higher abundance and lighter areas show relative depletion of
a chemical element. The contour lines highlighting abundance
structures are drawn with a step of 1.0 dex.

The following sections discuss the individual abundance
maps recovered for HR 3831 in more detail.

6.1. Light elements

The surface distribution of lithium was reconstructed using the
total of 21 rotation phases of the FEROS and CAT/CES spec-
tra. We modelled the resonance Li I doublet at λ 6708 Å tak-
ing into account its blending with the nearby variable line of
Pr III 6706.70 Å. With the multi-element abundance imaging
capability of INVERS12 both elements can be mapped simulta-
neously and in a self-consistent manner.

In previous investigations of the spectrum variability of
HR 3831 (North et al. 1998) a remarkable rotational modula-
tion of the Li I line was noted. Polosukhina et al. (2000) at-
tempted to use information provided by this spectral feature in
a trial-and-error analysis of the surface Li distribution. They
suggested that a reasonably good description of the Li line
profile variability can be achieved by assuming that the ele-
ment is enhanced by ≈2.4 dex relative to the solar abundance



Stellar pulsations

Most stars oscillate due to interior effects

13

Pulsation periods

from years in

evolved giants

to ~1 min in

white dwarfs



Asteroseismology

n Shape of pulsational perturbation
n radial dependence: overtone number n
n angular dependence: spherical harmonics; angular 

degree l and azimuthal number m
n Frequencies of pulsational variation
n Oscillations observed at the stellar surface are directly 

determined by interior properties

Frequencies + mode identification => 
helioseismology and asteroseismology
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Radial and non-radial pulsations

n Radial modes: l = m = 0, the star maintains spherical 
symmetry; all points at a given radius move with the 
same phase

15



Radial and non-radial pulsations

n Non-radial modes: l ≥ 1, pulsation phase varies across 
the stellar surface

16

l = 6, m = 4 l = 6, m = 6



Pulsational observables

17

n Photometry ® stellar 
brightness ® L, T

n Interferometry ® angular 
diameter ® R

n Spectroscopy ® radial 
velocity, equivalent width, 
line profiles ® V, T, mode 
identification

Pulsational amplitudes: 0.5-10-6 mag, 10-10-5 km/s



Photometric observations of 
stellar pulsations

delta Scuti-type star 
variation from a multi-cite 
campaign

18

2.3 Oscillations Near the Main Sequence 51
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Fig. 2.8. Some observed light curves for FGVir obtained by the DSN (dots) and
a fit including 79 significant frequencies (full line). From Breger et al. (2005).

Pamyatnykh (1999) provided an extensive overview of the history of insta-
bility computations in the upper HR Diagram and presented his own compu-
tations based on improvements in opacity determinations by Iglesias & Rogers



Photometric observations of 
stellar pulsations

SPB-type star 
variation from 
space photometry
(MOST)

19

2.3 Oscillations Near the Main Sequence 63

Fig. 2.18. The MOST light curve of the SPB HD163830 (upper panel, dots) and
the best fit based on the 21 significant frequencies (upper panel, full line). The
residuals after subtraction of the fit are shown in the lower panel. From Aerts et al.
(2006b).

features occur at a temperature near 200 000K. This explanation for mode
excitation in B stars, both for SPB stars and for β Cep stars (see below), had
to await sufficiently accurate opacity computations of elements heavier than
hydrogen and helium, such as those provided by Iglesias & Rogers (1996) in
the OPAL19 opacity project at Livermore, and Seaton (1996) in the Opacity
Project, OP20. Accurate opacity tables for elements heavier than hydrogen
and helium have only been available since the OPAL and OP projects were
completed in 1992. Any previous opacity determinations for such elements
were typically a factor three too low and so did not lead to mode excitation in
B stars. The new opacity projects led to a natural explanation of the modes in
SPB stars and in β Cep stars in terms of the heat mechanism at the position
where the opacity bump occurs. We refer again to Pamyatnykh (1999) for a
general overview of the properties of models with excited modes and their
dependence on metallicity and core overshoot.

19 http://www-phys.llnl.gov/Research/OPAL/opal.html.
20 http://vizier.u-strasbg.fr/topbase/op.html.

