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Why do we need temperature and pressure?

In which way does the temperature in the
atmosphere play a role for radiative transfer
(cf. equations in previous lectures)?



Role of temperature and pressure

So far, we have been talking about transport of radiation
through the atmosphere, describing all quantities as a function
of optical depth, which is expressed as (Ch. 2):

τλ =
∫

nσλdx =
∫
κλρdx

σλ . . . cross section (units of cm2)

κλ . . . opacity (units of cm2g−1),
depends on temperature and pressure!

In some equations the Planck function appears, which depends
on temperature.



How do we obtain temperature and pressure?

“For Earth and the Solar System bodies, the
temperature-pressure profile may actually be
measured via satellite or in-situ probes.
For exoplanets, this task is a lot harder and we
need to resort to indirect methods.”



Equilibrium temperature

Surface temperature Teq of a planet with radius R and Bond
albedo AB due to heating by radiation from a star with radius R?
and effective temperature T? at a distance a, without effects of
an atmosphere:

Absorbed power: Pa =
4πR2

?σSBT4
?

4πa2 · πR2 (1− AB)

Emitted power: Pe = 4πR2 · σSBT4
eq

Pa = Pe ⇒ Teq = T?

(
R?
2a

)1/2

(1− AB)1/4



Equilibrium vs observed temperature

Object Bond Teq (K) Ts (K) ∆T (K)
Albedo measured warming

Mercury 0.06 440 440 0
Venus 0.75 240 740 ∼500
Earth 0.33 250 290 40
Mars 0.17 220 230 10
Titan ∼0.2 85 90 5



Atmospheric effects

Reasons for differences between Teq and measured Ts for
planets with significant atmospheres:

I Cooling due to scattering of starlight
I Warming due to greenhouse effect:

absorption or back-scattering of infrared radiation from
planet by e.g. water, carbon dioxide, methane

I Cooling and heating by aerosols or clouds

This lecture: investigate analytical models to develop an
understanding of these effects, before using numerical
simulations in last part of course



Dual-band (double-gray) approximation I

Wien’s law – wavelength for maximum of blackbody intensity:

λpeak ≈ 0.5µm
(

T
6000K

)−1

Examples: ≈0.5 µm for Sun-like star, ≈10 µm for Earth,
≈2 µm for hot exoplanet

This means that we can calculate the transfer of radiation in two
separate wavelength bands:

I Shortwave (S): range of wavelengths corresponding to
stellar heating, typically in the visible,
except for very cool stars (“M dwarfs”→ near-infrared)

I Longwave (L): range of wavelengths associated with
thermal emission of planetary atmosphere, in infrared



Dual-band (double-gray) approximation II

New quantities:
zeroth, first, and second moments of intensity, integrated over
shortwave and longwave bands
→ shortwave/longwave total intensity JS/L, net flux FS/L,
and net K-integral KS/L

K-integral (Sect. 3.5.1, Eq. 3.51): multiplying intensity with µ2

and integrating over all angles, for outgoing and incoming
radiation
Kout/in/c is the radiation pressure
Net K-integral K−(λ) = Kout − Kin



Radiative transfer with scattering I

I Start from “governing equations” for two-stream
approximation with non-isotropic scattering,
for wavelength-dependent net flux and net K-integral
(from Ch. 3, Eqs. 3.46 and 3.52)

I Express single-scattering albedo in terms of the absorption
and scattering opacities: ω0 =

κs

κa + κs
I Change the independent variable (depth coordinate) from

optical depth τ to column mass m̃ =
∫
ρdx

I m̃ = 0 at the top of the atmosphere,
m̃→∞ in the deep interior,
pressure P = m̃g
(in hydrostatic equilibrium, from Newton’s second law)



Radiative transfer with scattering II

ω0 =
κs

κa + κs
, m̃ =

∫
ρdx

dτ = (κa + κs)ρdx =
κa

1− ω0
dm̃

dF−
dτ

= (1− ω0)(J − 4πB) → dF−
dm̃

= κa(J − 4πB)

dK−
dτ

= F+(1− ω0g0) → dK−
dm̃

= κaF+
1− ω0g0

1− ω0
=
κaF+

β2
0

g0 =
∫ 4π

0 µ′′PdΩ′′ . . . scattering asymmetry factor
(Ch. 3, Eq. 3.50), where P is the scattering phase function

β0 . . . scattering parameter

→ governing equations with absorption opacity and scattering
parameter as input parameters



Scattering parameter

β0 – combination of single-scattering albedo and scattering
asymmetry factor

I Pure absorption: β0 = 1
I Pure scattering: β0 = 0
I Isotropic scattering: g0 = 0
I Forward scattering: g0 > 0
I Backward scattering: g0 < 0



Towards a solution
A static atmosphere does not produce or consume any energy,
i.e. we apply conservation of energy. This is ensured when the
wavelength-integrated net flux is constant for each layer in the
atmosphere (aka radiative equilibrium).

