
Physics of planetary atmospheres

Lecture 5: Opacities in planetary atmospheres
(Heng Ch. 5)

Ulrike Heiter

HT 2018



Opacity

I Absorption cross section per unit mass as a function of
wavelength or wavenumber κ(ν̃) due to atoms and molecules
present in the atmosphere

I Needed to compute transmission functions, fluxes, and
spectra of planetary atmospheres

I κ(ν̃) also depends on temperature and pressure, and so is
needed as input to calculate temperature-pressure profile
using radiative equilibrium (energy conservation)

I In practice this is done by iterating until convergence.



This lecture

I Discuss the calculation of the opacity function, in particular
the strengths and shapes of spectral lines, in order to get to
know the inputs required for a radiative transfer solver

I Molecules in planetary atmospheres give rise to huge
numbers of spectral lines (e.g. more than 500 million for
water).

I To make computations possible on human time scales,
distribution functions of opacity are used, which significantly
reduce the number of opacity points that need to be sampled.



Continuous and line opacity

I Continuous opacity arises from processes with arbitrary
changes in energy: bound-free transitions, free-free
transitions, collision-induced absorption, grain absorption.

I Line opacity arises from processes with discrete changes in
energy: spectral lines or bound-bound transitions.

I In atmospheres of rocky planets, line opacity is most
important, while in gas giants there can be some contribution
from continuous opacity.



Continuous opacity

I Bound-free absorption
– Photoionization of an electron from an atom, ion, or molecule,

and photodissociation of molecules
– T & 1500 K: free atomic hydrogen→ Lyman continuum in the

ultraviolet; H− → broad range; Fe
– T & 1000 K: Na (low ionization energy, longer wavelengths),

K (incomplete data)

I Collision-induced absorption: Induced dipole-dipole
absorption by collisions of H2 with H2, He, or CH4

I Grain opacities
– Scattering and absorption caused by solid and liquid particles

(clouds)
– Cross-sections calculated using Mie theory, from complex

index of refraction, particle radius, photon wavelength



Bound-free absorption

Sharp and Burrows 2007, ApJS 168, 140, Fig. 14



Collision-induced absorption

Sharp and Burrows 2007, ApJS 168, 140, Fig. 15



Grain absorption

Sharp and Burrows 2007, ApJS 168, 140, Fig. 16



Line opacity – line profile I

I General shape of spectral line: combination of
Lorentz profile (damping profile, dispersion function)
and Doppler profile (Gaussian)

I Lorentz profile = natural broadening caused by finite lifetime
of upper and lower energy levels
(+ uncertainty principle)

ΦL(∆ν̃) =
ΓL/π

(ν̃ − ν̃0)2 + Γ2
L

ν̃0 . . . wavenumber at line center, ∆ν̃ = ν̃ − ν̃0

ΓL . . . HWHM,→ 2ΓL is natural line width



Line opacity – line profile II

For gas temperature T atoms and molecules of mass m have a
characteristic speed, the thermal speed (maximum or most
probable speed of a Maxwell distribution):

3th =

(
2kBT

m

)1/2

→ Doppler profile: a Gaussian distribution with dispersion ∆ν̃D

ΦD(∆ν̃) =
1

π1/2∆ν̃D
e−(ν̃−ν̃0)2/∆ν̃2

D

∆ν̃D =
3th

c
ν̃0



Line opacity – Voigt profile

Effects of natural and Doppler broadening are superimposed
→ total profile given by convolution of Lorentz and Doppler profiles
= Voigt profile, expressed in terms of H-function
(named after paper by F. Hjerting, 1938)

ΦV(∆ν̃) =

∫ ∞

−∞

ΦL(∆ν̃ − ∆ν̃′) ΦD(∆ν̃′) d∆ν̃′ =
1

π1/2∆ν̃D
H(x, a0)

H(x, a0) =
a0

π

∫ ∞

−∞

e−x′2

(x − x′)2 + a2
0

dx′

x =
∆ν̃

∆ν̃D
, a0 =

ΓL

∆ν̃D
. . . damping parameter



Voigt profile examples
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Figure 5.2: Doppler profile
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Figure 5.2: Lorentz profile – small damping parameter
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Figure 5.2: Voigt profile - small damping parameter
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Figure 5.2: Lorentz profile – large damping parameter
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Figure 5.2: Voigt profile – large damping parameter



Line opacity – line strength I

I Opacity is obtained by multiplying Voigt profile
by integrated line strength S

I S is calculated from quantum mechanics and statistical
mechanics for different species, and tabulated for a reference
temperature in spectroscopic databases,
e.g. HITEMP by Rothman et al. 2010, JQSRT 111, 2139

I Use an analytical scaling relation to obtain S for any other
temperature



Line opacity – line strength II

Line strength is related to transition probability between
lower energy level 1 and upper energy level 2,
e.g. probability for spontaneous emission given
by Einstein A-coefficient A21
(Eq. 5.13 using Eq. 5.12 and ideal gas law P = nkBT):

