
LECTURE 4: DESIGNING A NEW CODE

Scientific Programming

 UW PICO(tm) 4.6 New Buffer Modified

program next_big_project

end program next_big_project

^G Get Help ^O WriteOut ^R Read File ^Y Prev Pg ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where is ^V Next Pg ^U UnCut Text ^T To Spell

 UW PICO(tm) 4.6 New Buffer Modified

program next_big_project

end program next_big_project

^G Get Help ^O WriteOut ^R Read File ^Y Prev Pg ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where is ^V Next Pg ^U UnCut Text ^T To Spell

BEFORE WRITING THE FIRST LINE OF THE CODE

 Classify what you are doing
 One-time effort (e.g. extract information from a text file,

send the same email to 320 people)

 A useful tool (e.g. send multiple emails to 320 people)

 Prototype code (I do not recommend writing a
production code from scratch)

 Write down the equations that you have to solve,
algorithms that you will use and data
manipulations that you need to perform.

 Make an inventory of existing (tested) subroutines
relevant to your task.

NOW YOU CAN START WRITING YOUR CODE

 I will let you write a one-time code any way you

like – I don’t care

 In the other two cases, well all scientific codes

and most non-scientific ones consist of 4 parts:

1. Input

2. Initialization

3. Processing

4. Output

YOU ARE READY TO WRITE THE MAIN PROGRAM

int main(int nparam, char *param[])

{

 int iret;

 iret=input(nparam, param); /* Do the input */

 if(iret)

 {

 printf(“ERROR during input. Code: %d\n”, iret);

 }

 iret=init(); /* Initialize things that do not */

 /* need to be re-computed later */

 if(iret) printf(“ERROR during init. Code: %d\n”, iret);

 if(process()) /* Process/compute */

 {

 printf(“ERROR during processing. Code: %d\n”, iret);

 }

 if(output()) /* Output/store the results */

 printf(“ERROR during output. Code: %d\n”, iret);

}

DON’T YOU BELIEVE ME?
PROGRAM OPAC_3D

USE SHOW_VERSION

USE INPUT_INIT_3D

USE FORT_UNITS

INTEGER,PARAMETER :: WLGRID_SIZE=6000

INTEGER :: nWLGRID

REAL(8) :: WLGRID(WLGRID_SIZE)

REAL(4) :: dTemp,dPlog,OPAC(WLGRID_SIZE)

CALL SHOW_VER() ! Print version with authorization stamp

! Read line list, model names, abundances and T-P table resolution

CALL INPUT(dTemp,dPlog) ! Initialize things for EOS and

 ! opacity calculations

CALL INIT(nWLGRID,WLGRID,WLGRID_SIZE) ! Initialize things for EOS and

 ! opacity calculations

 CALL OPACITY_3D(WLGRID,WLGRID_SIZE,nWLGRID, & ! Read model, create T-P table

 dTemp,dPlog,OPAC) ! solve EOS, compute opacities

CALL OUTPUT_OPACITY(WLGRID,WLGRID_SIZE,nWLGRID, & ! Store results in a file

 dTemp,dPlog,OPAC)

END PROGRAM OPAC_3D

WHAT SHALL WE DO NEXT?

 List available subroutines and the interfaces to
them

 List additional tools/algorithms needed

 Is portability an issue?

 NO: check local libraries for existing algorithms. If
you have a choice go for the most advanced ones.

 YES: still look for libraries but restrict yourself for the
most common ones (BLAS, LAPACK) or those
available as source code (Netlib, Num. Rec.)

 Finally, determine what needs to be
programmed from scratch

NOW THE PART THAT YOU HAVE TO YOURSELF

 All (mathematical) algorithms should be made to
subroutines so that you can test them separately

 You can write a simple driver for testing

 Example:

 subroutine rk4(h0,x1,x2,y1,y2,f)

 implicit none

 real x1,x2,y1,y2,h0,f

 external f

 real d1,d2,d3,d4,h,y

C

 h=h0

 d1=f(x1,y1)

 d2=f(x1+h*0.5,y1+d1*h*0.5)

 d3=f(x1+h*0.5,y1+d2*h*0.5)

 d4=f(x1+h,y1+d3*h)

 y2=y1+h*(d1+2.*(d2+d3)+d4)/6.

 ...

 subroutine rk4(h0,x1,x2,y1,y2,f)

 implicit none

 real x1,x2,y1,y2,h0,f

 external f

 real d1,d2,d3,d4,h,y

C

 h=h0

 d1=f(x1,y1)

 d2=f(x1+h*0.5,y1+d1*h*0.5)

 d3=f(x1+h*0.5,y1+d2*h*0.5)

 d4=f(x1+h,y1+d3*h)

 y2=y1+h*(d1+2.*(d2+d3)+d4)/6.