2.5 Pulsations in Evolved Stars with M ≤ 9 M⊙ 81

Fig. 2.33. Hipparcos light curve of the classical Cepheid HD112044 folded accord-
ing to the oscillation period. Data taken from Perryman (1997, ESA).

A Hipparcos light curve of a classical Cepheid is shown in Fig. 2.33. In
general, the periods of the Cepheids range from 1 to 50 d and their spectral
types are between F5 and G5. They are all giants or supergiants. In our
Galaxy, the Cepheids are situated in the Galactic plane and they take part
in the rotation of the Galaxy. Thus they are Population I objects and are
therefore also called type I Cepheids. Below, we provide only a brief summary
of the properties of Cepheids, referring to the extensive literature on such
stars for more details.

The light curves of the Cepheids are skew and extremely periodic (see
Fig. 2.33). The amplitudes are on average about one magnitude at visual wave-
lengths. Such brightness variations are accompanied by changes in the spectral
type, colour, temperature and luminosity. For the prototype δCep itself, for
example, the spectral type is F5 at maximum brightness and G2 at minimum
brightness, while the corresponding change in temperature amounts to some
1 500K. In general for Cepheids, the luminosity classes change roughly from
III to Ib during the pulsation cycle for stars with periods below 25 d and
between III and Ia for Cepheids with longer periods.

Bersier et al. (1994) produced an extensive radial velocity catalogue of
bright Cepheids. In Fig. 2.34 we notice a so-called stillstand in the radial
velocity curve they obtained for the star X Cyg. Such a phenomenon occurs
whenever a strong shock wave propagates in the atmosphere of the star in
such a way that the downfall of matter after maximum radius is stopped by
rising gas due to the next shock. This shock is also markedly present at the
same phase in the cycle in the Hipparcos light curve, which was taken about
ten years later (Fig. 2.34).

2.3 Oscillations Near the Main Sequence 63

Fig. 2.18. The MOST light curve of the SPB HD163830 (upper panel, dots) and
the best fit based on the 21 significant frequencies (upper panel, full line). The
residuals after subtraction of the fit are shown in the lower panel. From Aerts et al.
(2006b).

features occur at a temperature near 200 000K. This explanation for mode
excitation in B stars, both for SPB stars and for β Cep stars (see below), had
to await sufficiently accurate opacity computations of elements heavier than
hydrogen and helium, such as those provided by Iglesias & Rogers (1996) in
the OPAL19 opacity project at Livermore, and Seaton (1996) in the Opacity
Project, OP20. Accurate opacity tables for elements heavier than hydrogen
and helium have only been available since the OPAL and OP projects were
completed in 1992. Any previous opacity determinations for such elements
were typically a factor three too low and so did not lead to mode excitation in
B stars. The new opacity projects led to a natural explanation of the modes in
SPB stars and in β Cep stars in terms of the heat mechanism at the position
where the opacity bump occurs. We refer again to Pamyatnykh (1999) for a
general overview of the properties of models with excited modes and their
dependence on metallicity and core overshoot.

19 http://www-phys.llnl.gov/Research/OPAL/opal.html.
20 http://vizier.u-strasbg.fr/topbase/op.html.

Cepheid-type star 
variation from 
space photometry
(Hipparcos)



Spectroscopic observations 
of stellar pulsations

delta Scuti-type star

20

Cepheid-type star 
variation from 
space photometry
(Hipparcos)radial velocity

line width

line asymmetry



Transients

n GRBs, SNe, Novae
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Transients

n GRBs, SNe, Novae
n Gravitational microlensing

22



Expansion of the Universe

Evidence from SNe points to accelerating expansion

23



Sandage test
Direct observations of expansion history of the 
Universe via redshift drift measurement
Measurements of z variation on the time scale of decades for 
individual for z~3 Lα forests

Expected signal of dz/dt is ~20 cm/s in 20 years
24

11The Messenger 133 – September 2008

Sandage (1962) first discussed an effect 
that suggests an extremely direct meas-
urement of the expansion history. He 
showed that the evolution of the Hubble 
expansion causes the redshifts of distant 
objects partaking in the Hubble flow to 
change slowly with time. Just as the 
 redshift, z, is in itself evidence of the ex-
pansion, so is the change in redshift 
( ż = (1 + z)H0 – H(z)), 
evidence of its de- or acceleration be-
tween the epoch z and today, where H is 
the Hubble parameter and H0 its present-
day value. This equation implies that it  
is remarkably simple (at least in principle) 
to determine the expansion history: one 
simply has to monitor the redshifts of a 
number of cosmologically distant sources 
over several years.

