for (i=0; 1<100000; i++) {

if(a > b) {

a = funcl(c,d,i*10);
}
else if(a < b) {

a = func2(e,f,i*10);
}
else {

a = func3(g,h,i*10);
}

}

Scientific Programming

LECTURE 6: OPTIMIZATION

if(a > b) {
for(i=0; 1i<1000000;

}

}

a

funcl(c,d,i);

else if(a < b) {
for(i=0; 1i<1000000;

}

else {

}

}

a

func2(e,f,i);

for (i=0; 1i<1000000;

}

a

func3(g,h,1);

i+=10) {

i+=10) {

i+=10) ¢

WHY YOUR CODE MAY NEED OPTIMIZATION?

The code is too slow, like fundamentally slow

The code does not reach the precision required

The code does not fit into the memory

In any other case focus on functionality and let
compilers handle optimization

HOW TO GO ABOUT OPTIMIZATION?

Start by writing a clean, well structured and
well documented code

Debug this code to make sure it works and
does what it is supposed to do

Only now you can start optimization

Optimization comes in multiple levels:
statement (local), block (e.g. loops) and
subroutines

LOCAL OPTIMIZATION

Assign names to constants and use those names
throughoutout the code. E.&.
REAL(8), PARAMETER :: Pi=3.1415DO

In every assignment statement try to combine variables and
constants of the same type

For integer power operation:
usey = x**6insteadofy = x**6.0

Use intrinsic functions when possible:
A=SORT (SORT (B)) is fasterthan A=B**0.25

Assign repeated operations to a temporary variable or at
least keep the sequence of such operations; instead of
a=atan(33./(l.-y**2))+(1l.-y)*b/2.*(1l.+y)
use:

onemy2=1.-y*y
a=atan(33./onemy2)+onemy2*b/2.

LOCAL OPTIMIZATION

Operation timing;:
integer math
- multiplication
— division
—- addition
—-- Subtraction
————— power
—————— elementary functions
(min/mayx, sqrt, exp/log, trigonometry)

This means that amean=(al+a2+a3+a4)*0.25 will
be faster than amean=(al+a2+a3+a4)/4.

Do integer math instead of the floating point whenever it
IS possible

BLOCK OPTIMIZATION (LOOPS)

If you can make the loop header create all necessary indices, do it
Pre-compute all parts not changing inside the loop

If you use accumulators, do not touch them until the end of the loop
p=0.0; x=1.0; y=0;

for(i=s=0; i<n; 1i++,s+=10) {p=p+func(x,y,1i);
X=y; Y=s;}

Help memory pre-fetching;:

for (i=s=0; i<n;)

{
p=p+func(x,y,i++); x=y; y=s; s+=10;

p=pt+func(x,y,1++); x=y; y=s; s+=10;
p=p+func(x,y,i++); x=y; y=s; s+=10;
p=p+func(x,y,i++); x=y; y=s; s+=10;
}
Avoid if- and goto-statements inside the loop

AVOIDING IF AND GOTO STATEMENTS

11

12

if(x.gt.3) goto 11

a=11+b+c+d
b=c

c=d

d=x

goto 12
a=12+b+c+d
b=x

c=b

d=c

if(x.gt.3) then
a=1l1+b+c+d
b=c
c=d
d=x

else
a=12+b+c+d
b=x
c=b
d=c

endif

WHEN IF IS UNAVOIDABLE

subroutine groots(a,b,c,x1,x2,flaqg)

C AN .
C Finding roots of a quadratic equation At leaSt try to minimize the
c work in each case

bl=0.5*b/a
det=bl*bl-c
if(det.1t.0.) then
x1=0.
x2=0.
flag=2
return
else if(det.eq.0.) then
x1=-bl
x2=x1
flag=1
return
endif
det=sqrt (det)
x1=-bl-det
x2=-bl+det
flag=0
return
end

ULTIMATE SPEED OPTIMIZATION

Find the best algorithm for your task and look for
Its professional implementation. For example, the
LAPACK implementation of the LU decomposition
beats your simple-minded Gauss elimination by a
factor of 3+5xN/logN

Even if you do not find a readily-available library
look around for the source code of a better
algorithm: Marquardt-Levenberg is vastly superior
to the gradient search method in optimization
problems of a moderate size.

TRADING MEMORY FOR SPEED

Tabulate complex functions in the initialization section of the code.

Function longa(x)
real xx(10000),yy(10000),yy2(10000)
integer i
logical first
save first,xx,yy,yy2
data first/.true./
if(first) then
first=.false.
do i=1,10000
xx(1i)=i*0.01-50
yy(i)=sin(xx(i))**2+exp(-(xx(1)/10.)**2)
enddo
call spline init(xx,yy,yy2)
endif
call spline interp(xx,yy,yy2,x,longa)
return
end

OPTIMIZING FOR PRECISION

Find where precision is lost:
subtraction/addition of comparable or very
different numbers

Try to fix the problem by increasing precision
Try to fix the problem by centering variables

Xm=mean (Xx)
call spline init(xx-xm,yy,yy2)
call spline interp(xx-xm,yy,yy2,Xx-xm,y)

Create generic interface to your tools

GENERIC INTERFACE

MODULE SPLINES
INTERFACE SPLINE INIT
MODULE PROCEDURE SPLINE INIT8, SPLINE INIT4
END INTERFACE — -
INTERFACE SPLINE INTER
MODULE PROCEDURE SPLINE INTER8, SPLINE INTER4 END
INTERFACE — —
INTERFACE BEZIER INIT
MODULE PROCEDURE BEZIER INIT8, BEZIER INIT4
END INTERFACE — —
INTERFACE BEZIER INTER
MODULE PROCEDURE BEZIER INTER8, BEZIER INTER4
END INTERFACE — —
CONTAINS
SUBROUTINE SPLINE INIT8(X,Y,Y2)

Computes second derivative approximations for cubic spline

IMPLICIT NONE

REAL (KIND=8) :: Y(:),¥2(:)

REAL (KIND=8) :: X(:)

INTEGER :: N, I

REAL (KIND=8) :: U(SIZE(X)),SIG,P,YYl,YY¥2,YY3

OPTIMIZATION FOR MEMORY

Recycle arrays and variables

If you use elements of an array recurrently (e.g.
element 1 is only used after element 1-1 and
before element 1+1) the whole array may be

replaced by a single variable

Use less memory consuming algorithms: conjugate
gradients instead of Newton optimization

Quite often reducing memory means reducing
performance but not always: if you can squeeze
the whole memory of a computationally heavy
routine into cache memory it will run much faster!

CONCLUSIONS

1. Start by writing a clear and well debugged code
2. Run a few tests - this will be your reference

3. ldentify parts that represent bottlenecks. It is a good
Idea to separate these into subroutines/modules

4. Concentrate on optimization of only crucial parts
5. Start by find the best algorithm.

6. Next, help the compiler of doing small code
restructuring

7. Finally, us the compiler optimization flags to do
automatic optimization. Verify the optimized code
against the reference version.

NEXT LECTURE: MIXING LANGUAGES

The lecture is on Monday October 17t at 10:15.
Don’t forget the Homework Part |l