 ...

 implicit none

 real x1,x2,y1,y2,h0

 x1=0.

 x2=10.

 y1=33.

 h0=0.1

C

 call rk4(x1,x2,y1,y2,func)

 …

 implicit none

 real x1,x2,y1,y2,h0

 x1=0.

 x2=10.

 y1=33.

 h0=0.1

C

 call rk4(x1,x2,y1,y2,func)

 …

 real function func(x,y)

 implicit none

C

 real x,y

 …

 real function func(x,y)

 implicit none

C

 real x,y

 …

COMMENTS: HEADER

 Subroutine functionality

 Parameters (in/out, type, dimensionality)

 History (date, what was modified, who did

modifications)

 Example:
 subroutine rk4(h0,x1,x2,y1,y2,f)

C rk4 integrates an ordinary differential equation

C Parameters:

C h0 - (r*4, scalar, in) initial step size

C x1 - (r*4, scalar, in) starting point

C x2 - (r*4, scalar, in) final point

C y1 - (r*4, scalar, in) function value at x1

C y2 - (r*4, scalar, out) function value at x2

C f - (r*4, function, in) derivative function

C History:

C 2009-09-28 NP Wrote

C ...

 subroutine rk4(h0,x1,x2,y1,y2,f)

C rk4 integrates an ordinary differential equation

C Parameters:

C h0 - (r*4, scalar, in) initial step size

C x1 - (r*4, scalar, in) starting point

C x2 - (r*4, scalar, in) final point

C y1 - (r*4, scalar, in) function value at x1

C y2 - (r*4, scalar, out) function value at x2

C f - (r*4, function, in) derivative function

C History:

C 2009-09-28 NP Wrote

C ...

COMMENTS: TEXT

 Use comments

 The point is to remind you what is meant if you need to
comeback to this part of the code

 Separate logical sections of the code by inserting a full
line(s) comment

 Individual lines can be commented in-line (not in FORTRAN
77)

 Comments can be partially
replaced by more
meaningful variable
names:

 Find your personal balance
that keeps the code
compact but clearly
readable

 subroutine rk4(...)

 implicit none

 real x_start,x_end,

 * func_start,func_end,

 * step_init

 real deriv

 external deriv

 real deriv1,deriv2,deriv3,deriv4

 real step,func

 ...

 subroutine rk4(...)

 implicit none

 real x_start,x_end,

 * func_start,func_end,

 * step_init

 real deriv

 external deriv

 real deriv1,deriv2,deriv3,deriv4

 real step,func

 ...

WORKING YOUR WAY

 Use the “skeleton” model (like for the main program) to create the frame of

the whole code (top to bottom approach, focus on functionality, information

flow, I/O.

 Think which part(s) would take most computing, which parts/variable may

require higher precision.

 For existing subroutines/library functions complete and double check the

interface.

 Once the skeleton of the whole code is complete start writing the missing

subroutines/functions.

 Take one at a time. Focus on their functionality and interface. Make sure

that all combinations of the input parameters (even not allowed) are

handled

 Debug and test each functional group of subroutines separately!

 Keep the test code in the same file – just comment it out. Use comments

to remind yourself what test were performed and how to repeat them.

PRECISION

Question 1: How would you compute a first
derivative of a function numerically? Would you
get close to the true value with smaller step?

Question 2: How would you compute a sum of all
the elements in an array? Will the result be the
same of the first or the last element is much
larger than the rest?

1 2 2 1

1 2
1

y y dyx x

x x dx x

 {s=0.; for(i=0; i<n; i++) s=s+f[i];}i

i

S f

PRECISION: HANDLING PROBLEMS

 Identify variables that have large absolute values
(e.g. energies in cm-1) and use double precision.

 When taking numerical derivatives keep the ratio
 >10-5 for single precision and >10-10 for
double. Smaller will make the accuracy worse.

 When doing summation over a large dynamic
range (min(abs)/max(abs) < 10-5 for single
precision) split summations:

 if(abs(f[i])>max(f)*0.5) s1=s1+f[i]; else s2=s2+f[i];

...

s=s1+s2;

x x
x

TYPICAL PROGRAMMING MISTAKES

 The most difficult case is … when you write:
a=b*2+3 instead of a=b*3+2.
It can only be traced by a dedicated testing when
you know what the answer will be.

 Next most difficult mistake – uninitialized
variables.

 Going down the list: inconsistent types of the true
and formal parameter. This is found by compiler
for more advanced languages.

 Going beyond boundaries of allocated memory.
Again, special compiler flags should help (but not
if pointers are involved).

INDIVIDUAL SUBROUTINE DEVELOPEMENT

 Write the code

 Compile it (correct syntactic errors)

 Design the test routine consisting of the main program that
sets up a situation where the answer is known. E.g. in case
of Runge-Kutta a differential equation that can be integrated
analytically.

 Modify the test to simulate a realistic case close to what the
subroutine will be doing as part of the large code.

 Verify that all possible parameter values are handled
properly (e.g. negative initial step of the RK4).

 You may need to test even parts of the subroutine. For
example, it is a good idea to verify that the numerical
derivative function (called by RK4) produces sufficient
accuracy as compared to the analytical derivatives.

 Always use analytical expressions when possible.

NEXT LECTURE: STYLE AND STRUCTURE

The lecture is scheduled on the 27th of

September. I will be away

We take the lecture on Monday, the 26th between

15:15 and 17:00 and use the 27th slot for the

home work presentation.

