
LECTURE 8: PARALLEL COMPUTING
Scientific Programming

OpenMulti-

 Processing

Message

 Passing

 Interface

Monday, October 24, 11

PARALLEL COMPUTER ARCHITECTURE
 Shared memory machines: all processors are connected to

each other and to the whole memory

 Distributed memory machines: memory is divided between
(groups of) processors which are still interconnected

CPU CPU CPU CPU CPU

Memory

Bus

Bus

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Monday, October 24, 11

TWO PARALLELIZATION CONCEPTS

1. Totally independent programs that will
run on separate processors and
communicate with each other.

2. Parts of a single code that can be
executed in arbitrary order. The
compiler is instructed to create parallel
threads for such parts.

Monday, October 24, 11

INDEPENDENT PROGRAMS

 Works equally well on shared memory
and on distributed memory computers

 Offers full control: you can decide when
to run in parallel and when serial,
synchronize, etc.

 The most popular incarnation is Message
Passing Interface or MPI (look it up in
Wikipedia)

Monday, October 24, 11

MPI: HOW IT WORKS
 MPI is a library of functions
 Using MPI functions each program (referred to as

process) can:
 Figure out the total number of processes and its own

serial number.
 Send data to another process.
 Wait for a data to arrive from another process.
 Send data to all processes (this implies receive)
 Add ID to each message so that one message is not

taken for another.
 Impose synchronization: street lights, barriers or

simply waiting until data you sent is received.
 Decide that a certain part of work (e.g. input/output)

is done by one process only (convention is that
process number 0 is the main process).

Monday, October 24, 11

EXAMPLE:
! IMPLICIT NONE

INCLUDE 'mpif.h'
INTEGER IERR,MY_PROC,N_PROC,MAIN_PROC
...
CALL MPI_INIT(IERR)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, N_PROC,IERR)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, MY_PROC,IERR)
MAIN_PROC=0
if(MY_PROC.EQ.MAIN_PROC) then
 open(1,file='disk_model.dat',status='OLD',form='UNFORMATTED')
 read(1) (((rho(iX,iY,iZ),iX=1,nX),iY=1,nY),iZ=1,nZ)
 close(1)
endif
CALL MPI_BCAST(rho,ntot,MPI_REAL,MAIN_PROC,MPI_COMM_WORLD,IERR)
do i=MY_PROC+1,ntot,N_PROC
 ...
 acc=rho(kX(i),kY(i),kZ(i))*volume/dist_cube
 ...
enddo
CALL MPI_REDUCE(acc,gX,ntot,MPI_REAL,MPI_SUM, ...
...
CALL MPI_FINALIZE(IERR)
end

Monday, October 24, 11

MPI: BASIC

 The simplest thing is to write a single
program that decides what it is supposed to
do based on the total number of processes
and on the process number assigned to it

 Now we can run a bunch of copies of this
program

 To the OS they are still a single program!
 Normally when you install MPI you get

special scripts for compilation and running:
 mpif90 –o mpicode mpicode.f90
 mpiexec –n 10 ./mpicode

Monday, October 24, 11

MPI: MORE ADVANCED

 An MPI code can send information and wait
until it is received but it can also send and
not wait (non-blocking send)

 Alternatively one can issue a receive
statement but not wait!

 This allows automatic load balancing:
1. Send work order to one process
2. Issue a non-blocking “receive” and continue

with the next process until all are busy
3.Wait until any response
4.Receive the result and send the next work order

Monday, October 24, 11

MPI: MASTER-WORKER SCHEME

•I/O operations.
•Distribute data to

workers.
•Collect results.

•Receive data
from master.

•Carry-out the
computations.

•Send results to
master.

Master Worker

Monday, October 24, 11

MPI: MASTER-WORKER

 Master-Worker(s) requires having two
different codes.

 Master: performs the input, initialization
and then distributing the tasks between
“workers”.

 Worker: wait for initialization then wait for
task, complete it, send back the results and
wait for more.

 In the end Master must inform Workers that
job is done and they can finish the
execution.

Monday, October 24, 11

MPI: SUPER-ADVANCED

MPI-2 (2009) adds:
 one-sided communication (one process

can read or write to the variables that
belong to another process).

 Establish a new MPI-communication
space or join into existing one.

 The behavior of I/O is put under MPI
control, that is additional sync allow to
order read/write operations coming from
different processes.

