
LECTURE 3: COMPILING AND LINKING

Scientific Programming

Test2> cat tt.f

 implicit none

 real*8 a(3001),b(3002),c(3003)

 integer i

 do i=1,3001

 a(i)=i

 b(i+1)=i*i

 c(i+2)=i*i*i

 enddo

 write(*,*) aa,i,a(3001),b(3002),c(303)

 end

Test2> ifort -g -C -c tt.f

tt.f(11): error #6404: This name does not have a type, and must have

an explicit type. [AA]

 write(*,*) aa,i,a(3001),b(3002),c(303)

-------------------^

compilation aborted for tt.f (code 1)

Test2>

SOURCE CODE MAY BE STORED IN A SINGLE OR

MULTIPLE FILES

 Simple and fully self contained programs are
good to keep in a single file. E.g.format
conversion:
marcs2krz <input_files> <output_files>

 Useful subroutines are good to keep in
separate files so that many program can re-use
them. E.g. spline interpolation:
spline.cpp containing spinit and spinter

COMPILER

 Compiler is a program that translates the source text into something
called object file.

 Object file consists of machine command mnemonics, register
references, memory references relative to the starting address of
each subroutine and calls to external subroutines.

 The compiler also may introduce modifications to the source code to
improve performance (optimization) or simplify debugging/profiling

 Object file cannot be executed! It must be further processed (segment
address arithmetic, explicit command codes, attaching the missing
subroutines). This is done by the linker

 Typically compiler is invoked from command line:
f77 <flags> file1.f file2.f main.f file3.f

 In Unix, Linux and Mac OS X flags are prefixed with minus: -c

 In Windows flags are prefixed with a slash: /comp

COMPILER

 Individual files can be compiled separately or
together but the sequence matters.

 If you have subroutines located in file1.f90 that
use module located in file2.f90, file2.f90 must be
compiled first. During this compilation a special
file (file2.MOD) describing module properties to
the outside world is created.

 Other languages are more explicit. E.g. C/C++
require header files describing calling sequences
for subroutines

USING HEADER FILE

stdio.h:

typedef struct __sFILE {

 unsigned char *_p; /* current position in (some)

buffer */

 int _r; /* read space left for getc() */

 int _w; /* write space left for putc() */

 short _flags; /* flags, below; this FILE is free if 0

*/

 short _file; /* fileno, if Unix descriptor, else -1 */

 …

 /* operations */

 void *_cookie; /* cookie passed to io functions */

 int (*_close)(void *)

 /* separate buffer for long sequences of ungetc() */

 struct __sbuf _ub; /* ungetc buffer */

 …

} FILE;

…

int fgetc(FILE *);

char *fgets(char *, int, FILE *);

FILE *fopen(const char *, const char *);

int fprintf(FILE *, const char *, ...);

int fputc(int, FILE *);

…

Using stdio:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main(int n, char *nm[])

{

 int c, c_old, ierr;

 char *nm_out;

 if(n>2)

 {

 FILE *fi, *fo;

 c_old=0;

 if(!strcmp(nm[1],nm[2]))

 {

 nm_out=(char *)malloc(strlen(nm[2])+5);

 strcpy(nm_out, nm[2]);

 strcpy(nm_out+strlen(nm[2]),".TMP");

 }

 fi=fopen(nm[1],"rt"); if(fi==NULL) return 16;

HEADER FILES IN OTHER LANGUAGES

 Header files can be useful in other languages

 Suppose many of your FORTRAN subroutines work on the same multi-
dimensional grid. Grid size must be known to multiple layers of
subroutines but passing it through parameter list might be tedious.

 An alternative is to have declarations of dimensions in a separate file
that is included in all subroutines where it is needed.

 Example:

 SIZES.EOS

 INTEGER IONSIZ

 PARAMETER (IONSIZ=6)

C

C Parameters used by the Equation of State (EOS) code.

C

 INTEGER ELEDIM,SPCHAR,SPLSIZ

 PARAMETER (ELEDIM=120,SPCHAR=8,SPLSIZ=650)

eos.f

 integer function

 * eqcount(elemen,spname,ion,nlines,nlist,ELESIZ)

 INCLUDE 'SIZES.EOS'

 integer nlines,nlist,ELESIZ

 character*(3) elemen(ELESIZ)

 character*2 tmp

 character*(SPCHAR) spname(nlines)

 character*(SPCHAR) tmplist(SPLSIZ),chname

 integer ion(nlines),ionmax

 real a(IONSIZ)

 double precision b(IONSIZ)

DEBUGGING

 One of the important functions implemented by the compiler is preparing
your code for debugging

 Debugging means that a set of additional instructions is inserted in the
code that
 Instruct the CPU to react to various exceptions

 Explicitly declared dimensions are stored in special hidden variables and
whenever those variables are accessed the address is compared with the
address of the first and last elements

 Special labels are inserted in the object module marking the beginning
instructions corresponding to a given line in the source code (the label is usually
the source code line number). This allows tracing the error back to the source
code but this also prevents advanced optimization that reshuffles the source
text

 Important flags are: -g –C -fpe

 Running a code compiled with those flags may or may not be sufficient for
finding the problem. Using a debugger program may be more efficient: you
can set break points, look at variable values etc.

