
CO5BOLD User Manual

Bernd Freytag Matthias Steffen Sven Wedemeyer-Böhm Hans-Günter Ludwig
Jorrit Leenaarts Werner Schaffenberger

May 13, 2015

2

Contents

Contents 11

List of figures 13

List of tables 15

1 Introduction 17

2 Equations 19
2.1 Basic equations . 19
2.2 Magnetohydrodynamics (W. Schaffenberger) . 20
2.3 A collection of thermodynamic relations (M. Steffen, AIP) 23

2.3.1 Basic thermodynamic equations . 23
2.3.2 Definition of often-used thermodynamic coefficients 23
2.3.3 CO5BOLD equation of state . 24
2.3.4 Derived thermodynamic coefficients . 24
2.3.5 Ideal gas with constant specific heats (polytropic gas) 28

3 CO5BOLD file overview 29
3.1 Fortran directories . 29
3.2 Fortran files . 30
3.3 Script files . 32
3.4 Documentation files . 32

4 Compilation & installation 33
4.1 Quickstart: How to compile CO5BOLD . 33
4.2 Compilation procedure for CO5BOLD . 33
4.3 Configure script . 37

4.3.1 Control environment variables . 37
4.3.1.1 F90 COLOR . 38
4.3.1.2 F90 COMPILER . 38
4.3.1.3 F90 PREFLAGS . 38
4.3.1.4 F90 POSTFLAGS . 38
4.3.1.5 F90 PARALLEL . 38
4.3.1.6 F90 DEBUG . 38
4.3.1.7 F90 OPTIMIZE . 39
4.3.1.8 F90 LHDRAD . 39
4.3.1.9 F90 MSRAD . 39
4.3.1.10 F90 SHORTRAD . 39
4.3.1.11 F90 CHEM . 39
4.3.1.12 F90 HION . 39
4.3.1.13 F90 DUST . 39
4.3.1.14 F90 MHD . 40
4.3.1.15 F90 TWEAK . 40
4.3.1.16 F90 MACHINE . 40