This simple equation has two remarkable 
features. The first is the stunning simplic-
ity of its derivation. For this equation to be 
valid all one needs to assume is that the 
Universe is homogeneous and isotropic 
on large scales, and that gravity can be 
described by a metric theory. That’s it. 
One does not need to know or assume 
anything about the geometry of the Uni-
verse or the growth of structure. One 
does not even need to assume a specific 
theory of gravity. The redshift drift is an 
entirely direct and model-independent 
measure of the expansion history of the 
Universe which does not require any cos-
mological assumptions or priors what-
soever.

The other remarkable feature of the equa-
tion is that it involves observations of the 
same objects at different epochs (albeit 
separated only by a few years or dec-
ades). Other cosmological observations, 
such as those of SN Ia, weak lensing  
and BAO also probe different epochs but 
use different objects at each epoch. In 
other words, these observations seek to 
deduce the evolution of the expansion by 
mapping out our present-day past light-
cone. In contrast, the redshift drift directly 
measures the evolution by comparing our 
past light-cones at different times. In this 
sense the redshift drift method is qualita-
tively different from all other cosmological 
observations, offering a truly independent 
and unique approach to the exploration 
of the expansion history of the Universe.

Measuring the redshift drift with E-ELT

The trouble with the redshift drift is that it 
is exceedingly small. From Figure 1 we 
see that at z = 4 the redshift drift is of the 
order of 10–9 or 6 cm/s per decade! 
Putting meaningful data points onto Fig-
ure 1 will clearly require an extremely 
 stable and well-calibrated spectrograph 
as well as a lot of photons. Let us as-
sume that the first requirement has been 
met, i.e. that we are in possession of a 
spectrograph capable of delivering radial 
velocity measurements that are only lim-
ited by photon-noise down to the cm/s 
level. In this best possible (but by no 
means unrealistic) scenario, how well can 
we expect the E-ELT to measure the red-
shift drift, and hence constrain the cos-
mic expansion history?

First of all, we need to define where we 
want to measure the redshift drift. There 
are several reasons to believe that the 
 so-called Lyman-! "forest is the most suit -
able target, as first suggested by Loeb 
(1998). These H I absorption lines are seen 
in the spectra of all QSOs and arise in the 
intervening intergalactic medium. Using 
hydrodynamical simulations we have 
explicitly shown that the peculiar motions 
of the gas responsible for the absorption 
are far too small to interfere with a red-
shift drift measurement (Liske et al., 2008). 
Similarly, other gas properties, such as 
the density, temperature or ionisation 
state, also evolve too slowly to cause any 
headaches. Furthermore, QSOs exist 
over a wide redshift range, they are the 
brightest objects at any redshift, and 
each QSO spectrum displays hundreds 
of lines. These are all very desirable fea-
tures.

The next question is how the properties 
of the Lyman-!  forest (the number and 
sharpness of the absorption features), 
and the signal-to-noise (S/N) at which it is 
recorded, translate to the accuracy, # $ , 
with which one can determine a radial 
velocity shift. In order to obtain this trans-
lation we have performed extensive 
Monte Carlo simulations of Lyman-!  for-
est spectra. Mindful of the forest’s evolu-
tion with redshift, we have derived a 
quantitative relation between the # $  of the 
Lyman-!  forest on the one hand, and  
the spectral S/N and the background 
QSO’s redshift on the other hand (Liske 
et al., 2008).

Now in a photon-noise limited experiment 
the S/N only depends on the flux density 
of the source, the size of the telescope 
(D), the total combined telescope/instru-
ment throughput (% ) and the integration 
time (tint). Unfortunately, the photon flux 
from QSOs is not a free parameter that 
can be varied at will. In Figure 2 we show 
the fluxes and redshifts of all known high-
z QSOs. Assuming values for D, % "and t int 
we can calculate the expected S/N for 
any given Nphot. Combining this with a 
given zQSO and using the relation derived 
above, we can calculate the value of # $  
that would be achieved if all of the time 
tint were invested into observing a single 
QSO with the given values of Nphot and 
zQSO. The background colour image  
and solid contours in Figure 2 show the 
result of this calculation, where we  
have assumed D = 42 m, %  = 0.25, and 
tint = 2 000 h. Note that tint denotes the  
total integration time, summed over all 
epochs.