Integrate the governing equation for net flux over all
wavelengths to obtain an equation for the
wavelength-integrated net flux F−, where the absorption is
divided into the shortwave and the longwave part, and the
Stefan-Boltzmann law is used to integrate the Planck function:

dF−
dm̃

= κSJS + κL(JL − 4σSBT4)

dF−
dm̃

= 0 in radiative equilibrium

Inner boundary condition: net flux from deep interior is σSBT4
int



Treatment of shortwave radiation I

“In the shortwave, stellar heating dominates and thermal
emission from the exoplanet is negligible.”

I Describe scattering in shortwave band by parameter βS0

– a characteristic value of β0

I Integrate governing equations for two-stream
approximation over shortwave band:

dF−
dm̃

= κa(J − 4πB) → dFS

dm̃
= κSJS

dK−
dm̃

=
κaF+

β2
0

→ dKS

dm̃
=
κ′SFS

β2
S0

I κS, κ′S . . . mean opacities weighted by intensity and flux



Treatment of shortwave radiation II

I Obtain a pair of second-order ordinary differential
equations by taking the derivative of the previous
equations and inserting the original equations back in
2 times (Eq. 4.22)

I Assumptions:
– Use shortwave closure KS = µ2JS to eliminate one of three

unknowns JS,FS,KS (justified by allowing a solution
reproducing Beer’s extinction law)

– κS = κ′S

– Power-law form of the shortwave opacity: κS = κS0

(
m̃
m̃0

)nS

m̃0 . . . reference value of the column mass usually set to
correspond to bottom of atmosphere



Treatment of shortwave radiation III

Analytical solutions for total intensity and net flux:

JS = JS(m̃ = 0)eβS/µ, FS = FS(m̃ = 0)eβS/µ,

where βS =
κSm̃

(nS + 1)βS0

For constant κS (nS = 0) and pure absorption (βS0 = 1) this is
Beer’s extinction law (µ < 0!).

Figure 4.2: Fractional decrease of incident stellar flux FS(m̃ = 0)
with depth in the atmosphere (towards larger column mass),
for different values of nS and βS0 .



Treatment of shortwave radiation IV
62 CHAPTER 4

Figure 4.2: Generalization of Beer’s law with non-isotropic scattering. The
limit of constant shortwave opacity and pure absorption is given by nS = 0
and βS0 = 1. A steeper fall of the shortwave opacity with height allows for a
deeper penetration of starlight (nS = 1 and βS0 = 1). Even when the shortwave
opacity is constant, the presence of scattering causes a more rapid diminution
of incident starlight (nS = 0 and βS0 = 0.5).

From this point onwards, we shall simply term κS the shortwave opacity. With
this assumption, we obtain a pair of second-order ordinary differential equations,

∂2JS

∂m̃2
− 1

κS

∂κS

∂m̃

∂JS

∂m̃
−
(

κS

µβS0

)2

JS = 0,

∂2FS

∂m̃2
− 1

κS

∂κS

∂m̃

∂FS

∂m̃
−
(

κS

µβS0

)2

FS = 0.

(4.22)

When κS is constant, the pesky first derivatives in equation (4.22) vanish
and the solutions are straightforward to obtain. What is surprising and less
obvious is that a power-law form of the shortwave opacity,

κS = κS0

(
m̃

m̃0

)nS

, (4.23)

where m̃0 is a reference value of the column mass usually set to correspond to
the bottom of atmosphere, admits the following analytical solutions [94],

JS = JS0e
βS/µ, FS = FS0e

βS/µ, (4.24)
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Larger power-law index for opacity nS causes less rapid decrease,
presence of scattering (smaller βS0 ) causes more rapid decrease.