3

4 CONTENTS

4.3.1.17 F90 BASEPATH . 40

4.4 Compiler macros . 40

4.4.1 General . 41

4.4.1.1 timing c factor . 41

4.4.1.2 timing c range . 41

4.4.1.3 timing r type . 42

4.4.1.4 rhd box arrays01 . 42

4.4.1.5 rhd box grav01 . 42

4.4.1.6 rhd box quc01 . 42

4.4.1.7 rhd box bmag01 . 43

4.4.2 Input/output with UIO . 43

4.4.2.1 uio switch system l01 . 43

4.4.2.2 uio switch native l01 . 43

4.4.2.3 uio switch ieeebe l01 . 44

4.4.2.4 uio switch ieeele l01 . 44

4.4.2.5 uio switch ieee l01 . 44

4.4.2.6 uio switch crayxmp l01 . 44

4.4.2.7 uio switch open l01 . 44

4.4.3 Equation of state . 45

4.4.3.1 gasinter l01 . 45

4.4.3.2 gasinter l02 . 45

4.4.4 Opacity . 45

4.4.4.1 opta switch l01 . 45

4.4.5 Hydrodynamics (Roe solver) . 45

4.4.5.1 rhd hyd gravcorr p01 . 45

4.4.5.2 rhd hyd entropyfix p01 . 46

4.4.5.3 rhd hyd upwind p01 . 46

4.4.5.4 rhd roe1d flux l01 . 46

4.4.5.5 rhd bound t01 . 46

4.4.5.6 rhd roe1d flux t01 . 47

4.4.5.7 rhd roe1d step t01 . 47

4.4.6 Hydrodynamics (tensor viscosity) . 47

4.4.6.1 rhd vis density p01 . 47

4.4.6.2 rhd vis t01 . 47

4.4.7 Radiation transport . 47

4.4.7.1 rhd r01 . 47

4.4.7.2 rhd r02 . 48

4.4.7.3 rhd r03 . 48

4.4.7.4 rhd rad3d toray l01 . 48

4.4.7.5 rhd rad3d fromray l01 . 48

4.4.7.6 rhd rad3d r02 . 48

4.4.7.7 rhd rad3d solve t01 . 49

4.4.7.8 rhd rad3d dir t01 . 49

4.4.7.9 rhd rad3d step t01 . 49

4.4.7.10 rhd shortrad operator l01 . 49

4.4.7.11 rhd shortrad operator l02 . 50

4.4.7.12 rhd shortrad dtauop l01 . 50

4.4.7.13 rhd shortrad dtauop l02 . 50

4.4.7.14 rhd shortrad formal l01 . 50

4.4.7.15 rhd shortrad dir1 l01 . 50

4.4.7.16 rhd shortrad dir l02 . 51

4.4.7.17 rhd shortrad lambda l01 . 51

4.4.7.18 rhd shortrad formal t01 . 51

4.4.7.19 rhd shortrad step t01 . 51

CONTENTS 5

4.4.7.20 MSrad raytas . 51

4.4.8 Obsolete macros . 52

4.4.8.1 IDF . 52

4.4.8.2 rhd hyd roe1d l01 . 52

4.4.8.3 rhd roe1d slope l01 . 52

4.5 Optimization, compiler switches . 52

4.5.1 OpenMP settings . 53

4.5.2 Vectorization . 54

4.5.3 Cache usage . 54

4.5.4 Inlining . 55

4.5.5 Single versus double precision . 55

4.6 Specific machines & compilers . 55

4.6.1 Cray: SV1 . 56

4.6.2 Compaq: alpha . 56

4.6.3 Hewlett-Packard: V2500 . 56

4.6.4 Hewlett-Packard: Itanium 2 . 57

4.6.5 Hitachi SR8000 . 58

4.6.6 IBM . 60

4.6.7 Linux: PGI compiler . 61

4.6.8 Linux: Intel compiler . 61

4.6.9 Linux: PathScale compiler . 64

4.6.10 Linux: GNU g95 compiler . 65

4.6.11 Linux: GNU gfortran compiler . 65

4.6.12 NEC SX-5, SX-6, SX-8 . 65

4.6.13 SGI: Origin . 66

4.6.14 SGI: Origin 2000/3800 at UKAFF . 66

4.6.15 Sun: SunFire . 69

5 Programmer’s guide 71

5.1 General code organization . 71

5.2 Indentation and spaces . 71

5.2.1 General layout and indentation recommendations 71

5.2.2 Alignment of assignments and equations . 71

5.2.3 Normal code indentation . 73

5.2.4 Further recommendations . 73

5.3 Naming conventions . 74

5.3.1 File names . 74

5.3.2 Program names . 74

5.3.3 Names of modules, subroutines, and functions . 74

5.3.4 Variable names . 74

5.4 Comments . 75

5.4.1 Header of files . 75

5.4.2 Header of modules . 75

5.4.3 Header of subroutines and functions . 77

5.4.4 Comment lines . 78

5.4.5 Short comments after Fortran statements . 78

5.5 Compiler switches and directives . 79

5.5.1 OpenMP . 79

5.5.2 Compiler directives . 79

5.5.3 Compiler macros or switches . 79

5.6 Unit tests . 82

5.6.1 F90 UNIT . 82

6 CONTENTS

6 Data file types 83

6.1 File overview . 83

6.2 UIO data format . 83

6.2.1 Quickstart: Introduction to UIO . 83

6.2.2 Example of UIO data file . 84

6.2.3 Structure of UIO files . 85

6.2.3.1 Data representation: ASCII or binary 85

6.2.3.2 Data file structure . 86