Figure 1. The solid lines and left axis 
show the redshift drift ż as a function 
of redshift for standard relativistic cos-
mology and various combinations of 
& M and & '  as indicated. The dotted 
lines and right axis show the same in 
velocity units. The dashed line shows ż 
for the case of an alternative dark 
energy model with a different equation 
of state parameter wDE (and & M, & DE = 
0.3, 0.7).
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Observations of variability

n General considerations

n Frequency analysis

n Photometry

n Spectroscopy



General considerations

n Observational errors: accuracy and precision

n Duty cycle: single site, multi-site, space

n Signal sampling: Nyquist limit, readout time

n Time keeping: UTC, JD, HJD, BJD

n Instrumental errors: periodic and random

n Rapid follow-up of transients

26



Frequency analysis

Fourier transform

27

5.3 Parametric Frequency Analysis Methods 351

series, such that the applicability of the parametric methods discussed here is
very good, particularly for frequency search. The methods are less suited to
analyse time series with strong discontinuous behaviour.

In frequency analysis based on Fourier transforms one also defines a func-
tion of test frequencies in such a way that it reaches an extremum for the test
frequency that is close to the true frequency present in the data, just as for the
non-parametric methods. The plot of this function is usually called the peri-
odogram, rather than the terminology of a statistic used in the non-parametric
methods.

We first recall some useful properties of Fourier analysis and subsequently
introduce different types of periodograms in use today.

5.3.1 The Continuous Fourier Transform of an Infinite Time Series

The Fourier transform of a function x(t) that fulfils the necessary conditions
of continuity and finiteness is given by

F (ν) ≡
∫ +∞

−∞
x(t) exp(2πi ν t)dt. (5.26)

Whenever we perform this transformation, we move from the time domain to
the frequency domain. The Fourier transform of the constant function 1, e.g.,
is Dirac’s delta function:

δ(ν) ≡
∫ +∞

−∞
exp(2πi ν t)dt, (5.27)

which has the following properties:
∫ +∞

−∞
δ(ν)dν = 1,

∫ +∞

−∞
δ(ν − ξ)g(ν)dν = g(ξ). (5.28)

Frequency determination from Fourier analysis is based on the fact that
the Fourier transform F (ν) of a function x(t), which can be written in terms
of a sum of harmonic functions with frequencies ν1, . . . , νM and amplitudes
A1, . . . , AM :

x(t) =
M∑

k=1

Ak exp(2πi νkt), (5.29)

is given by

F (ν) =
M∑

k=1

Akδ(ν − νk). (5.30)

Whenever x(t) is a sinusoidal function with frequency ν1, the Fourier trans-
form of x is only different from zero for ν = ν1 and ν = −ν1. The Fourier
transform of a multiperiodic function x(t), which is the sum of M harmonic
functions with frequencies ν1, . . . , νM , is a sum of δ−functions that are differ-
ent from zero for the frequencies ±ν1, . . . ,±νM .

354 5 Frequency Analysis

condition for accurate frequency separation of |νi − νj | > 2/T covering all
cases of relative phases of the modes.

Things get more complicated when the time series does not cover one time
interval [0, T ], but is a concatenation of continuous data spread over several
different time intervals [0, T1], [T2, T3], [T4, T5], . . ., i.e., in the case of gapped
data.

The degradation of the Fourier transform from dream to what is not even
yet reality in frequency analysis is illustrated in Fig. 5.8. In this figure, we
compare the Fourier transforms for an almost infinite noiseless time series
(1 000 000 data points spread over 1 000d) with one of a finite noiseless series of
10 000 points spread over 10d and a randomly gapped finite noiseless series of
4472 points with a total time span of 10 d, all for a simple noise-free sinusoidal
signal in the approximation of continuous measurements (i.e., still far too
optimistic). The graph speaks for itself and makes one realize why frequency
analysis of astronomical time series is so inherently difficult even if the data
are close to being noise-free.

