next up previous contents index
Next: 2.2 Magnetohydrodynamics (W. Schaffenberger) Up: 2. Equations Previous: 2. Equations   Contents   Index

2.1 Basic equations

The hydrodynamics equations are expressed as conservation relations plus source terms for
\begin{displaymath}
\rho, \;
\rhov {1}, \rhov {2}, \rhov {3}, \;
\rhoeikg
\enspace ,
\end{displaymath} (1)

the mass density, the three mass fluxes and the total energy density (per volume), respectively. Each quantity $q$ has its corresponding flux $\mbox{f}(q)$ and possibly source term $\mbox{s}(q)$. For convenience,
\begin{displaymath}
\rho, \;
\V {1}, \V {2}, \V {3}, \;
\ei
\end{displaymath} (2)

are chosen as independent quantities. The conserved quantities are purely algebraic combinations of these. The 3D hydrodynamics equations, including source terms due to gravity, are the mass conservation equation
\begin{displaymath}
\papa {\rho}{t} + \papa {\; \rho \; \V {1}}{x1}
+ \papa {\...
...\; \V {2}}{x2}
+ \papa {\; \rho \; \V {3}}{x3} = 0 \enspace ,
\end{displaymath} (3)

the momentum equation
\begin{displaymath}
\papa {}{t}
\left( \!
\begin{array}{c}
\rhov {1} \\
\r...
...\
\rho \; \g {2} \\
\rho \; \g {3}
\end{array} \! \right)
\end{displaymath} (4)

and the energy equation including radiative heating term $Q_{\rm rad}$
\begin{displaymath}
\papa {\rhoeik }{t} + \papa {\; (\rhoeik \! + \! P) \; \V {...
...\g {2} \; \V {2} + \g {3} \; \V {3} ) + Q_{\rm rad} \enspace .
\end{displaymath} (5)

The pressure $P$ is computed from density $\rho$ and internal energy $\ei $ via a (tabulated) equation of state
\begin{displaymath}
P = P (\rho, \ei ) \enspace .
\end{displaymath} (6)

For local models the gravity field is simply given by
\begin{displaymath}
\vec{g} =
\left(
\begin{array}{r}
0 \\
0 \\
-g \\
\end{array} \right) \enspace .
\end{displaymath} (7)

For global models it is given by
\begin{displaymath}
\vec{g} =
\left(
\begin{array}{c}
\g {1} \\
\g {2} \\ ...
...\\
\papa {}{x2} \\
\papa {}{x3}
\end{array} \right)
\Phi
\end{displaymath} (8)

with
\begin{displaymath}
\Phi = -\frac{G M_\ast}{\left( r_0^4+r^4/\sqrt{1+(r/r_1)^8}  \right)^{1/4}} \enspace .
\end{displaymath} (9)

Here, $M_\ast$ is the mass of the star to be modeled; $r_0$ and $r_1$ are free smoothing parameters. In addition, there are equations for the non-local radiation transport. If grey opacity tables are used, the opacities $\kappa$ are a simple function of e.g. temperature $T$ and pressure $P$
\begin{displaymath}
\kappa = \kappa ( T, P )
\end{displaymath} (10)

and the source function $S$ is given by
\begin{displaymath}
S= \frac{\sigma}{\pi} T^4
\enspace .
\end{displaymath} (11)

The change in optical depth $\dtau $ along a path with length $\Dx $ is than
\begin{displaymath}
\dtau = \kappa \rho \Dx
\enspace .
\end{displaymath} (12)

The variation of the intensity $\Int $ with optical depth $\tau$ along a ray with orientation $(\theta, \varphi)$ can be described by the simple differential equation
\begin{displaymath}
\frac{{\rm d} \Int }{{\rm d} \tau} = - \Int + S
\enspace .
\end{displaymath} (13)

The radiative energy flux is given by
\begin{displaymath}
F_{\rm rad} = \int_{0}^{2\pi}
\int_{0}^{\pi}
\Int \cos \theta \sin \theta
\;{\rm d}\theta
\;{\rm d}\varphi
\enspace .
\end{displaymath} (14)

The energy change can than be computed from the flux divergence with
\begin{displaymath}
\frac{\partial \rho e{\rm i}}{\partial t} = Q_{\rm rad}
= ...
...ac{\partial F_{x3,\rm rad} }{\partial x3}
\right)
\enspace .
\end{displaymath} (15)


next up previous contents index
Next: 2.2 Magnetohydrodynamics (W. Schaffenberger) Up: 2. Equations Previous: 2. Equations   Contents   Index