Treatment of shortwave radiation V

Outer boundary condition: shortwave flux at top of atmosphere
is incident stellar flux µσSBT4

irr (for 0 ≤ φ ≤ π, otherwise 0)

Tirr =
√

2Teq . . . irradiation temperature
– temperature at the substellar point of a planet,
where distance between atmosphere and star is shortest



Treatment of longwave radiation

I Describe scattering in the longwave band by parameter βL0

I Integrate governing equations for two-stream
approximation over longwave band:

dF−
dm̃

= κa(J − 4πB) → dFL

dm̃
= κLJL − 4κ′′LσSBT4

includes blackbody emission from planetary atmosphere!

dK−
dm̃

=
κaF+

β2
0

→ dKL

dm̃
=
κ′LFL

β2
L0

I κL, κ′L, κ′′L . . . mean opacities weighted by intensity, flux,
and Planck function



Treatment of longwave radiation – assumptions

I To eliminate two of four unknowns JL,FL,KL,T
use two longwave Eddington coefficients:
εL = FL/JL = 3/8 and εL3 = KL/JL = 1/3.
These values are consistent with the other
Eddington coefficients used in Ch. 3,
and are derived in Problem 4.9.1.

I κL = κ′L = κ′′L



General solution

I Global-mean temperature-pressure profile
in radiative equilibrium:

– T̄4 as a function of m̃ (Eq. 4.39)
– input parameters T4

int, T4
irr, βS0 , βL0

– input functions κS, κL
– contains also εL = 3/8, εL3 = 1/3,

and βS =
κSm̃

(nS + 1)βS0

via Ei(βS)

(exponential integral Ei is defined in Eq. 2.32)

I Parametrized shortwave opacity κS = κS0

(
m̃
m̃0

)nS

I Parametrized longwave opacity κL = κ0 + κCIA

(
m̃
m̃0

)



Atmospheric effects – greenhouse warming
I Fiducial model:

Tint = 0/150 K, Tirr = 1200 K,
βS0 = 1, βL0 = 1,
κS0 = 0.01 cm2g−1, nS = 0,
κ0 = 0.02 cm2g−1, κCIA = 0, g = 103 cm s−2

I Generic shape of temperature-pressure profile for
irradiated atmospheres:
temperature increases with pressure from the top
downwards, then becomes isothermal;
if Tint > 0 then T increases again at greater depths

I Without atmosphere, Tsurface would be Teq ≈ 850 K, but
Tsurface & 950 K due to greenhouse effect: stellar shortwave
radiation enters the atmosphere, heats the surface and is
converted to longwave radiation, which stays in the
atmosphere due to the higher longwave opacity



Atmospheric effects – collision-induced absorption
(CIA)

I At high pressures, symmetric diatomic molecules
(e.g. H2 or N2) may undergo inelastic collisions,
during which they form a larger molecule which causes
continuous absorption.

I Collisions need two particles→ τ =
∫
κdm̃ proportional to

square of gas density→ CIA opacity is proportional to m̃
I Absorption occurs mostly at longwave
→ including CIA warms the atmosphere



Greenhouse warming and collision-induced absorption
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Figure 4.3: Elucidating the effects of greenhouse warming using temperature-
pressure profiles in the purely absorbing limit. The fiducial model (thick, solid
curve) has the following parameter values: Tint = 0, Tirr = 1200 K, g = 103 cm
s−2, nS = 0, κS0 = 0.01 cm2 g−1, κ0 = 0.02 cm2 g−1, κCIA = 0, βS0 = 1 and
βL0 = 1. The other models modify one of the parameter values as stated in the
legend. The thin, solid curve is the fiducial model recomputed with Tint = 150
K and shows Milne’s solution.

4.7 EXPLORATION OF DIFFERENT ATMOSPHERIC

EFFECTS

Our analytical model of the temperature-pressure profile of an atmosphere allows
us to perform controlled experiments to understand the effects of varying the
various parameters, much like how one does an experiment in the laboratory.
To this end, we create a fiducial model with the following properties: constant
opacities, no scattering in either the shortwave or longwave and the absence of
collision-induced absorption. Its parameter values are listed in the caption of
Figure 4.3. Based on this fiducial model, we selectively modify one parameter
at a time in order to isolate its effect. Such an approach is the basis of good
theory, at least in astrophysics.