In reality, the gaps in data sets are not randomly distributed. In the simple
case with one interruption during a time ∆T , the sinc function determining
the periodogram (see Fig. 5.7) will be modulated by a term cos[∆Tπ(ν− ν1)].
This modulation factor introduces fine structure in the periodogram peaks
whose relevance depends mostly on the values of ∆T and T . Two examples
are provided in Fig. 5.9 where the time series used in the middle panel of
Fig. 5.8 was interrupted for respectively two days from day 4 until day 6 and
for six days from day 2 until day 8. These interruptions imply a strong rise in
the height of spurious frequencies that are due to the gap compared with the
situation where there is no interruption in the data (middle panel of Fig. 5.8),
particularly when the gap is large. These spurious frequencies are termed alias
frequencies and will be defined in the following section.

In real data, the value of the modulation factor will be affected by noise
and may differ substantially from a simple cosine value, even if there is only
one large gap.

5.3.3 Real Life: The Discrete Fourier Transform

For a real data set, the function x(t) is only known for a discrete number
of time points ti, i = 1, . . . , N . We are thus unable to determine its F (ν).
Following Deeming (1975), we introduce the discrete Fourier transform of the
function x(t):

FN (ν) ≡
N∑

i=1

x(ti) exp(2πi νti). (5.33)

This transform can be calculated whenever the N measurements of the func-
tion x(t) are available.

It is clear that FN differs from F , but we can associate them with each
other through the window function defined as

continuous

discrete

F=1/P

P



Frequency analysis

Frequency precision increases with the length of time series
=> frequencies are the most precise astronomical observables
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We used the LSD profiles and calculated the longitudinal
magnetic field, hBzi, and net linear polarization PQ and PU . The
former is a useful measurement of the line-of-sight component
of the magnetic field to the observer. It can be calculated from
the first order moment of the Stokes V profiles (Kochukhov et al.
2010). This is the most commonly used magnetic observable for
early type stars. The net linear polarization is calculated from the
equivalent width of the LSD Stokes Q and U profiles and con-
tains information about the transverse component of the mag-
netic field similar to what can be achieved from broadband linear
polarization(Leroy 1995). However, direct comparison between
the two types of measurements is not possible unless they have
been previously scaled and shifted (e.g., Wade et al. 2000; Ru-
somarov et al. 2013).

The longitudinal field and net linear polarization measure-
ments are presented in Table 4. The calculations were done
for Fe-peak, rare earth elements and for the LSD profiles ob-
tained with the full mask. The measurement uncertainties were
obtained from the actual LSD profiles using the standard error
propagation principles. In the same fashion we calculated the
equivalent quantities from the null profiles that are LSD pro-
files derived by applying the line mask and the LSD technique to
the null Stokes spectra. These quantities are excellent indicators
of spurious polarization signals. Our analysis of these quantities
showed that any spurious contributions to the measurements pre-
sented in this section are well below the uncertainties due to the
finite signal-to-noise ratio of the observations.

The full LSD line mask was also applied to circular polar-
ization measurements obtained at the NOT. We use them only
to extend the baseline for our rotational period determination in
Sect. 4.1. The measurements are presented in Table 5.

4.1. Rotational period

Given the su�cient number of magnetic field studies of
HD 125248 it was possible to find highly precise rotational pe-
riod. The full list of longitudinal magnetic field measurements
contains all published data with the exception of individual mea-
surements produced from rare-earth element lines. We also did
not include the measurements produced by Babcock (1951) as
they appeared to be too inaccurate for our study. The data by
Babcock (1958) were also discarded as they did not contain ac-
curate enough observation dates. Our list of hBzi measurements
includes the Fe i, Fe ii, and Ti ii estimates by Hockey (1969),
measurements of Fe ii lines by Mathys (1994) and Mathys &
Hubrig (1997), as well as data by Leone & Catanzaro (2001) and
Shorlin et al. (2002). To the this list we also included the pho-
topolarimetric longitudinal field measurements from the wings
of H� lines by Landstreet et al. (1975); Borra & Landstreet
(1980). However, we rescaled these measurements by a factor
of 0.85 to better match the observed hBzi amplitude from the
Fe-peak elements. These data were finally complemented by our
own longitudinal field measurements from the latest HARPSpol
observations and older NOT observations.