S =
hν̃
mn

n2A21

E

n . . . total number density of species with mass m

n2 . . . population of energy level 2

E . . . energy density per unit wavenumber



Line opacity – line strength III

In local thermodynamic equilibrium (LTE):
Boltzmann – Saha – Planck (Eqs. 5.14 – 5.17)
n2

n1
=

g2

g1
e−∆E/kBT

n1

n
=

g1

Q(T)
e−E1/kBT

E =
4πB

c
, B = 2hc2ν̃3(ehν̃c/kBT − 1)−1

∆E = E2 − E1 = hν̃c
Q(T) =

∑
gie−Ei/kBT . . . partition function



Line opacity – line strength IV

S =
hν̃
mn

n2A21

E

S =
hν̃ A21

m n1/g1Q(T)eE1/kBT n1
g2

g1
e−∆E/kBT c (ehν̃c/kBT − 1)

4π 2hc2ν̃3

S =
Ah�̃ν A21

mZZn1/ZZg1Q(T)eE1/kBT ZZn1
g2

ZZg1
e−∆E/kBT Ac (ehν̃c/kBT − 1)

4π 2AhcA2ν̃���
2

3

S =
g2A21

8π cν̃2 m Q(T)
e−E1/kBT

(
1 − e−hν̃c/kBT

)
Note that S depends only on T, not on n (or P)!



Line opacity – line strength V

To use database value S(T0) at reference temperature T0:

S(T)
S(T0)

=
Q(T0)
Q(T)

e−E1/kBT+E1/kBT0
1 − e−hν̃c/kBT

1 − e−hν̃c/kBT0



Line opacity – pressure broadening
I In addition to natural and thermal broadening, spectral lines

are broadened by collisions between particles, described by a
Lorentz profile.

I Increased Lorentz line width (empirical formula), with
parameters given in databases at reference pressure P0:

Γ′L = ΓL +

(
T
T0

)−ncoll
[
αair(P − Pself)

P0
+
αselfPself

P0

]
I Accounts for

– Broadening by “air”: collisions with molecules of the
dominating gas in the atmosphere

– Self-broadening: collisions with molecules of the same species
as the absorbing species

I This treatment is incorrect in the far line wings.
This error plays a role in wavelength regions with millions of
lines, and has to be dealt with by using a “cutoff” for the line
wings when calculating the total opacity.



Line opacity: water at T = 1500 K, P = 1 atm

ATMOSPHERIC OPACITIES: HOW TO USE A LINE LIST 75

Figure 5.1: Sample opacity function constructed using the spectroscopic line list
database of HITEMP [203]. As an example, we consider only water at T = 1500
K and P = 1 atm. For illustration, we include two calculations: one with
every spectral line represented by the full Voigt profile and another with an
ad hoc cutoff of 100 cm−1 imposed on the line wings. You will see that using
the full Voigt profile drowns out the weak lines at larger wavenumbers (shorter
wavelengths). Courtesy of Simon Grimm using the HELIOS-K software package
[77].

specific pairing of the temperature and pressure! Calculations of radiative trans-
fer typically require dozens, if not hundreds, of combinations of temperatures
and pressures. To complete these calculations within any reasonable period of
time, we need techniques to reduce the number of opacity points being sam-
pled. We will describe a technique known as the k-distribution method , which
is exact only under certain restricted conditions—we will elucidate what these
conditions are.

By the end of the chapter, you will understand how to construct your own at-
mospheric opacity function for any temperature, pressure and mixture of atoms
and molecules. I have focused on dealing with spectral lines; in practice, one
also has to include the effects of collision-induced absorption, which introduces
a continuum to the opacity function (see Chapter 4).
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Figure 5.1
Green: full Voigt profile
Red: line wings truncated at 100 cm−1



Line opacity: water, methane, ammonia

Sharp and Burrows 2007, ApJS 168, 140, Fig. 1



Line opacity: CO

Sharp and Burrows 2007, ApJS 168, 140, Fig. 3



Line opacity: ultraviolet absorption

Sharp and Burrows 2007, ApJS 168, 140, Fig. 11



Line opacity: Alkali atoms – Na, K

1400 K / 1 bar

Freedman, Marley, and Lodders 2008, ApJS 174, 504, Fig. 4



Line opacity in practice

I Each molecule gives rise to a large number of spectral lines,
depending on temperature, e.g. water on Earth ∼ 105 lines,
on exoplanets with 1000 K ∼ 108 lines.

I In principle, opacity function needs to be calculated at a
number of wavelength points larger than the number of lines,
to resolve all lines = line-by-line calculation.

I To be repeated ∼100 times for a model, at different
temperatures, pressures, abundances.