4.7.1 Greenhouse warming

The gaseous component of a real atmosphere is composed of a soup of atoms
and molecules, each with an ability to absorb radiation via the laws of quantum
mechanics. Typically, molecules absorb photons via ro-vibrational transitions
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I Increasing the longwave opacity (κ0) increases greenhouse warming
I Switching on CIA warms the atmosphere, in particular at high pressures



Atmospheric effects – cooling and inversions

I When shortwave opacity is increased
→ anti-greenhouse effect: upper atmosphere is warmed
up and lower atmosphere is cooled down

I If shortwave opacity is higher than longwave opacity
→ temperature inversion (temperature increases with
altitude)

I Examples for extra absorbers of shortwave (stellar)
radiation: ozone on Earth, possibly TiO on exoplanets

I Existence of temperature inversions in exoplanetary
atmospheres is under debate



Anti-greenhouse cooling and temperature inversion
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Figure 4.4: Elucidating the effects of anti-greenhouse cooling using temperature-
pressure profiles in the purely absorbing limit. In this set of models, we have set
Tint = 150 K. The thick, dashed curve has the shortwave and longwave opacities
being equal. The thick, dotted curve has κS0/κ0 = 2.

is generally difficult to calculate the opacity associated with CIA, as it depends
on the nature6 of the collidants and the ambient pressure [1].

4.7.3 Anti-greenhouse cooling and atmospheric inversions

What happens when we increase the shortwave opacity to the point where it
becomes larger than its longwave counterpart? Physically, this is akin to insert-
ing extra absorbers of shortwave radiation in the atmosphere. On Earth, this
role is played by ozone in the ultraviolet range of wavelengths. On exoplanets, a
favored guess of the astronomers is titanium monoxide (TiO), due to its preva-
lence in the observed spectra of brown dwarfs [116], although it remains to be
seen if the analogy between brown dwarfs and gas-giant exoplanets carries this
far.

The thick, dashed and dotted curves in Figure 4.4 illustrate the effect of
increasing the shortwave opacity to the point where it dominates the longwave
opacity, which leads to the anti-greenhouse effect—the upper atmosphere warms
and the lower atmosphere cools. The onset of the isothermal component shifts
to lower pressures, since starlight is now deposited at higher altitudes. The

6More specifically, it depends on the stoichiometry of the collidants. For example, CIA
may occur between a pair of hydrogen molecules or between a hydrogen molecule and a helium
atom.
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Effect of increasing the shortwave opacity to being equal to
and 2 times the longwave opacity



Measured temperature profiles

Lissauer and de Pater (2013)



Atmospheric effects – albedo variations

I Bond albedo = fraction of incident starlight reflected
(scattered) away from the atmosphere across all
wavelengths

I Depends on amount of aerosols, clouds, and dust grains
contained in the atmosphere

I Decreasing shortwave scattering parameter corresponds
to increasing Bond albedo, e.g. βS0 = 0.75→ AB = 14%,
βS0 = 0.5→ AB = 33%

I Effect: entire temperature-profile shifts to lower
temperatures, total energy content of the atmosphere is
reduced by a factor of (1− AB)



Scattering greenhouse effect

I Effect of decreasing longwave scattering parameter:
entire temperature-profile shifts to higher temperatures

I Thermal emission from planetary atmosphere attempts to
escape, but some of it is scattered back into the planet



Increased shortwave and longwave scattering
70 CHAPTER 4

Figure 4.5: Elucidating the effects of shortwave/optical and longwave/infrared
scattering on the temperature-pressure profiles. As the scattering parameter
decreases, the strength of scattering increases. Shortwave scattering enhances
the anti-greenhouse effect, while longwave scattering generally warms the entire
atmosphere. In this set of models, we have also set Tint = 150 K.

thick, dotted curve develops a temperature inversion, where temperature now
increases with altitude.

There is a long and rich debate in the astrophysical literature on the possible
existence of temperature inversions in exoplanetary atmospheres [27, 28, 63, 64,
124, 152, 153, 155, 171, 229], although the shortwave absorber has yet to be
clearly identified. If temperature inversions are present, they may negate the
effects of disequilibrium chemistry by warming the upper atmosphere [175]—
chemical time scales tend to be shorter at higher temperatures. This has con-
sequences for interpreting chemical abundances.

4.7.4 Albedo variations

An important and measurable quantity is the Bond albedo of the atmosphere,
which is the fraction of incident starlight reflected away from it across all wave-
lengths. The Bond albedo essentially controls the energy budget of an atmo-
sphere. It is generally mediated by the presence of aerosols, condensates or
dust grains, whose chemistry and compositions are not always easy to decipher.
Nevertheless, it is of interest to understand the effects of a varying albedo on
the thermal structure of an atmosphere.

One each of the thick, dotted and dashed curves in Figure 4.5 are for model
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Shortwave/optical scattering cools (βS0 < 1),
longwave/infrared scattering warms (βL0 < 1) the entire atmosphere



Home work

I 4.9.1 The longwave Eddington coefficients (cf. Chapter 3)
I 4.9.3 Non-constant shortwave opacity (cf. Appendix E)


