
SCIENTIFIC PROGRAMMING

NIKOLAI PISKUNOV

PhD/Master course, Uppsala 2011

RATIONALE

 Understanding the interaction between your

program and computer

 Structuring the code

 Optimizing the code

 Debugging strategies

 Parallelization

 A complementary course to numerical methods

and programming languages

COMPUTERS: HARDWARE

CPU

GPU

Peripheral

devices

Memory

COMPUTERS: HARDWARE

 Computers perform any data transformation on
registers or in pipelines!

 Registers are typically 64-bit long. Intel Core I
series has four 14 stage pipelines. Each stage is
32-bit long. One important conclusion is that
double precision register operations are not much
slower than single precision!

 Bus operates at rates of a few hundred MHz. How
does this work with a 3 GHz CPU?

 Bus width×speed determines memory access
performance.

WHAT DOES THE HARDWARE DO?

Simple example: addition

We want to add two numbers:

A (located in memory MA)

+

B (located in memory MB)

||

The result is stored to memory MC

WHAT DOES THE HARDWARE DO? ADDITION

1. Load content of memory MA to register R1

2. Load content of memory MB to register R2

3. Add R1 and R2 and store result in R3

4. Save the content of register R3 to memory MC

 Registers are part of CPU. Modern CPUs are so

fast that addition is takes negligible time

compared to memory access

SOLVING MEMORY ACCESS BOTTLENECK

Solution is cache memory

CACHE (French) hidden

Very fast and very close

Loading and saving between

main memory and cache

memory is done by a

“separate” CPU which takes

an advance look at the

program

Multi-core CPUs will have

three levels of cache memory

with only L3 shared by all

cores

CACH MEMORY: ADVANTAGES

 Cache memory can be loaded/saved in blocks,
very fast

 Multiple registers can be loaded simultaneously

 Multiple operations performed in the same time –
pipeline(s). Intel Core i has 4 pipelines per core each

capable of doing up to 14 instructions simultaneously.

Load

Load

Load

Add Divide Save

Add

Add

Divide

Divide

Load Add Divide

Save

Save

Save

tim
e

Load

Load

Load

Sqrt Log Save

Sqrt

Sqrt

Log

Log

Load Sqrt Log

Save

Save

Save

Pipeline #1 Pipeline #2

CACHE MEMORY: PROBLEMS

 Main memory is typically read within 40-80

nanoseconds. Cache memory must operate

close to the CPU clock rate: 3 GHz CPU requires

3 nanoseconds cache (10 CPU cycles)!!!

 To be that fast cache memory must be small

and static

 Cache memory is very expensive

 Branching in the code can be deadly!!!

BRANCHING

 Two cases: explicit and conditional

 Explicit is easy: go to <address of the command>

 Conditional: if true do <next command>
 else skip it and <do the one after>
is not so bad either

 Combination of the two is bad:
if true go to <far, far away>
else …

 Why is this bad? Examples of such situation

BRANCHING PREDICTION

 What happens with conditional branching is that
the content of your cache may become
inconsistent with the next part of the code

 In this situation (known as cache miss) you need
to save cache entries that are not saved yet and
load new memory parts

 A special part of a modern CPU (branch predictor)
tries to guess the branching direction

 Loops are converted to count-down scheme
helping with prediction

INTERACTION WITH THE SOFTWARE:

MAMORY ALLOCATION/PROTECTION

 Computer codes need variables, arrays etc. How this is
done in hardware? There are two concepts: stack and
heap.

 Stack is characterized by its start, length and current
position. Current position is stored in a special register.
Many stacks can co-exist but cannot be accessed
simultaneously (dynamic variables)

 Heap is a stack with the current position moving from
the largest memory address backwards (static variables)

 Hardware provides memory protection: two processes
(programs) cannot read/modify each others memory

 No protection is offered within a single program space!!!

ADDRESSING MEMORY

 Memory can be addressed directly or by segments
(segment:offset). 64-bit CPUs can address up to
264-1 memory mode while 32-bit memory model is
restricted to 4 Gb of address space.

 Modern computer memory bus is 64-bit wide so it
can carry the address or the content of 8 memory
bytes in one go.

 Memory is accessed in the following sequence:
 CPU sends memory address to the memory controller

through the bus (segment and offset are sent together).

 Memory controller fetches the content and sends it
back to the CPU

INTERACTION WITH THE SOFTWARE:

CONTEXT SWITCHING

 Programs often use subroutines. How does this
work?

 Special stack is organized for this purpose

 Before a subroutine is called, all the registers and a
pointer to the next command to be executed are stored
in this stack

 New stack is created or an existing one is pulled up for
the subroutine and the execution starts

 On exit the content of the registers is restored from the
stack and the execution continues in the calling code

 This process is called context switching

 Context switching is the base of multi-processing

EXCEPTIONS

 What happen when a code tries to perform a

division but the content of the divider register is

zero? Actually, nothing. The result is marked by a

special combination of bits called NaN. No other

action is normally taken

 Modern processors have a special mode called

Exception Tracking. When activated, the processor

(hardware) initiates context switching calling

exception handling program. This allows locating

the place in the code where the problem occurred.

HOW DO WE GET IN AND OUT?

 CPU is also connected to the peripheral devices
(keyboard, mouse, hard drives, network,
printers) and to the graphics card

 Expensive graphics cards are powerful
computers all by themselves with GPU, fast bus
and huge memory. In small laptops the main
CPU acts (at least partially) as a GPU. A special
dedicated bus connects the CPU and the
graphics

DIRECT MEMORY ACCESS

 External memory (HD, SSD) is much slower
even than the main memory (10 microseconds
versus 50 nanoseconds)

 Bus controller allows direct memory access

 the CPU specifies that certain information from a
disk must be copied to a certain memory area

 The copying does not involve the CPU

 It works in both directions HD→RAM or RAM→HD

 Transferring an optimal amount of data in one
such operation results in large gain of speed

MORE ABOUT HD I/O

 To make the I/O operations more efficient and

take maximum advantage of the direct access

the operating system often uses RAM to

simulate HD.

 The synchronization between the memory

buffer and the HD is done asynchronously,

once in a while.

 It speeds up disk access but creates a potential

threat to the integrity of the file system.

NEXT LECTURE: PROGRAMMING LANGUAGES

Literature:

The C programming Language

Kernighan and Ritchie

FORTRAN 90/95 explained

Metcalf

Python http://www.python.org/doc/

http://www.python.org/doc/

HOME WORK

Find out what are you going to be using for the

exercises:

What computer (Intel, PowerPC)

What operating system (Windows, Linux, Mac OS X)

What programming languages do you have

available (C, C++, FORTRAN, Python …)