6.2.3.3 Tables . 87

6.2.3.4 Recommendations for standard file structure 89

6.2.4 Files & directories & paths . 89

6.2.5 Fortran90 . 90

6.2.5.1 Files . 90

6.2.5.2 Use of UIO modules in Fortran90 . 91

6.2.5.3 Compiling and Makefiles . 91

6.2.5.4 Sample calls of Fortran UIO routines 92

6.2.6 UNIX scripts . 93

6.2.6.1 Installation of UIO UNIX scripts . 93

6.2.6.2 Quick examination of files: uiolook . 94

6.2.6.3 Transformation of files: uiocat . 94

6.2.6.4 Information about conversion types: uioinfo 95

6.2.7 IDL UIO routines . 95

6.2.7.1 Initialization of UIO routines under IDL 96

6.2.7.2 Reading data with uio data.pro . 97

6.2.7.3 Reading data with uio dataset rd.pro or uio datasetlist rd.pro 98

7 Input and control files 101

7.1 Parameter file: rhd.par . 101

7.1.1 Quickstart: How to make a proper parameter file 101

7.1.2 Header . 102

7.1.2.1 fileform uio . 102

7.1.2.2 character file id . 102

7.1.2.3 character description . 102

7.1.2.4 character history . 103

7.1.3 Fundamental model parameters . 103

7.1.3.1 real teff . 103

7.1.3.2 character grav mode . 103

7.1.3.3 real grav . 103

7.1.3.4 real mass star . 104

7.1.3.5 real r0 grav . 104

7.1.3.6 real r1 grav . 104

7.1.3.7 real r2 grav . 104

7.1.3.8 real r0 core . 104

7.1.3.9 character centrifugal force . 105

7.1.3.10 real nu rotation . 105

7.1.3.11 real ar rotationaxis . 105

7.1.4 Boundary conditions (general) . 105

7.1.4.1 character side bound . 105

7.1.4.2 character top bound . 106

7.1.4.3 character bottom bound . 106

7.1.4.4 character heat mode . 107

7.1.4.5 character hdcoreheatprofile . 107

7.1.4.6 real luminositypervolume . 108

7.1.4.7 real s inflow . 108

CONTENTS 7

7.1.4.8 real s inflradgrad . 108

7.1.4.9 real s infllatgrad . 108

7.1.4.10 real c schange . 108

7.1.4.11 real c pchange . 109

7.1.4.12 real c v3changelinbottom . 109

7.1.4.13 real c v3changesqrbottom . 109

7.1.4.14 real c visbound . 109

7.1.4.15 real c rhochangetop . 110

7.1.4.16 real c tchange . 110

7.1.4.17 real c tsurf . 110

7.1.4.18 real c hptopfactor . 110

7.1.4.19 real c radhtautop . 111

7.1.4.20 real r1 rad . 111

7.1.4.21 real rho min . 111

7.1.4.22 real c coredrag . 111

7.1.4.23 character hdcoredragprofile . 111

7.1.5 Boundary conditions (MHD only) . 112

7.1.5.1 character side bound mag x1 and side bound mag x2 112

7.1.5.2 character top bound mag . 113

7.1.5.3 character bottom bound mag . 113

7.1.5.4 real b1 inflow . 114

7.1.5.5 real c magthetab . 114

7.1.5.6 real c magphib . 114

7.1.6 Equation of state . 114

7.1.6.1 character eosfile . 114

7.1.6.2 character eospath . 115

7.1.7 Opacities . 115

7.1.7.1 character opafile . 115

7.1.7.2 character opapath . 116

7.1.8 Hydrodynamics control (HD and MHD) . 116

7.1.8.1 character hdscheme . 116

7.1.8.2 character hdtimeintegrationscheme . 117

7.1.8.3 character hdsplit . 117

7.1.8.4 character reconstruction . 118

7.1.8.5 real c gravmu . 119

7.1.8.6 integer n hyditer . 120

7.1.8.7 integer n hydmaxiter . 120

7.1.8.8 character hdtmpstructkeepmode . 120

7.1.8.9 integer n hydcellsperchunk . 121

7.1.9 Hydrodynamics control (HD only) . 121

7.1.9.1 integer n hydcellsperchunk2 . 121

7.1.9.2 integer n hydcellsperchunk3 . 121

7.1.9.3 integer n hydrkiter . 122

7.1.9.4 real c hydlowmachcsfactor . 122

7.1.9.5 real c hydlowmachcsbase . 123

7.1.9.6 real c hydsmallfluctfactor . 123

7.1.9.7 real c slopered . 123

7.1.9.8 real c reccontshift . 124

7.1.9.9 real c reccontsteep . 124

7.1.9.10 real c recwenoweightcenter . 125

7.1.9.11 real c recwenoweightright . 125

7.1.9.12 real c recwenopsifactor . 125

7.1.9.13 character hdtransvelomode . 126

7.1.9.14 character hdentropywavemode . 126

8 CONTENTS