 Good products for different platforms are DDE (often comes with compilers
on Unix platforms), GDB (free GNU), TotalView (best but expensive)

PROFILING

 Similar to debugging but the inserted instructions collect
statistics that is writing to the statistics file.

 Usually the relevant switch is -p

 Each subroutine records the times of the start and the end
of each call.

 On a special request the time each loop execution is marked
as well.

 A special profiler program reads the file and compiles the
statistics.

 Profiling is very useful for identifying performance
bottlenecks.

 In fact, some compiler can do profiling-based optimization

OPTIMIZATION

Optimization speeds up the code

 Dead code is removed

 Expressions involving only constants are evaluated

at compilation time

 Variables that are assigned/modified inside loops

but not affected by those loops are taken out

 Short loops are unrolled

 If-statements are evaluated whenever possible

 Loop indexing is replaced by a down counter

OPTIMIZATION

 Long loops are modified for using multiple pipelines:

 Relatively short subroutines are compiled and inserted in
to the text of the caller (in-lining, requires the caller and
the subroutine to be present in the same file).

 Cross-file optimization

do i=1,n

 a(i)=b(i)**2+log(c(i))

enddo

nn = n – mod(n, 4)

do i=1,nn,4

 a(i) = b(i)**2 + log(c(i))

 a(i+1) = b(i+1)**2 + log(c(i+1))

 a(i+2) = b(i+2)**2 + log(c(i+2))

 a(i+3) = b(i+3)**2 + log(c(i+3))

enddo

do i=nn+1,n

 a(i) = b(i)**2 + log(c(i))

enddo

LINKING

 Linking is performed by a separate program
called linker (ld on Unix, Linux, Mac OS X and
link on Windows)

 Linker is primarily designed for two actions:

1. Creating a ready-to-go executable

2. Creating a library for future linking

 An executable needs to have all the external
links resolved before it can run. These are
resolved by combining one or more object
modules and libraries

LINKING OBJECT FILES AND LIBRARIES

 A typical structure for a linking command for

Linux is:

ld –o prog file1.o file2.o … -llib1 –llib2 –L<path> -llib3

 Of course, for a given language most of the

libraries are well known and always the same

 With this in mind people created wrappers for

compiler and linkers. E.g. f90 will produce an

executable with the following command:

f90 –O –o prog file1.f file2.o … –L<path> -llib3

MORE ABOUT LIBRARIES

 Libraries are collections of object modules with

address calculation based on an undefined

segment address.

 Libraries also have a list of names and the

offset of the entry point (the first executable

command in a given module relative to the

start of the library) – this is the library catalog.

 Libraries come in two flavors: static and

dynamic.

STATIC AND DYNAMIC LIBRARIES

 Most of the standard libraries come in both

flavors

 The difference is:

Dynamic library module is loaded at the time it is

needed during the execution. The linking process

consists of including the path to the library into the

executable. Thus executable is much smaller and

loads/starts faster.

 Linking with static libraries makes executable larger

but fully portable.

CREATING A LIBRARY

 Compiler has to use fake segment address for

address arithmetic. This is conventionally known

as Position Independent Code (PIC)

 To create your own library all the source files

must be compiled with a flag –fpic or –fPIC.

 The linker must be told that the output is a

library. This is done with another special flag

(usually –shared or –dynamic, for dynamic library

or –static for a static library).

USING SCIENCE LIBRARIES

 A number of useful science/math libraries are
available for free or come with compilers

 For example, BLAS and LAPACK (linear algebra and
linear equations)

 Nothing beats the LAPACK LU decomposition
solver for SLE …

 … except if you can afford a commercial science
library like NAG or IMSL. In this case you get also
optimization, non-linear equations, sparse
matrices, statistics etc.

http://www.nag.co.uk/
http://www.vni.com/products/imsl/

MIXING PROGRAMMING LANGUAGES

 During this course you may try different programming
languages and discover that some are better suited for
particular tasks (English is the language for business,
French – politics, German – money, Italian – love etc.)

 Suppose you need to do some complex data
manipulation, which occasionally require number
crunching muscles. This calls for an object oriented
language for a main program linked with powerful
FORTRAN subroutines.

 How to make this:
f77 –O –c sub1.f sub2.f
cc –O –c prog.c
f77 –O –o prog prog.o sub1.o sub2.o –lm -lc

WELL, SOME LANGUAGES DO NOT NEED

COMPILERS

 IDL is an interpreter language. This means that
one line of code is compiled and executed

 The beauty is that you can stop any time, do other
things and then continue. No need for separate
debugger.

 The downside is the performance

 Excellent for prototyping and graphics

 Python is a funny combination of a highly object
oriented interpreter which is then translated into C
and compiled. The Python debugger is free.

NEXT LECTURE: CODE

DEVELOPMENT/DEBUGGING

Lecture is on September 23rd

You have over one week to do the home work

The results should be presented in the class

This may require 2-4 hours

First round: September 19th

Second round: September 21st

