
LECTURE 5: STYLE AND STRUCTURE

Scientific Programming

MAIN

INPUT INIT COMPUTE OUTPUT

SOLVER

DERIV FUNC2

TABUL

FUNC1

STATIC

BLAS

LAPACK

MEMLIB

HOW TO DECIDE ON THE STRUCTURE?

 How to split the code in modules and

subroutines?

 How to select the interface?

 Many runs may require automatic

documentation

 Long runs may need interrupt/continuation

possibility

 How the results are going to be presented?

WHAT COULD BE THE GOALS OF A SERIOUS

CODE? (EXAMPLES)

 Artificial Intelligence: object

detection/classification

 Data modelling

 Dynamic models

AI: OBJECT DETECTION/CLASSIFICATION

Do you see structures on this image?

AI: OBJECT DETECTION/CLASSIFICATION

… but your computer code has to deal with this:

AI: ONE POSSIBLE ALGORITHM

 Defining pixels that contain signal

 Identifying clusters of pixels

 Fitting some analytical shape function to the

clusters → polynomial coefficients for each cluster

 Merging clusters → re-doing polynomials

 ,x y c

HOW WILL YOU WRITE SUCH CODE?

 What do you need from this code?

 How would you check that the code does the

right thing?

 What programming language will you use?

DATA MODELLING

 You have measurements and physical model controlled by

some parameters.

 You want to find the set of parameters that realizes the best fit

to your data

 For example, fitting stellar spectrum

 Equations:

 Parameters: chemical composition Z

 Given chemical composition we solve for intensity

 Then we compare with the observations and adjust chemical

composition

2

()

min

dI
j Z I

dx

I O

DATA MODELLING

Outstanding issues:

 Do we search for abundance Z of one element at a time?

 Can we associate certain elements of Z and wavelength intervals?

 Is there a clever way to wind optimal Z?

E.g. Marquardt-Levenberg algorithm, but this requires 1st

derivatives over Z.

 Subroutines:

input – reads in observations and line data

init – computes

process – does the optimization, needs evaluation of intensities

and its 1st derivatives over Z

output – reports the result

DATA MODELLING

Here is how the result of such optimization may

look like:

COMPONENTS

 Input stellar model and spectral line parameters

 Pre-compute parts of the equations not affected
by chemical abundances

 Select initial guess

Loop:

 Compute synthetic spectrum and its 1st derivatives

 Adjust abundances using one of the optimization
techniques

 Loop until a good fit is found

 Save the results

HOW WOULD YOU STRUCTURE SUCH CODE?

 Where will the code spend most of the time?

 How do you know the optimization algorithm is

working?

 The relation between abundances and

synthetic spectrum is highly non-linear. How will

you compute your derivatives?

 What do you want to save besides the optimal

set of abundances?

EVOLUTIONARY MODELS

3D hydrodynamic simulations with radiative

energy transport

 Hydro

Radiation

EVOLUTIONARY MODELS

Evolutionary models
cannot be compared
with observations
directly.

Therefore, post processing
is crucial (analysis of
various statistical,
spectral and
integral properties).

HOW IS THIS CODE DIFFERENT FROM PREVIOUS

EXAMPLES?

 Implicit/explicit scheme

 Selection of the PDE solver

 Advancing in time the hydro part

 Adjusting the radiation part

 Main issues: performance and resolution

 Parallelization?

CONCLUSIONS

1. Many AI-type algorithms are hard to make robust. In same
cases it is simply not possible. This requires a comfortable
user interface and, perhaps, built-in graphics. Select the
programming language wisely.

2. Data models and dynamic models: selected algorithm
dictates code structure.

3. Think about the parameters that you are going to change.
Make sure you do not need to modify the code to vary
those parameters (e.g. grid size).

4. Complex numerical algorithms often require fine tuning and
studying large parameter space. This requires lots of
numerical experiments. Incorporate in the code the ability
to propagate to the output the parameters of each
experiment (self-documentation).

CONCLUSIONS

5. Evolutionary codes have to run for long time to “forget”
the initial conditions. In fact, it is often better to start
from the results of a run with different set of
parameters and than start from scratch. Make sure all
the necessary results are saved to file(s) reasonably
often so you can re-start you calculations.

6. Think in advance what you may need to interrupt your
code, so make sure all information is saved regularly.

7. Think about “easy to grasp” ways of presenting your
results.

NEXT LECTURE: OPTIMIZATION

The lecture is on October 3rd (Monday).

Tomorrow is the last chance to present the 1st

homework

Start preparing for the 2nd homework round (see

the course web page).

