UW PICO(tm) 4.6 New Buffer
program next big project

end program next_ big project

"G Get Help "0 WriteOut "R Read File “Y Prev Pg
~X Exit ~J Justify “W Where is "V Next Pg

Scientific Programming

“K Cut Text
“U UnCut Text

Modified

~“C Cur Pos
T To Spell

LECTURE 4: DESIGNING A NEW CODE

BEFORE WRITING THE FIRST LINE OF THE CODE

Classify what you are doing

One-time effort (e.g. extract information from a text file,
send the same email to 320 people)

A useful tool (e.g. send multiple emails to 320 people)
Prototype code (I do not recommend writing a
production code from scratch)

Write down the equations that you have to solve,
algorithms that you will use and data
manipulations that you need to perform.

Make an inventory of existing (tested) subroutines
relevant to your task.

NOW YOU CAN START WRITING YOUR CODE

will let you write a one-time code any way you
Ike - | don’t care

n the other two cases, well all scientific codes
and most non-scientific ones consist of 4 parts:

1. Input

2. Initialization
3. Processing
4. Qutput

YOU ARE READY TO WRITE THE MAIN PROGRAM

int main(int nparam, char *param[])

{

int iret;

iret=input (nparam, param); /* Do the input */
if(iret)
{

printf (“ERROR during input. Code: %d\n”, iret);
}

iret=init(); /* Initialize things that do not */
/* need to be re-computed later */
if(iret) printf (“ERROR during init. Code: %d\n”, iret);

if (process()) /* Process/compute */

{
printf (“ERROR during processing. Code: %d\n”, iret);

}
if (output()) /* Output/store the results */
printf (“ERROR during output. Code: %d\n”, iret);

DON’T YOU BELIEVE ME?

PROGRAM OPAC 3D
USE SHOW_VERSION
USE INPUT_ INIT 3D
USE FORT UNITS

INTEGER, PARAMETER 3 & WLGRID_SIZE=6000

INTEGER ¢ : nWLGRID

REAL (8) :: WLGRID(WLGRID SIZE)

REAL (4) :: dTemp,dPlog,OPAC (WLGRID SIZE)

CALL SHOW _VER() ! Print version with authorization stamp

! Read line list, model names, abundances and T-P table resolution
CALL INPUT(dTemp,dPlog) ! Initialize things for EOS and
! opacity calculations
CALL INIT(nWLGRID,WLGRID,WLGRID SIZE) Initialize things for EOS and
opacity calculations

CALL OPACITY_3D(WLGRID,WLGRID_SIZE,nWLGRID, & ! Read model, create T-P table
dTemp,dPlog,OPAC) ! solve EOS, compute opacities

CALL OUTPUT OPACITY (WLGRID,WLGRID SIZE,nWLGRID, & ! Store results in a file
dTemp,dPlog, OPAC)

END PROGRAM OPAC 3D

WHAT SHALL WE DO NEXT?

List available subroutines and the interfaces to
them

List additional tools/algorithms needed

|s portability an issue?
NO: check local libraries for existing algorithms. If
you have a choice go for the most advanced ones.

YES: still look for libraries but restrict yourself for the
most common ones (BLAS, LAPACK) or those
available as source code (Netlib, Num. Rec.)

Finally, determine what needs to be
programmed from scratch

NOW THE PART THAT YOU HAVE TO YOURSELF

All (mathematical) algorithms should be made to
subroutines so that you can test them separately

You can write a simple driver for testing

- implicit none
Example real x1,x2,yl,y2,h0
subroutine rk4(hO,x1,x2,yl,y2,f) x1=0.
implicit none x2=10.
real x1,x2,yl,y2,h0,f y1l=33.
external f£ h0=0.1
real dl1,d2,d3,d4,h,y C
call rk4(x1,x2,yl,y2,func)
h=ho .
dl=£f(x1l,yl) real function func(x,y)
d2=f(x1+h*0.5,y1+d1*h*0.5) implicit none
d3=f(x1+h*0.5,y1+d2*h*0.5) C
d4=f (x1+h,yl+d3*h) real x

y2=yl+h* (d1+2.* (d2+d3)+d4) /6.

