
LECTURE 4: DESIGNING A NEW CODE

Scientific Programming

 UW PICO(tm) 4.6 New Buffer Modified

program next_big_project

end program next_big_project

^G Get Help ^O WriteOut ^R Read File ^Y Prev Pg ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where is ^V Next Pg ^U UnCut Text ^T To Spell

 UW PICO(tm) 4.6 New Buffer Modified

program next_big_project

end program next_big_project

^G Get Help ^O WriteOut ^R Read File ^Y Prev Pg ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where is ^V Next Pg ^U UnCut Text ^T To Spell

BEFORE WRITING THE FIRST LINE OF THE CODE

 Classify what you are doing
 One-time effort (e.g. extract information from a text file,

send the same email to 320 people)

 A useful tool (e.g. send multiple emails to 320 people)

 Prototype code (I do not recommend writing a
production code from scratch)

 Write down the equations that you have to solve,
algorithms that you will use and data
manipulations that you need to perform.

 Make an inventory of existing (tested) subroutines
relevant to your task.

NOW YOU CAN START WRITING YOUR CODE

 I will let you write a one-time code any way you

like – I don’t care

 In the other two cases, well all scientific codes

and most non-scientific ones consist of 4 parts:

1. Input

2. Initialization

3. Processing

4. Output

YOU ARE READY TO WRITE THE MAIN PROGRAM

int main(int nparam, char *param[])

{

 int iret;

 iret=input(nparam, param); /* Do the input */

 if(iret)

 {

 printf(“ERROR during input. Code: %d\n”, iret);

 }

 iret=init(); /* Initialize things that do not */

 /* need to be re-computed later */

 if(iret) printf(“ERROR during init. Code: %d\n”, iret);

 if(process()) /* Process/compute */

 {

 printf(“ERROR during processing. Code: %d\n”, iret);

 }

 if(output()) /* Output/store the results */

 printf(“ERROR during output. Code: %d\n”, iret);

}

DON’T YOU BELIEVE ME?
PROGRAM OPAC_3D

USE SHOW_VERSION

USE INPUT_INIT_3D

USE FORT_UNITS

INTEGER,PARAMETER :: WLGRID_SIZE=6000

INTEGER :: nWLGRID

REAL(8) :: WLGRID(WLGRID_SIZE)

REAL(4) :: dTemp,dPlog,OPAC(WLGRID_SIZE)

CALL SHOW_VER() ! Print version with authorization stamp

! Read line list, model names, abundances and T-P table resolution

CALL INPUT(dTemp,dPlog) ! Initialize things for EOS and

 ! opacity calculations

CALL INIT(nWLGRID,WLGRID,WLGRID_SIZE) ! Initialize things for EOS and

 ! opacity calculations

 CALL OPACITY_3D(WLGRID,WLGRID_SIZE,nWLGRID, & ! Read model, create T-P table

 dTemp,dPlog,OPAC) ! solve EOS, compute opacities

CALL OUTPUT_OPACITY(WLGRID,WLGRID_SIZE,nWLGRID, & ! Store results in a file

 dTemp,dPlog,OPAC)

END PROGRAM OPAC_3D

WHAT SHALL WE DO NEXT?

 List available subroutines and the interfaces to
them

 List additional tools/algorithms needed

 Is portability an issue?

 NO: check local libraries for existing algorithms. If
you have a choice go for the most advanced ones.

 YES: still look for libraries but restrict yourself for the
most common ones (BLAS, LAPACK) or those
available as source code (Netlib, Num. Rec.)

 Finally, determine what needs to be
programmed from scratch

NOW THE PART THAT YOU HAVE TO YOURSELF

 All (mathematical) algorithms should be made to
subroutines so that you can test them separately

 You can write a simple driver for testing

 Example:

 subroutine rk4(h0,x1,x2,y1,y2,f)

 implicit none

 real x1,x2,y1,y2,h0,f

 external f

 real d1,d2,d3,d4,h,y

C

 h=h0

 d1=f(x1,y1)

 d2=f(x1+h*0.5,y1+d1*h*0.5)

 d3=f(x1+h*0.5,y1+d2*h*0.5)

 d4=f(x1+h,y1+d3*h)

 y2=y1+h*(d1+2.*(d2+d3)+d4)/6.

 ...

 subroutine rk4(h0,x1,x2,y1,y2,f)

 implicit none

 real x1,x2,y1,y2,h0,f

 external f

 real d1,d2,d3,d4,h,y

C

 h=h0

 d1=f(x1,y1)

 d2=f(x1+h*0.5,y1+d1*h*0.5)

 d3=f(x1+h*0.5,y1+d2*h*0.5)

 d4=f(x1+h,y1+d3*h)

 y2=y1+h*(d1+2.*(d2+d3)+d4)/6.

