character(len=20):: file

real (kind=8) :: a,b

integer :: istat,
c_read

istat = c¢_read(a,file)
write(*,*) ‘”"a” in file’'&
//file//’' is:’,a

Scientific Programming

int c¢_read(double *a,

{

}

char *file)

char *name,
int len;
FILE *finp;

*space;

space=strchr(file, ‘' ‘);

if (space==NULL) return 1;
len = 1 + (int) (space-file);
name=(char *)malloc(l, len);
strncpy(name, file, len-2);
name[len-1] = ‘\0’;
finp=fopen(name, “rb”);
free (name) ;

if (finp==NULL) return 2;
fread(&a,sizeof (double), 1,
fclose(finp);

return O;

finp);

LECTURE 7: GOING MULTI-LINGUAL



WHY WOULD ANYONE WANT TO MIX
LANGUAGES?

While doing the home work you have perhaps
noticed that the language you are using suites
some problems better than the others

Specific implementation of certain algorithms
may only exist in certain languages

You need to link your code with a system library
(not one of those that are included with the
compiler)



MAIN ISSUES WHEN MIXING LANGUAGES

Who is the boss? (What language to use for the
main program)

Parameter passing and returning
Names of the entry points
Compiling

Linking

Libraries



WHAT LANGUAGE TO USE FOR THE MAIN
PROGRAM?

Mixing languages is worth doing when some
functionality is missing.

For your project use the language that is most
suitable (or you are most comfortable with) and
complement it with subroutine(s) in other
language(s) is hecessary

In addition to language-specific libraries the code
needs a special module that loads to code into
memory and initializes it. This module is language-
specific and thus linking must be done by the
compiler corresponding to the main program



EXAMPLES:

1. Extract data structures from multiple binary
files, extract values for structure fields with
identical names, treat missing fields, create
an output structure through an advanced
statistical analysis a data set for each field
and insert the result in to another binary file

2. Include a visualization option into a hydro-
code that can be triggered by a flag.



PARAMETER PASSING: RESTRICTIONS

FORTRAN is all about speed so all parameters that go into a
FORTRAN subroutine must be represented by identical
pointer.

FORTRAN 77 functions can only return a single value.

FORTRAN 90 functions can return anything although scalars
are still returned by value while everything else - by pointer.

This functionality is even more restrictive when FORTRAN
calls a program in another language. E.g. to convert
FORTRAN parameters into IDL or PYTHON objects it is often
easier to write a C-wrapper.

Special care must be taken when dealing with strings:
Null-terminated, length-prefixed, structures {int len; char *s;}
etc.



EXAMPLES:
IDL calls C:

ErrStr = Call External (prefix+'sme synth.so’, §

_I Entry.Opacity, nDep, OpBlue, OpRed, /S Value)
D If ErrStr ne '' Then Begin
print, 'Opacity (call external): '+ErrStr
T3 return
EndIf

extern "C" char const *SME DLL Opacity(int n, void *argl[]);

C calls FORTRAN

SPLIST=(char *)calloc(N_SPLIST, 8);
i=eqlist (ABUND, ELEMEN+1, my species, ION, SPINDEX,
SPLIST, NLINES, O, N_SPLIST, nelem, 8, 8);

integer function eqlist (abund,elemen,spname,ion,spindx,
& splist,nlines,nlist,SPLDIM,ELESIZ)

Ftn C . C



NAMES OF THE ENTRY POINTS

Compilers try to extract the information about
expected parameters. This is do through “mangling” of
the entry point names.

C and FORTRAN 77 do not do it but even here the
names are different: an underscore can appended to
the name in object file.

Linux/Unix platforms provide a tool to find out the
mangled names: nm object or library

T __Z6RKINTSPdiddS_S_S_IRIS_s
U _eqlist_

int RKINTS(double *MUs, int NMU, double EPS1, double EPS2,
double *FCBLUE, double *FCRED, double *TABLE,
long NWSIZE, long &NWL, double *WL,
short long_continuum);



PARAMETER PASSING

Most of the programming languages pass
parameters either by value or/and by address

(pointers)

A few languages incorporate options for
creating/destroying/modifying variable types
anywhere in the code. To achieve this variables are
replaced by objects where in addition to the value
creation and destruction methods are also
described.

The return value has similar options with more or
less restrictions on what can be passed



COMPILING

When mixing languages the compilation must be
performed separately from the linking process

-or compilable languages the merger is done at
InKing:

cc —c —underscore c_sub.c

£f77 —c main.f

£f77 —o fort_and_c main.o c_sub.o —1lc -1m

Calling compiled subroutines from interpreters
requires building relocatable libraries. This also
works for compilable languages.




LINKING

Linking is the most difficult step. This is the point where all
calls must be associated with the corresponding entry
points.

Compiler has little possibility to adjust the names so you may
need to use it yourself (nm).

Linking: you need to load the right libraries.

Using the same script that compiles the main program
simplifies things but the libraries for other languages are still
needed.

You can still use 1d but then all the relevant libraries and the
corresponding paths must be specified.

Keep in mind that addressing mode must be the same
across all the subroutines. You cannot mix 64-bit with 32-bit.



LIBRARIES

Compilers come with their own libraries.

All system calls are grouped into libraries that come
with the OS.

Specific tools (e.g. math) libraries are extra

You can make your own libraries as well. This is
another way to mix languages!

Compile individual files with a special flag making
them relocatable:

f90 —c —fPIC sub fort.f

g++ —c —fPIC sub cpp.cpp

ld —shared —o libmy.so sub fort.o sub cpp.o \
/opt/fortran90/1ib/1ibF90.a -1lg2c -lstdc++ \
-lcl —1m -L/usr/lib/LAPACK -llapack -lblas



CONCLUSIONS

1. Consider mixing languages when you feel like
programming a part in another language or when you
have an existing subroutine(s) in another language.

2. Carefully select the language for the main program.

3. Read compiler documentation to understand the
parameter passing conventions.

4. Check that entry point naming convention.
5. Compiler different parts first

6. When linking use the same compiler that you used for
the main program add libraries for additional
language(s)



HOME WORK: LINK FORTRAN AND C

FORTRAN C

$#include <stdio.h>
intrinsic none

integer bar,i,pos,length int bar (int *reset)

length=67 {

do i=1,length static int count=0;
pos=bar (0) if (*reset)

enddo {

pos=bar (1) printf("\n"); count=-1;

length=167 }

do i=1,1length else printf("=");
pos=bar (0) if (++count == 80)

enddo {

pos=bar(-1) printf("\n"); count=0;

end }

return count;



NEXT LECTURE: PARALLEL COMPUTING

The last lecture is on Tuesday October 20" at
110/714&)

Last chance to report Home Work Part Il is on
Wednesday October 215t at 14:15.