We performed period search on the entire data set comprised
of 78 measurements in total, spanning over a time period of more
than fourty years. As a starting guess for the fitting procedure
we used the latest known period derived by Leone & Catanzaro
(2001) and adopted the zero point from their paper. The best fit
curve was derived using four frequency components, which is
necessary to reproduce the observed variations of the longitudi-
nal field measurements. With the zero point from the paper by
Leone & Catanzaro (2001) and our improved stellar period the
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Fig. 6. Variability of the longitudinal magnetic field of HD 125248 with
rotational phase. The symbols correspond to the following data sets:
HARPSpol (red diamonds), NOT (black diamonds), Hockey (1969)
(black bullets), Landstreet et al. (1975) and Borra & Landstreet (1980)
(green triangles), Mathys (1994) (asteriks), Mathys & Hubrig (1997)
(yellow bullets), Leone & Catanzaro (2001) (blue squares), Shorlin et al.
(2002) (white squares). The solid thick curve is a fourth-order Fourier
fit to the longitudinal field measurements.

final ephemeris in this paper is given by

HJD(hBzimin) = 2 433 103.95 + 9.29558(6) · E.

Figure 6 shows the variations of the mean longitudinal field
measurements of HD 125248 phased according to our revised
rotational period. All phases given in our paper were computed
with according to the ephemeris defined above.

5. Magnetic Doppler Imaging

5.1. Methodology

The availability of high-quality spectropolarimetric observations
in all four Stokes parameters for HD 125248 presented us with
an opportunity to carry out a tomographic reconstruction of its
magnetic field and chemical abundance distributions. Magnetic
Doppler imaging (MDI) is a computational technique that at-
tempts to fit a set of observed Stokes parameters with synthetic
spectra by adjusting the surface distribution of the magnetic
field and the abundance of one or more chemical elements. The
surface distribution maps are adjusted iteratively until the syn-
thetic spectra properly describe the behavior of the observed
line profiles with rotational phase in all Stokes parameters. We
performed this task with the MDI code invers10 introduced by
Piskunov & Kochukhov (2002); Kochukhov & Piskunov (2002).
In this study we closely follow already established methodolog-
ical practices that have been used in similar studies (e.g., Ruso-
marov et al. 2015; Kochukhov et al. 2015).

In the case when we have a full Stokes IQUV vector of spec-
tropolarimetric observations, we can find the surface abundance
" and magnetic field distribution B maps by solving the follow-
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We used the LSD profiles and calculated the longitudinal
magnetic field, hBzi, and net linear polarization PQ and PU . The
former is a useful measurement of the line-of-sight component
of the magnetic field to the observer. It can be calculated from
the first order moment of the Stokes V profiles (Kochukhov et al.
2010). This is the most commonly used magnetic observable for
early type stars. The net linear polarization is calculated from the
equivalent width of the LSD Stokes Q and U profiles and con-
tains information about the transverse component of the mag-
netic field similar to what can be achieved from broadband linear
polarization(Leroy 1995). However, direct comparison between
the two types of measurements is not possible unless they have
been previously scaled and shifted (e.g., Wade et al. 2000; Ru-
somarov et al. 2013).

The longitudinal field and net linear polarization measure-
ments are presented in Table 4. The calculations were done
for Fe-peak, rare earth elements and for the LSD profiles ob-
tained with the full mask. The measurement uncertainties were
obtained from the actual LSD profiles using the standard error
propagation principles. In the same fashion we calculated the
equivalent quantities from the null profiles that are LSD pro-
files derived by applying the line mask and the LSD technique to
the null Stokes spectra. These quantities are excellent indicators
of spurious polarization signals. Our analysis of these quantities
showed that any spurious contributions to the measurements pre-
sented in this section are well below the uncertainties due to the
finite signal-to-noise ratio of the observations.

The full LSD line mask was also applied to circular polar-
ization measurements obtained at the NOT. We use them only
to extend the baseline for our rotational period determination in
Sect. 4.1. The measurements are presented in Table 5.