7.1.9.15 character hdenthalpyavgmode . 127

7.1.9.16 real c hydpredfactor . 128

7.1.9.17 real c hydsdiffvelo . 128

7.1.9.18 real c hydvdiffvelo . 129

7.1.9.19 real c hydtdifflin . 129

7.1.9.20 real c hydtdiffmach . 130

7.1.10 Hydrodynamics control (MHD only) . 130

7.1.10.1 character hdcheckflux . 130

7.1.10.2 integer n orderconstrainedtransport 130

7.1.10.3 integer n rescellsperchunk . 131

7.1.10.4 real c rescourant . 131

7.1.10.5 real c rescourantmax . 131

7.1.10.6 real c resb . 131

7.1.10.7 real c resbconst . 131

7.1.10.8 real c resepsilon . 132

7.1.10.9 real beta inv . 132

7.1.10.10 real va max . 132

7.1.10.11 integer n magdiffside . 132

7.1.10.12 integer n magdifftop . 132

7.1.10.13 integer n magdiffbottom . 133

7.1.11 Tensor-viscosity control . 133

7.1.11.1 integer n visiter . 133

7.1.11.2 real c vissmagorinsky . 133

7.1.11.3 real c visartificial . 134

7.1.11.4 real c visexpansion . 134

7.1.11.5 real c vislinear . 134

7.1.11.6 real c visprturb . 134

7.1.11.7 real c vistensordiag . 134

7.1.11.8 real c vistensoroff . 135

7.1.11.9 real c vistensordiv . 135

7.1.11.10 real c visp2pcoeff . 135

7.1.11.11 real c visp2phypsmagorinsky . 135

7.1.11.12 real c visp2phypartificial . 136

7.1.11.13 real c visp2phypexpansion . 136

7.1.11.14 real c visp2pdivrhov . 136

7.1.11.15 real c visp2pincl1 . 136

7.1.11.16 real c visp2pincl2 . 136

7.1.11.17 integer n viscellsperchunk . 137

7.1.12 Dust/molecules/hydrogen ionization: General 137

7.1.12.1 character dustscheme . 137

7.1.12.2 character dustreconstruction . 138

7.1.12.3 real c dust0X . 138

7.1.12.4 character chem reacfile . 138

7.1.12.5 character chem reacpath . 138

7.1.12.6 real chem abumetal . 138

7.1.12.7 character hion datapath . 139

7.1.12.8 character hion atomfile . 139

7.1.12.9 character hion abufile . 139

7.1.12.10 character hion edensfile . 139

7.1.12.11 character hion pffile . 139

7.1.12.12 real dtime out hion . 139

7.1.12.13 integer hion chunks . 139

7.1.13 Dust: dustscheme=dust moment04 c2 . 139

7.1.13.1 real c dust01 . 140

CONTENTS 9

7.1.13.2 real c dust02 . 140

7.1.13.3 real c dust03 . 140

7.1.13.4 real c dust04 . 140

7.1.14 Dust: dustscheme=dust k3mon 03 . 140

7.1.14.1 integer n dustgrainradius . 140

7.1.14.2 real ar dustgrainradius . 140

7.1.14.3 real c dust01 . 140

7.1.14.4 real c dust02 . 141

7.1.14.5 real c dust03 . 141

7.1.14.6 real c dust04 . 141

7.1.14.7 real c dust05 . 141

7.1.14.8 real c dust06 . 141

7.1.15 Dust: dustscheme=dust bins 01 . 141

7.1.15.1 integer n dustgrainradius . 142

7.1.15.2 real ar dustgrainradius . 142

7.1.15.3 real c dust01 . 142

7.1.15.4 real c dust02 . 142

7.1.15.5 real c dust03 . 142

7.1.15.6 real c dust04 . 142

7.1.15.7 real c dust06 . 143

7.1.15.8 real c dust07 . 143

7.1.15.9 real c dust08 . 143

7.1.15.10 real c dust09 . 143

7.1.16 Radiation-transport control (general) . 143

7.1.16.1 character radscheme . 143

7.1.16.2 integer n radband . 144

7.1.16.3 integer n radminiter . 145

7.1.16.4 integer n raditer . 145

7.1.16.5 integer n radmaxiter . 145

7.1.16.6 character radraybase . 146

7.1.16.7 character radraystar . 146

7.1.16.8 real c tminlimit . 147

7.1.16.9 real c radimplicitmu . 147

7.1.16.10 real c raditereps . 147

7.1.16.11 real c raditerstep . 148

7.1.17 Radiation-transport control (MSrad only) . 148

7.1.17.1 integer n radtheta . 148

7.1.17.2 integer n radphi . 148

7.1.17.3 integer n radsubray . 148

7.1.17.4 integer n radthickpoint . 148

7.1.17.5 integer n radtaurefine . 149

7.1.17.6 integer n radrsyslevel . 149

7.1.17.7 integer n radoutput . 149

7.1.17.8 real c radtcool . 149

7.1.17.9 real c raddcool . 149

7.1.17.10 real c radscool . 149

7.1.17.11 real c radtinci . 149