I Line-by-line calculations are infeasible in practice
→ two approaches:

– Opacity sampling – select a smaller number of points
– The k-distribution method – use cumulative distribution

function of opacity function



K-distribution method

I Structure of atmosphere is determined by integrals that
depend not so much on the details of the spectrum but more
on its average properties

I We do not need to know the opacity explicitly at every
frequency

I Adopt a line-absorption distribution function, which is a
smooth and monotonically increasing function that can be
sampled at few points

I Compute distribution functions for a grid of temperatures,
pressures, and chemical abundances and interpolate between
pre-tabulated grid points during model calculations



Construction of opacity distribution function

I Start from finely sampled opacity function κ(x), where x is the
wavenumber normalized by the entire range considered

I Choose an interval for which we want an “average” opacity
I Distribution function y′ is the fraction of the interval that has

opacity between κ and κ + ∆κ

I Cumulative distribution function y is the fraction of the interval
that has opacity κ or less:

y(κ) =

∫ κ

0
y′(κ′)dκ′, y(κmin) = 0, y(κmax) = 1



Opacity distribution function







x 

y’ 

  
Adapted from R.L. Kurucz 1970, SAO Special Report No. 309, p. 93



Opacity distribution function
y(κ) can be inverted to get something that looks like a line profile:
κ(y), with κ(0) = κmin and κ(1) = κmax

y 

  y 1 0 







Adapted from R.L. Kurucz 1970, SAO Special Report No. 309, p. 93



Opacity and k-distribution function
84 CHAPTER 5

Figure 5.3: Idealized example of an atmospheric opacity function with spectral
lines represented by Lorentz profiles with arbitrary units (left panel), which
is then transformed to its k-distribution function (right panel). Notice how a
uniform sampling in x generally corresponds to a non-uniform sampling in κ(x).
Spectral lines may be under-sampled near their cores if insufficient numerical
resolution is used to capture the sudden jumps in value.

5.4.2 Implementing the k-distribution method

Generally, the opacity function may be divided into multiple bins. Within each
bin, we may construct the k-distribution function, which allows us to compute
the transmission function. With the transmission function of every bin in hand,
we may compute the flux emerging from the exoplanetary atmosphere.

Consider a wavenumber bin with a width of ∆x ≡ xmax − xmin. Within the
bin, we consider equal intervals in x and let the interval be denoted by δx. Such
a uniform grid in x generally leads to a non-uniform grid in κ(x). Its virtue is
that it reduces our problem to one of sorting and ordering, since every value of
κ(x) is associated with δx (and we do not have to keep track of changing values
of the interval). For a fixed value of the opacity (κ0), we count the number of
points that satisfy κ(x) ≤ κ0. If Nx points are counted, then we have

y =
Nx δx

∆x
. (5.31)

We also have δx = ∆x/N , where N is the total number of intervals in x. It
implies that the interval in y is also equal,

δy =
δx

∆x
=

1

N
. (5.32)
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Figure 5.3



Application of k-distribution function
I Wavelength-integrated transmission function (cf. Eq. 3.36):

T =

∫ ∞

0
e−κ(x)m̃dx =

∫ 1

0
e−κ(y)m̃dy

I Assumption: opacity function has the same relative shape at
all column masses m̃→ k-distribution is independent of depth
= correlated-k approximation

(m̃1) (m̃1)

(m̃2) (m̃2)

Adapted from R.L. Kurucz 1970, SAO Special Report No. 309, p. 96



Atmospheric chemical composition

I If there is more than one molecule in the atmosphere, one
needs to compute the total opacity function by adding the
opacities of the various molecules, weighted by their relative
abundances (see lecture on atmospheric chemistry),
before constructing the k-distribution function.

I The opposite case of adding the k-distribution functions of
different molecules corresponds to assuming that the lines of
the two molecules are correlated, i.e. they populate the same
wavenumber regions.

I Limiting cases for distribution of spectral lines:
perfectly-uncorrelated, perfectly-correlated, disjoint lines
effect on transmission function→ Problem 5.6.6 (home work)



Low-temperature, low-pressure limit

I At low temperatures and low pressures the opacity function
can be expressed as the product of two functions, one only
dependent on wavenumber, the other only dependent on
temperature.

I In that case, the k-distribution method with correlated-k
approximation is exact.

I Low-temperature limit: Tlimiting = hcν̃/kB, T � Tlimiting

I Examples: assume T is at most 1% of Tlimiting
(hc/kB ≈ 0.014 K/m):
Optical – λ = 400 nm, ν̃ = 25000 cm−1 → T ∼ 360 K
Infrared – λ = 2 µm, ν̃ = 5000 cm−1 → T ∼ 70 K

I In general, the uncertainty due to opacity treatment needs to
be evaluated by comparing distribution-function calculations
to line-by-line calculations.



Mean opacities

I Mean opacities integrated over all wavenumbers are
sometimes needed, e.g. for computing temperature-pressure
profiles

I Planck mean opacity: κP =

∫
κBdν̃∫
Bdν̃

arithmetic mean weighted by Planck function,
applicable at τ ∼ 1, strong lines important for radiative transfer

I Rosseland mean opacity: κR =


∫

1
κ
∂B
∂T dν̃∫
∂B
∂T dν̃

−1

harmonic mean weighted by gradient of Planck function,
applicable at large optical depths, weak lines important for
radiative transfer



Mean opacities
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Home work

I 5.6.6 Atmospheres with two molecules: uncorrelated,
correlated and disjoint spectral lines (Hint: if the solution is not
obvious, draw figures for each of the three cases)