4.1. Rotational period

Given the su�cient number of magnetic field studies of
HD 125248 it was possible to find highly precise rotational pe-
riod. The full list of longitudinal magnetic field measurements
contains all published data with the exception of individual mea-
surements produced from rare-earth element lines. We also did
not include the measurements produced by Babcock (1951) as
they appeared to be too inaccurate for our study. The data by
Babcock (1958) were also discarded as they did not contain ac-
curate enough observation dates. Our list of hBzi measurements
includes the Fe i, Fe ii, and Ti ii estimates by Hockey (1969),
measurements of Fe ii lines by Mathys (1994) and Mathys &
Hubrig (1997), as well as data by Leone & Catanzaro (2001) and
Shorlin et al. (2002). To the this list we also included the pho-
topolarimetric longitudinal field measurements from the wings
of H� lines by Landstreet et al. (1975); Borra & Landstreet
(1980). However, we rescaled these measurements by a factor
of 0.85 to better match the observed hBzi amplitude from the
Fe-peak elements. These data were finally complemented by our
own longitudinal field measurements from the latest HARPSpol
observations and older NOT observations.

We performed period search on the entire data set comprised
of 78 measurements in total, spanning over a time period of more
than fourty years. As a starting guess for the fitting procedure
we used the latest known period derived by Leone & Catanzaro
(2001) and adopted the zero point from their paper. The best fit
curve was derived using four frequency components, which is
necessary to reproduce the observed variations of the longitudi-
nal field measurements. With the zero point from the paper by
Leone & Catanzaro (2001) and our improved stellar period the
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Fig. 6. Variability of the longitudinal magnetic field of HD 125248 with
rotational phase. The symbols correspond to the following data sets:
HARPSpol (red diamonds), NOT (black diamonds), Hockey (1969)
(black bullets), Landstreet et al. (1975) and Borra & Landstreet (1980)
(green triangles), Mathys (1994) (asteriks), Mathys & Hubrig (1997)
(yellow bullets), Leone & Catanzaro (2001) (blue squares), Shorlin et al.
(2002) (white squares). The solid thick curve is a fourth-order Fourier
fit to the longitudinal field measurements.

final ephemeris in this paper is given by

HJD(hBzimin) = 2 433 103.95 + 9.29558(6) · E.

Figure 6 shows the variations of the mean longitudinal field
measurements of HD 125248 phased according to our revised
rotational period. All phases given in our paper were computed
with according to the ephemeris defined above.

5. Magnetic Doppler Imaging

5.1. Methodology

The availability of high-quality spectropolarimetric observations
in all four Stokes parameters for HD 125248 presented us with
an opportunity to carry out a tomographic reconstruction of its
magnetic field and chemical abundance distributions. Magnetic
Doppler imaging (MDI) is a computational technique that at-
tempts to fit a set of observed Stokes parameters with synthetic
spectra by adjusting the surface distribution of the magnetic
field and the abundance of one or more chemical elements. The
surface distribution maps are adjusted iteratively until the syn-
thetic spectra properly describe the behavior of the observed
line profiles with rotational phase in all Stokes parameters. We
performed this task with the MDI code invers10 introduced by
Piskunov & Kochukhov (2002); Kochukhov & Piskunov (2002).
In this study we closely follow already established methodolog-
ical practices that have been used in similar studies (e.g., Ruso-
marov et al. 2015; Kochukhov et al. 2015).

In the case when we have a full Stokes IQUV vector of spec-
tropolarimetric observations, we can find the surface abundance
" and magnetic field distribution B maps by solving the follow-
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Frequency analysis

Frequency precision <=> frequency resolution
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Frequency analysis

Non-sinusoidal variation => harmonic frequencies (F, 2×F, …)
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Frequency analysis

Minimum sampling: 2 points per oscillation (Nyquist limit)
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5.1 Harmonic Analysis by Least Squares 341

Fig. 5.1. Simulated data (dots) representing a periodic signal with frequency ν =
0.123456789 d−1. The dotted line is a harmonic fit for this frequency. The full line
represents a fit with the frequency 2.123456789 d−1.

5.1.2 Searching for Multiple Frequencies

In principle, we could now repeat the previous derivation in order to find the
most likely set of frequencies νk, k = 1 , . . . , M of the model fit in Eq. (5.1 ) from
the data. Unfortunately, as explained in Chapter 3 , we are unable to predict
the amplitude of excited oscillation modes in a star. Thus, we do not know
the number M of oscillations that will be excited with detectable amplitude
in the observed time series. This implies that this discrete unknown M has to
be estimated along with the frequency search itself.

