
LECTURE 2: ELEMENTS OF

PROGRAMMING LANGUAGES

Scientific Programming

 short l;

 int j;

 double *a;

 l=*(short *)arg[0]; /* Array length */

 a=(double *)arg[1]; /* Array */

 for(j=0; j<min(NRHOX, l); j++)

 {

 a[j]=XNA_eos[j];

 }

 return ((char *)NULL);

PROGRAMMING STYLE IS IMPORTANT

 Development

 Readability

 Debugging

 Optimization

 Recycling

 Evolution

PARTS OF A PROGRAM

 Main program
What is special about the main program?

 Subroutines and Functions
What is the difference between the two?

 Common area for some or all parts of the
program
What is this a common area?

TYPICAL LAYOUT

Common area D-F

Func D Sub E Func F

Common area A-C

Sub A Sub B Func C

Common area

Main program

ELEMENTS OF A SUBROUTINE/FUNCTION

Constants

 Integer: 2, -3, -32768, 2147483647

 Floating point: 1.0, -3.333e-37, 1.d305

 String: ‘Ab_ Cd:/e’ (Null termination or length

declaration)

Optional

 Logical: .true., .false.

 Byte: -1B, 255B

 Double precision, complex etc.

ELEMENTS OF A SUBROUTINE/FUNCTION

Variable type are the same as types of constants

Variable dimensions:

 Scalars: double a, b;

 Arrays: char s[10];

 In Python arrays are a derived type

Optional

 Pointers int *i;

 Structures

 Derived types

ELEMENTS OF A SUBROUTINE/FUNCTION

Declarations

 Variables are declared at the top. Some
languages allow implicit rules for scalars. All
arrays and other derived types must be
declared explicitly.

If your code is a long-term project use explicit
declarations only!!!

By default, all local variables in a subroutine are
allocated on stack. You can force heap
allocation (static, save etc.)

ALLOCATING MEMORY

Several languages allow explicit memory allocation

 C, C++, of course have pointers

 FORTRAN90 has allocatable variables

 IDL and Python can create/modify variable type
anytime anywhere in the code

 This operation is very useful and safe as long as the
allocation is done on stack. Cleaning will happen
automatically on exit from a subroutine but
allocating heap is dangerous!!!

 Multi-dimensional arrays can be 1D or truly nD

PARAMETERS OF SUBROUTINES/FUNCTIONS

Parameters can be passed to subroutines either via
common area of through formal parameters. 80%
of bugs are introduced at this stage!!!

Parameters can be passed “by address” (e.g.
FORTRAN) or “by values”. Some languages (e.g. C)
allow both.

“By value” parameters can be used inside
subroutine but all modifications are lost upon
return (safe)

“By address” parameters allow modifications of the
values but …

PARAMETERS OF SUBROUTINES/FUNCTIONS

… you can do things.

Examples:

1. Passing a constant by address

2. Passing a different variable type than expected

3. Passing arrays is a separate story

 In FORTRAN, IDL etc. first index of a multi-dimensional
array runs fastest

 In C it is the other way around!

 In a subroutine you can use dimensions which are
different from the ones in the caller!

PARAMETERS OF SUBROUTINES/FUNCTIONS

Good practice:

1. Protect parameters that should not be

modified inside a subroutine (FORTRAN90/95:

“input”, C/C++: pass “by value”, etc. or make

a local copy)

2. Double check type consistency between the

caller and the subroutine

3. When passing an array always pass its

declared dimensions

DERIVED DATA TYPES

 Many object-oriented languages allow complex data
types: structures, unions. These are useful when the list
of parameters becomes prohibitively long – just put then
in a structure and pass it in.

 Many object-oriented languages allow declaration of
classes: data types and operation methods. One can
even overload the conventional operations (+, -, *, /).
E.g. complex numbers. Classes can be based on other
classes inheriting properties, common areas and
methods. Remember that each class has a stack
associated with it and thus context switching takes its
toll.

 Structures can be very useful when dealing with
sequences of heterogeneous data objects

OPERATIONS AND ELEMENTARY FUNCTIONS

 In scientific computing the useful lines look like this:
a=b*c+d

 In practice the CPU can only do arithmetics on
identical data types. If b, c and d are of different
type they are converted to highest precision type
first

 If a is not the same type as the RHS another
conversion will be required

 Precision:
 4-byte floating point operations keep 7-8 decimal places

 8-byte floating point operations keep 13-14 decimals

 Elementary function would typically drop another digit.

EXECUTION FLOW CONTROL

 go to

o if … then … else better for cache memory operation

o case … of many if’s

 repeat loop

o do loop better for branching prediction

INPUT AND OUTPUT

 All I/O comes in formatted and unformatted flavors

 Operations sequence:
 Open file

 Perform input/output

 Close file

 Some files are open by default and cannot be closed

 The simplest is text I/O: string is read and parsed
according to the types of variables (unformatted) or
according to the format pattern (formatted)

 Binary I/O: variables/constants are written to a file or
variables are read in the way the are stored in computer
memory

INPUT AND OUTPUT: THE TRICKY PARTS

 Byte order: most of the RISC machines (Sun

SPARC, PowerPC, Cell) have different byte order

than e.g. Intel-based computers. 2-byte integer:

 Big endian (PowerPC, SPARC)
Most-significant digits Least-significant digits

Least-significant digits Most-significant digits

 Little endian (Intel)

 Byte order can make file/code combination

non-portable

2×n byte 2×n+1 byte

INPUT AND OUTPUT: THE TRICKY PARTS

 Binary files (unformatted) may have an additional
hidden parts. E.g. binary files created by FORTRAN
consists of records bracketed by two 4-byte
integers. This values are identical and specify
record length in bytes. This is a left-over from the
times of magnetic tapes when reading was linear
and slow: having record length on both sides
allowed reading forward and backward. Record
length is also affected by the byte order.

 FORTRAN also has the so-called “direct access”
which is different in that all the records have the
same length. This way one can compute the start
position of any given record.

OPENING AND POSITIONING A FILE

 In all languages file opening has quite a bit of
flexibility. It creates a structure that has all the
information for accessing a file. This structure is
referenced with a pointer (C, C++) or a number
(FORTRAN)

 When opening a file one can often specify an
intended action (read, write, update) and position
(start, end)

 Always open files that you do not intend to write
into as “read only”!

NEXT LECTURE: COMPILING AND LINKING

You will also get the home work