7.1.17.12 real c raddinci . 150

7.1.18 Radiation-transport control (LHDrad only) . 150

7.1.18.1 real c radtvisdtau . 150

7.1.18.2 real c radtvis . 150

7.1.18.3 real c radthintimefac . 150

7.1.19 Process-time management . 150

7.1.19.1 real starttime . 151

10 CONTENTS

7.1.19.2 integer starttimestep . 151

7.1.19.3 real cputime . 151

7.1.19.4 real cputime remainlimit . 151

7.1.19.5 real endtime . 151

7.1.19.6 real plustime . 152

7.1.19.7 integer endtimestep . 152

7.1.19.8 integer plustimestep . 152

7.1.20 Time-step control . 152

7.1.20.1 real dtime start . 152

7.1.20.2 real dtime min . 152

7.1.20.3 real dtime max . 153

7.1.20.4 real dtime min stop . 153

7.1.20.5 real dtime incmax . 153

7.1.20.6 real c courant . 153

7.1.20.7 real c courantmax . 153

7.1.20.8 real c maxeichange . 154

7.1.20.9 real c hydsoundcourant . 154

7.1.20.10 real c hydsoundcourantmax . 154

7.1.20.11 real c hydexpcourant . 154

7.1.20.12 real c hydexpcourantmax . 154

7.1.20.13 real c radcourant . 155

7.1.20.14 real c radcourantmax . 155

7.1.20.15 real c radmaxeichange . 155

7.1.20.16 real c viscourant . 155

7.1.20.17 real c viscourantmax . 156

7.1.21 Input/output control . 156

7.1.21.1 real dtime out full . 156

7.1.21.2 real dtime out end . 156

7.1.21.3 real dtime out mean . 157

7.1.21.4 integer n outslicedim mean . 157

7.1.21.5 integer outdim chu1 . 157

7.1.21.6 integer outdim chu2 . 157

7.1.21.7 integer outdim chu3 . 157

7.1.21.8 character infile start . 158

7.1.21.9 integer istep in start . 158

7.1.21.10 character outfile end . 158

7.1.21.11 character outfile full . 158

7.1.21.12 character outfile mean . 158

7.1.21.13 character outfile mcyl . 158

7.1.21.14 character outfile chu1 . 159

7.1.21.15 character outfile chu2 . 159

7.1.21.16 character outfile chu3 . 159

7.1.21.17 character outform end . 159

7.1.21.18 character outconv end . 159

7.1.21.19 character outform full . 159

7.1.21.20 character outconv full . 160

7.1.21.21 character outform mean . 160

7.1.21.22 character outconv mean . 160

7.1.22 Scale and test parameters . 160

7.1.22.1 real time scalestart . 160

7.1.22.2 real time scaleend . 161

7.1.22.3 integer n test1 . 161

7.1.22.4 real c test1 . 161

7.1.22.5 character strtest1 . 161

CONTENTS 11

7.1.23 Additional information and obsolete parameters 162
7.1.23.1 real abux . 162
7.1.23.2 real abuy . 162
7.1.23.3 real qmol . 162
7.1.23.4 real gamma . 162
7.1.23.5 real c radkappasmooth . 162
7.1.23.6 real c radtsmooth . 163
7.1.23.7 character radpressure . 163
7.1.23.8 real c radtintminfac . 163
7.1.23.9 integer dtimestep out fine . 163
7.1.23.10 character outfile fine . 163
7.1.23.11 character outform fine . 164
7.1.23.12 character outconv fine . 164

7.2 Input model file: rhd.sta . 164
7.3 EOS file . 164
7.4 Opacity file . 164
7.5 Chemistry input . 164
7.6 HION input . 165
7.7 More control files: rhd.stop, rhd.cont, rhd.dump . 166

8 Output and status files 167
8.1 Output model files: rhd.end, rhd.full . 167
8.2 Files with additional chunks of data: rhd.chu1, rhd.chu2, rhd.chu3 168
8.3 Files with averaged data: rhd.mean . 168
8.4 File with azimuthally averaged data: rhd.mcyl . 172
8.5 HION output . 174
8.6 Text output: rhd.out . 174
8.7 Additional status and output files: rhd.done, rhd.snap 178

9 Running a simulation 179
9.1 Quickstart: How to run CO5BOLD . 179
9.2 Using a batch system . 180

10 Data analysis with IDL 185
10.1 Preparations . 185
10.2 CO5BOLD data in IDL . 185

10.2.1 Loading the parameter file . 185
10.2.2 Loading CO5BOLD data (.full, .sta, .end, .chu1) 186
10.2.3 Loading the equation of state . 186
10.2.4 Loading the opacity table . 186
10.2.5 Computation of deduced quantities . 186