Estimation of discrete parameters is a very poorly developed field in statis-
tics. This is a mathematical problem with very important implications for
many fields, among which is asteroseismology. Besides causing a problem here
for frequency determination, a similar situation will occur in Chapter 6 on
mode identification, where the discrete wavenumbers of each of the detected
oscillation modes (l, m, n) have to be estimated. A consequence of this is that
frequency analysis for asteroseismology is unavoidably data-driven. This is a
huge disadvantage from a statistical viewpoint compared with the situation
where we would be able to estimate simultaneously the number of frequencies
present in the data and their value from a model description.

We cannot but conclude that the search for multiple oscillation frequencies
necessarily must be done by means of some kind of prewhitening procedure
by which we mean that, at each stage of the frequency search, a fit with the
selected frequency is computed and subtracted from the data values before a
subsequent frequency search is started. The statistical interpretation of such



Frequency analysis

Real life: oscillating signal is sampled at discrete times and 
contains noise contribution
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window function



Frequency analysis

Real life: oscillating signal is sampled at discrete times with
gaps and contains noise contribution
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window function



Frequency analysis

Real life: combined effect of different astrophysical signals
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Fig. 4.1. Frequency spectra of the Sun derived from the VIRGO (photometry)
and GOLF (spectroscopy) experiments onboard SOHO. Figure courtesy of Hans
Kjeldsen.

put observed amplitudes to much use because our theoretical understanding of
those processes is not yet advanced enough to take advantage of the observa-
tions. Thus for both photometry and spectroscopy we do not attempt rigorous
definitions of exactly what is being measured photometrically or spectroscop-
ically. At the precision of photometric observations from space (a few parts
per million in intensity), and of ground-based high-resolution spectroscopy
(as little as a few cm s−1 in radial velocity), the definitions of what is meant
by the terms “intensity variation” and “radial velocity variation” are com-
plex. See Lindegren & Dravins (2003), for example, for a discussion of the
concept of “radial velocity” for precisions better than 1 m s−1 (we return to
this point again in Section 4.4.4 below). For our purposes here, we will think
of the observations as measuring luminosity variability and radial velocity,
respectively.

There is an over-riding principle in observational astronomy, and nowhere
is it more relevant than in asteroseismology. Let us call it the Tychonic prin-
ciple. Tycho Brahe was driven to measure the positions of stars and planets
more precisely than any who had come before him. This drive may have been
based more on a “gut feeling” than on an intellectual understanding that
higher precision would lead to fundamentally new understanding of the uni-
verse, but he was right. The Tychonic principle can be summarised as: If you
observe anything more carefully, you may make discoveries, and if you improve
your precision by orders of magnitude, then new discoveries are guaranteed.

photometry

spectroscopy

Solar variability



Photometric time series
n Photon statistics: S/N=N/sqrt(N)
n Broad-band vs. filter observations
n Sky transparency, extinction, scintillation, seeing
n Aperture vs. PSF CCD photometry
n Differential and high-speed photometry
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Photometric time series
n Photon statistics: S/N=N/sqrt(N)
n Broad-band vs. filter observations
n Sky transparency, extinction, scintillation, seeing
n Aperture vs. PSF CCD photometry
n Differential and high-speed photometry
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Photometric time series
n Photon statistics: S/N=N/sqrt(N)
n Broad-band vs. filter observations
n Sky transparency, extinction, scintillation, seeing
n Aperture vs. PSF CCD photometry
n Differential and high-speed photometry
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differential
same apertures



Current state-of-the-art: 
space photometry

Continuous observations from space at ~ppm 
precision (MOST, CoRoT, Kepler, BRITE, TESS)
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Spectroscopic time series

n High spectral resolution, high S/N

n Observations at large telescopes

n Stabilized instruments, wavelength stability

n No photometric stability

n Complex data reduction
n Wavelength calibration: non- or simultaneous 

ThAr, iodine cell, laser frequency comb

n Multi-line analysis
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Current state-of-the-art: 
high-precision spectroscopy

Ultra-stable, high-resolution instruments with 
simultaneous wavelength calibration (HARPS, ESPRESSO)
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Frequency comb for 
wavelength calibration