 ...

 implicit none

 real x1,x2,y1,y2,h0

 x1=0.

 x2=10.

 y1=33.

 h0=0.1

C

 call rk4(x1,x2,y1,y2,func)

 …

 implicit none

 real x1,x2,y1,y2,h0

 x1=0.

 x2=10.

 y1=33.

 h0=0.1

C

 call rk4(x1,x2,y1,y2,func)

 …

 real function func(x,y)

 implicit none

C

 real x,y

 …

 real function func(x,y)

 implicit none

C

 real x,y

 …

COMMENTS: HEADER

 Subroutine functionality

 Parameters (in/out, type, dimensionality)

 History (date, what was modified, who did

modifications)

 Example:
 subroutine rk4(h0,x1,x2,y1,y2,f)

C rk4 integrates an ordinary differential equation

C Parameters:

C h0 - (r*4, scalar, in) initial step size

C x1 - (r*4, scalar, in) starting point

C x2 - (r*4, scalar, in) final point

C y1 - (r*4, scalar, in) function value at x1

C y2 - (r*4, scalar, out) function value at x2

C f - (r*4, function, in) derivative function

C History:

C 2009-09-28 NP Wrote

C ...

 subroutine rk4(h0,x1,x2,y1,y2,f)

C rk4 integrates an ordinary differential equation

C Parameters:

C h0 - (r*4, scalar, in) initial step size

C x1 - (r*4, scalar, in) starting point

C x2 - (r*4, scalar, in) final point

C y1 - (r*4, scalar, in) function value at x1

C y2 - (r*4, scalar, out) function value at x2

C f - (r*4, function, in) derivative function

C History:

C 2009-09-28 NP Wrote

C ...

COMMENTS: TEXT

 Use comments

 The point is to remind you what is meant if you need to
comeback to this part of the code

 Separate logical sections of the code by inserting a full
line(s) comment

 Individual lines can be commented in-line (not in FORTRAN
77)

 Comments can be partially
replaced by more
meaningful variable
names:

 Find your personal balance
that keeps the code
compact but clearly
readable

 subroutine rk4(...)

 implicit none

 real x_start,x_end,

 * func_start,func_end,

 * step_init

 real deriv

 external deriv

 real deriv1,deriv2,deriv3,deriv4

 real step,func

 ...

 subroutine rk4(...)

 implicit none

 real x_start,x_end,

 * func_start,func_end,

 * step_init

 real deriv

 external deriv

 real deriv1,deriv2,deriv3,deriv4

 real step,func

 ...

WORKING YOUR WAY

 Use the “skeleton” model (like for the main program) to create the frame of

the whole code (top to bottom approach, focus on functionality, information

flow, I/O.

 Think which part(s) would take most computing, which parts/variable may

require higher precision.

 For existing subroutines/library functions complete and double check the

interface.

 Once the skeleton of the whole code is complete start writing the missing

subroutines/functions.

 Take one at a time. Focus on their functionality and interface. Make sure

that all combinations of the input parameters (even not allowed) are

handled

 Debug and test each functional group of subroutines separately!

 Keep the test code in the same file – just comment it out. Use comments

to remind yourself what test were performed and how to repeat them.

PRECISION

Question 1: How would you compute a first
derivative of a function numerically? Would you
get close to the true value with smaller step?

Question 2: How would you compute a sum of all
the elements in an array? Will the result be the
same of the first or the last element is much
larger than the rest?

1 2 2 1

1 2
1

y y dyx x

x x dx x






 {s=0.; for(i=0; i<n; i++) s=s+f[i];}i

i

S f 

PRECISION: HANDLING PROBLEMS

 Identify variables that have large absolute values
(e.g. energies in cm-1) and use double precision.

 When taking numerical derivatives keep the ratio
 >10-5 for single precision and >10-10 for
double. Smaller will make the accuracy worse.

 When doing summation over a large dynamic
range (min(abs)/max(abs) < 10-5 for single
precision) split summations:

 if(abs(f[i])>max(f)*0.5) s1=s1+f[i]; else s2=s2+f[i];

...

s=s1+s2;

x x
x

TYPICAL PROGRAMMING MISTAKES

 The most difficult case is … when you write:
a=b*2+3 instead of a=b*3+2.
It can only be traced by a dedicated testing when
you know what the answer will be.

 Next most difficult mistake – uninitialized
variables.

 Going down the list: inconsistent types of the true
and formal parameter. This is found by compiler
for more advanced languages.

 Going beyond boundaries of allocated memory.
Again, special compiler flags should help (but not
if pointers are involved).

INDIVIDUAL SUBROUTINE DEVELOPEMENT

 Write the code

 Compile it (correct syntactic errors)

 Design the test routine consisting of the main program that
sets up a situation where the answer is known. E.g. in case
of Runge-Kutta a differential equation that can be integrated
analytically.

 Modify the test to simulate a realistic case close to what the
subroutine will be doing as part of the large code.

 Verify that all possible parameter values are handled
properly (e.g. negative initial step of the RK4).

 You may need to test even parts of the subroutine. For
example, it is a good idea to verify that the numerical
derivative function (called by RK4) produces sufficient
accuracy as compared to the analytical derivatives.

 Always use analytical expressions when possible.

NEXT LECTURE: STYLE AND STRUCTURE

The lecture is scheduled on the 27th of

September. I will be away 

We take the lecture on Monday, the 26th between

15:15 and 17:00 and use the 27th slot for the

home work presentation.