10.3 IDL data structure . 187
10.4 More IDL routines . 188

11 Document history 189

12 Glossary 193

13 Trademarks 195

13 Bibliography 198

Index 199

12 CONTENTS

List of figures

4.1 Performance tests on Hitachi SR8000 . 59
4.2 UKAFF: machine: grand; small model . 67
4.3 UKAFF: machine: grand; large model . 68
4.4 UKAFF: machine: ukaff; large model . 68

9.1 Program scheme . 180

13

14 LIST OF FIGURES

List of tables

3.1 List of source directories . 29
3.2 List of all high-level modules . 30
3.3 List of all low-level modules . 31
3.4 List of all tweak modules . 31
3.5 List of all unit-test modules . 31
3.6 List of Linux script files. 32
3.7 List of documentation files. 32

6.1 CO5BOLD control and data files . 84
6.2 UIO conversion types . 86
6.3 UIO entry types . 87
6.4 UIO header keywords . 87
6.5 UIO Fortran90 files . 90
6.6 Contents of uio base module.f90 . 90
6.7 Contents of uio mac module . 90

7.1 Combinations of HD options . 116
7.2 Radiation transport parameters . 144

15

16 LIST OF TABLES

Chapter 1

Introduction

CO5BOLD – nickname COBOLD – is the short form of “COnservative COde for the COmputation of
COmpressible COnvection in a BOx of L Dimensions with l=2,3”.

It is used to model solar and stellar surface convection (Freytag et al., 2012). For solar-type stars, only
a small fraction of the stellar surface layers are included in the computational domain(Wedemeyer et al.,
2004). In the case of red supergiants (Freytag et al., 2002; Chiavassa et al., 2011) or AGB-type stars
(Freytag & Höfner, 2008), the computational box contains the entire star. The model range has been
extended to sub-stellar objects like brown dwarfs (Freytag et al., 2010) and to white dwarfs (Tremblay
et al., 2013)

CO5BOLD solves the coupled non-linear equations of compressible hydrodynamics in an external
gravity field together with non-local frequency-dependent radiation transport. Operator splitting is ap-
plied to solve the equations of hydrodynamics (including gravity), the radiative energy transfer (with a
long-characteristics or a short-characteristics ray scheme), and possibly additional 3D (turbulent) diffu-
sion in individual sub steps. The 3D hydrodynamics step is further simplified with directional splitting
(usually). The 1D sub steps are performed with a Roe solver (Roe, 1986), accounting for an external
gravity field and an arbitrary equation of state from a table.

The radiation transport is computed with either one of three modules:

• MSrad module: It uses long characteristics. The lateral boundaries have to be periodic. Top and
bottom can be closed or open (“solar module”).

• LHDrad module: It uses long characteristics and is restricted to an equidistant grid and open
boundaries at all surfaces (old “supergiant module”).

• SHORTrad module: It uses short characteristics and is restricted to an equidistant grid and open
boundaries at all surfaces (new “supergiant module”).

The code was supplemented with an (optional) MHD version (Schaffenberger et al., 2005) that can
treat magnetic fields. There are also modules for the formation and advection of dust available. The
current version now contains the treatment of chemical reaction networks, mostly used for the formation
of molecules (Wedemeyer-Böhm et al., 2005), and hydrogen ionization (Leenaarts & Wedemeyer-Böhm,
2005), too.

CO5BOLD is written in Fortran90. The parallelization is done with OpenMP directives.

To get a brief overview the “Quickstart Sections” might be helpful:
“How to compile CO5BOLD” (Sect. 4.1),
“Introduction to the UIO data format” (Sect. 6.2.1),
“How to make a proper parameter file” (Sect. 7.1.1),
“How to run CO5BOLD” (Sect. 9.1).

17

18 CHAPTER 1. INTRODUCTION

Chapter 2

Equations

2.1 Basic equations

The hydrodynamics equations are expressed as conservation relations plus source terms for

ρ, ρv1, ρv2, ρv3, ρeikg , (2.1)

the mass density, the three mass fluxes and the total energy density (per volume), respectively. Each
quantity q has its corresponding flux f(q) and possibly source term s(q). For convenience,

ρ, v1, v2, v3, ei (2.2)

are chosen as independent quantities. The conserved quantities are purely algebraic combinations of
these.