Monday, October 24, 11

MPI: MORE INFO

… can be found at:
 http://www.mpi-forum.org/
 http://www.mcs.anl.gov/research/projects/mpi/
 https://computing.llnl.gov/tutorials/mpi/
 http://www.mcs.anl.gov/research/projects/mpi/

tutorial/gropp/talk.html

Monday, October 24, 11

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
http://www.mcs.anl.gov/research/projects/mpi/tutorial/gropp/talk.html
http://www.mcs.anl.gov/research/projects/mpi/tutorial/gropp/talk.html
http://www.mcs.anl.gov/research/projects/mpi/tutorial/gropp/talk.html
http://www.mcs.anl.gov/research/projects/mpi/tutorial/gropp/talk.html

MULTI-THREADING: OPENMP

 Open Multi-Processing (OpenMP) is a set of
specifications (or interface) for the compilers
capable of creating multi-threaded
applications.

 The programmer gets a possibility to explain
the compiler what parts of the code can be
split in separate threads and run in parallel.

 The compiler does not have to guess – it
relies on the hints contained in the OpenMP
directives.

 Multi-threaded codes see the same variables
and memory space: OpenMP is for shared
memory computers!

Monday, October 24, 11

OPENMP CONCEPT

Serial
part 1

Parallel
part 1 Parallel

part 2

Serial
part 2

Serial
part 3

Serial
part 1

Parallel
part 1

Parallel
part 2

Serial
part 2

Serial
part 3

Monday, October 24, 11

OMP: BASIC

 The hints for the
compiler are given
as pre-processor
statements.

C, C++
#pragma omp …

FORTRAN
C$omp ... or !$omp …

 Most of statements
contain indications
for starting/finishing
multi-threaded
section

program hellof90
 use omp_lib
 integer:: id, nthreads
!$omp parallel private(id)
 id = omp_get_thread_num()
 write (*,*) 'Hello World ‘// &

 'from thread', id
!$omp barrier
 if(id == 0) then
 nthreads= omp_get_num_threads()
 write (*,*) 'There are', &

 nthreads, 'threads'
 end if
!$omp end parallel
end program hellof90

Monday, October 24, 11

OMP: ADVANCED

 In parallel statements one can specify variables
that must be private for each thread.

 The loop variable that is scheduled for parallel
execution is automatically made private.

 Sometimes it is easier to declare certain sections
of the code as critical. This means that although it
will be computed by several threads, it will be
done sequentially.

 OMP has even more sophisticated tools: barriers,
reduction, conditional parallelization etc.

 OMP directives are not 100% obligatory for the
compiler, they are just hints!

Monday, October 24, 11

MORE INFO ON OPENMP

… can be found here:
 http://www.openmp.org
 https://computing.llnl.gov/tutorials/openMP
 http://mitpress.mit.edu/catalog/item/default.asp?

ttype=2&tid=11387
 http://www.clusterconnection.com/2009/08/

comparing-mpi-and-openmp/

Monday, October 24, 11

http://www.openmp.org/
http://www.openmp.org/
https://computing.llnl.gov/tutorials/openMP
https://computing.llnl.gov/tutorials/openMP
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11387
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11387
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11387
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11387
http://www.clusterconnection.com/2009/08/comparing-mpi-and-openmp/
http://www.clusterconnection.com/2009/08/comparing-mpi-and-openmp/
http://www.clusterconnection.com/2009/08/comparing-mpi-and-openmp/
http://www.clusterconnection.com/2009/08/comparing-mpi-and-openmp/

COMPARISON
MPI

Runs on shared and distributed
memory computers.
Program behavior and
performance are fully
predictable.
Very flexible.

Needs modifications of the
source code (will not run without
MPI installed).
All message passing requires a
separate buffer (two in
distributed memory system).
Heavily depends on the latency
of interconnection.

OpenMP
Does not require code

modification and is fully
portable.

Has minimum overhead in
terms of memory.

Primarily aimed at
parallelization of loops.

Only runs on shared memory
machines.

No standard for I/O
parallelization.

Monday, October 24, 11

FINAL NOTE
 Nothing prevents you from combing MPI

and OpenMP
 Most of modern computing clusters consists

of distributed memory machines with fast
interconnect (up 100 Gbyte/second!)

 Each processor is normally a multi-core CPU
 UPPMAX Isis: 200 IBM x3455 compute

nodes with two dual- and quad-core AMD
CPU in each.

 Test programs ...

Monday, October 24, 11

20

SHIFT SPECTRUM (INTERPOLATING)

Monday, October 24, 11

EXAMPLES STRUCTURE

 Read data from ca8542_satlas.txt.
 Propagate data to all processes.
 Apply a random shift to the wavelength

array and interpolate to the new grid.
 Interpolation is carried-out with a

Hermitian spline (intep.f90, mmath.h).
 Collect results.

21

Monday, October 24, 11

EXAMPLES - TEST SCALABILITY

 cd ~/scientific_prog/{c++, fortran90}

 ./compile.sh
 ./ex1 (openmp parallel loop example)

 mpiexec -n # ./ex2 (MPI parallel loop)

 mpiexec -n # ./ex3 (MPI master-worker)

22

Monday, October 24, 11