COMMENTS: HEADER

Subroutine functionality
Parameters (in/out, type, dimensionality)

History (date, what was modified, who did
modifications)

subroutine rk4(ho,x1,x2,y1l,y2,f)
rk4 integrates an ordinary differential equation
Parameters:
hO - (r*4, scalar, in) initial step size
xl - (r*4, scalar, in) starting point
x2 - (r*4, scalar, in) final point
yl - (r*4, scalar, in) function value at x1
y2 - (r*4, scalar, out) function value at x2
f - (r*4, function, in) derivative function
History:
2009-09-28 NP Wrote

Example:

(ool e el eol el eleo e e e

COMMENTS: TEXT

Use comments

The point is to remind you what is meant if you need to
comeback to this part of the code

Separate logical sections of the code by inserting a full
line(s) comment

Individual lines can be commented in-line (not in FORTRAN

77) subroutine rk4(...)
Comments can be part|a||y implicit none

real x start,x end,
replaqed by mo_re * func_start, func_end,
meaningful variable . step_init

names: real deriv

external deriv

Flnd your personal balance real derivl,deriv2,deriv3,deriv4
l step,f

that keeps the code SSeT SEERyEEEE

compact but clearly

readable

WORHKING YOUR WAY

Use the “skeleton” model (like for the main program) to create the frame of
the whole code (top to bottom approach, focus on functionality, information
flow, 1/0.

Think which part(s) would take most computing, which parts/variable may
require higher precision.

For existing subroutines/library functions complete and double check the
interface.

Once the skeleton of the whole code is complete start writing the missing
subroutines/functions.

Take one at a time. Focus on their functionality and interface. Make sure
that all combinations of the input parameters (even not allowed) are
handled

Debug and test each functional group of subroutines separately!

Keep the test code in the same file - just comment it out. Use comments
to remind yourself what test were performed and how to repeat them.

PRECISION

Question 1: How would you compute a first
derivative of a function numerically? Would you
get close to the true value with smaller step?

Y1 — V> Xy X S dy
X, — X5) dx

Question 2: How would you Compute a sum of all
the elements in an array? Will the result be the
same of the first or the last element is much
larger than the rest?

Si= Z f x {s=0.; for(1=0; 1<n; 1++) s=s+{]1];}

PRECISION: HANDLING PROBLEMS

ldentify variables that have large absolute values
(e.g. energies in cm™) and use double precision.

When taking numerical derivatives keep the ratio
Ax/x| >10° for single precision and >101° for
double. Smaller Ax will make the accuracy worse.

When doing summation over a large dynamic
range (min(abs)/max(abs) < 10~ for single
precision) split summations:

if(abs(f[1])>max(f)*0.5) sl=sl+f[i]; else s2=s2+f[1i];

s=sl+s2;

TYPICAL PROGRAMMING MISTAKES

The most difficult case is ... when you write:
a=b*2+3 instead of a=b*3+2.

It can only be traced by a dedicated testing when
you know what the answer will be.

Next most difficult mistake - uninitialized
variables.

Going down the list: inconsistent types of the true
and formal parameter. This is found by compiler
for more advanced languages.

Going beyond boundaries of allocated memory.
Again, special compiler flags should help (but not
If pointers are involved).

INDIVIDUAL SUBROUTINE DEVELOPEMENT

Write the code
Compile it (correct syntactic errors)

Design the test routine consisting of the main program that
sets up a situation where the answer is known. E.g. in case
of Runge-Kutta a differential equation that can be integrated
analytically.

Modify the test to simulate a realistic case close to what the
subroutine will be doing as part of the large code.

Verify that all possible parameter values are handled
properly (e.g. negative initial step of the RK4).

You may need to test even parts of the subroutine. For
example, it is a good idea to verify that the numerical
derivative function (called by RK4) produces sufficient
accuracy as compared to the analytical derivatives.

Always use analytical expressions when possible.

NEXT LECTURE: STYLE AND STRUCTURE

The lecture is scheduled on the 271" of
September. | will be away ®

We take the lecture on Monday, the 26™ between
15:15 and 17:00 and use the 27t slot for the
home work presentation.