The 3D hydrodynamics equations, including source terms due to gravity, are the mass conservation
equation

∂ρ

∂t
+
∂ ρ v1

∂x1
+
∂ ρ v2

∂x2
+
∂ ρ v3

∂x3
= 0 , (2.3)

the momentum equation

∂

∂t

 ρv1
ρv2
ρv3

+
∂

∂x1

 ρv1 v1 + P
ρv2 v1
ρv3 v1

+
∂

∂x2

 ρv1 v2
ρv2 v2 + P
ρv3 v2

+
∂

∂x3

 ρv1 v3
ρv2 v3
ρv3 v3 + P

=

 ρ g1
ρ g2
ρ g3

 (2.4)

and the energy equation including radiative heating term Qrad

∂ρeik

∂t
+
∂ (ρeik+P) v1

∂x1
+
∂ (ρeik+P) v2

∂x2
+
∂ (ρeik+P) v3

∂x3
= ρ (g1 v1 + g2 v2 + g3 v3) +Qrad . (2.5)

The pressure P is computed from density ρ and internal energy ei via a (tabulated) equation of state

P = P (ρ, ei) . (2.6)

For local models the gravity field is simply given by

~g =

 0
0
−g

 . (2.7)

For global models it is given by

~g =

 g1
g2
g3

 = −

 ∂
∂x1
∂
∂x2
∂
∂x3

Φ (2.8)

with

Φ = − GM∗(
r40 + r4/

√
1 + (r/r1)8

)1/4 . (2.9)

19

20 CHAPTER 2. EQUATIONS

Here, M∗ is the mass of the star to be modeled; r0 and r1 are free smoothing parameters.
In addition, there are equations for the non-local radiation transport. If grey opacity tables are used,

the opacities κ are a simple function of e.g. temperature T and pressure P

κ = κ(T, P) (2.10)

and the source function S is given by

S =
σ

π
T 4 . (2.11)

The change in optical depth ∆τ along a path with length ∆x is than

∆τ = κρ∆x . (2.12)

The variation of the intensity I with optical depth τ along a ray with orientation (θ, ϕ) can be described
by the simple differential equation

dI

dτ
= −I + S . (2.13)

The radiative energy flux is given by

Frad =

∫ 2π

0

∫ π

0
I cos θ sin θ dθ dϕ . (2.14)

The energy change can than be computed from the flux divergence with

∂ρei

∂t
= Qrad = −

(
∂Fx1,rad
∂x1

+
∂Fx2,rad
∂x2

+
∂Fx3,rad
∂x3

)
. (2.15)

2.2 Magnetohydrodynamics (W. Schaffenberger)

The MHD module solves the equations of ideal MHD, given in compact vector form

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

∂ρv

∂t
+ ∇ ·

(
ρvv +

(
P +

B ·B
2

)
I−BB

)
= ρg ,

∂B

∂t
+ ∇ · (vB−Bv) = 0 ,

∂ρetot

∂t
+ ∇ ·

((
ρetot + P +

B ·B
2

)
v − (v ·B) B + Frad

)
= 0 .

(2.16)

Here, B is the magnetic field vector, where the units are such that the magnetic permeability µ is equal
to one. I is the identity matrix and a · b =

∑
k akbk the scalar product of the two vectors a and b. The

dyadic tensor product of two vectors a and b is the tensor ab = C with elements cmn = ambn and the
nth component of the divergence of the tensor C is (∇ ·C)n =

∑
m ∂cmn/∂xm. The total energy is given

by

ρetot = ρei + ρ
v · v

2
+

B ·B
2

+ ρΦ , (2.17)

where ei is the internal energy per unit mass. The additional solenoidality constraint,

∇ ·B = 0 , (2.18)

must also be fulfilled.
The aim was to create a stable and easy to use module (Schaffenberger et al., 2005). The module has

the following features:

• Use of the HLL solver with the Janhunen source terms (Janhunen, 2000).

◦ Extension to 2nd order with linear or parabolic reconstruction and a Hancock predictor step
or Runge-Kutta-TVD timeintegration scheme.

2.2. MAGNETOHYDRODYNAMICS (W. SCHAFFENBERGER) 21

◦ The following limiters are available: Minmod, vanLeer, Superbee, Piecewise Parabolic (PP).

◦ Hybridization of 1st and 2nd order flux to ensure positivity of pressure and density.

• Use of Roe solver.

• Flux interpolated constrained transport step.

• Small violation of strict energy conservation after the constrained transport step to keep the pressure
positive E-term of Balsara & Spicer (1999).

• Electric conductivity and additional energy diffusion.

• Use of thermal energy equation instead of total energy equation possible (for HLL solver only).

• Use of both, thermal energy equation and total energy equation possible (dual energy method, HLL
solver only).

• Reduction of Alfvén speed to avoid small time steps (with HLL solver only and in combination
with thermal energy equation or dual energy method only).

• Use of multiple MHD-substeps.

• Boundary conditions for the magnetic field can be specified independently from the hydro boundary
conditions.

• Diffusive boundary layers possible.

• Dimensional splitting or unsplit scheme possible.

The magnetic field is located at the cell boundaries rather than in the cell centers. Therefore, the
format of the magnetic field arrays is slightly different from that of the other hydrodynamic variables.

Staggered grid representation of the magnetic field in 2 dimensions:

+---^---+---^---+---^---+---^---+---^---+---^---+

| | | | | | |

> * > * > * > * > * > * >

| | | | | | |

+---^---+---^---+---^---+---^---+---^---+---^---+

| | | | | | |

> * > * > * > * > * > * >

| | | | | | |

+---^---+---^---+---^---+---^---+---^---+---^---+

| | | | | | |

> * > * > * > * > * > * >

| | | | | | |

+---^---+---^---+---^---+---^---+---^---+---^---+

| | | | | | |

> * > * > * > * > * > * >

| | | | | | |

+---^---+---^---+---^---+---^---+---^---+---^---+

| | | | | | |

> * > * > * > * > * > * >

| | | | | | |

+---^---+---^---+---^---+---^---+---^---+---^---+

* hydrodynamic variables

> x1 component of the magnetic field

^ x2 component of the magnetic field

22 CHAPTER 2. EQUATIONS

The extension to 3 dimensions should be clear. Variables at the left or the bottom boundary have
the same indices as the cell.

For a box with 120×120×120 cells, the header for the magnetic field arrays in the start model may
look like

real bb1 d=(1:121,1:120,1:120) f=E13.6 p=4 b=4 &

n=’cell boundary magnetic field 1’ u=G*sqrt(4pi)

real bb2 d=(1:120,1:121,1:120) f=E13.6 p=4 b=4 &

n=’cell boundary magnetic field 2’ u=G*sqrt(4pi)

real bb3 d=(1:120,1:120,1:121) f=E13.6 p=4 b=4 &

n=’cell boundary magnetic field 3’ u=G*sqrt(4pi)

For simplicity, the MHD module uses units such that the 4 pi factors do not appear in the MHD
equations.

Therefore one has to multiply the original magnetic fields in gauss with the factor 1/
√

4π in order to
get the correct magnetic field strength for CO5BOLD!!!

After the computation, one has to multiply the magnetic fields from the CO5BOLD output with the
factor

√
4π in order to get the magnetic field strength in gauss!!!

The CO5BOLD analysis tool CAT does this automatically when reading the model data, so that
CAT outputs the field strength in gauss.

Positivity of pressure and density:
A special problem of MHD simulations is that pressure or density can become negative in some cir-
cumstances. This problem is also present in pure hydrodynamic simulations but gets worse for MHD.
The original hydrodynamic version of CO5BOLD tries to fix this problem by reducing the time step. In
hydrodynamics, this works in most cases. In MHD, however, reduction of the time step often does not
help and other methods are necessary to avoid this problem. Therefore, the MHD module uses a HLL
solver instead of a Roe solver, which is used in the hydrodynamic module (Roe, 1986). It was shown
numerically by Janhunen (2000), that using a HLL solver together with additional source terms in the
induction equation keeps pressure and density positive under all circumstances. Because the constrained
transport step, which is performed after the 1D sweeps with the MHD solver, changes the magnetic field,
a correction of the internal energy in each cell is necessary to keep the total energy conserved. Because
this correction can lead to negative pressure, it is omitted if the internal energy would become too small.
Therefore, the total energy is not exactly conserved but this affects only a few cells in the simulation
box. (See also Balsara & Spicer (1999) on this topic.)

The methods described above result in a very robust scheme, which guarantees positivity of pressure
and density under almost all conditions. However, this does not mean, that these values are accurate!
The pressure and temperature distribution may be very inaccurate in regions with strong magnetic fields.
This may be relevant, if one includes special chromospheric physics such as dynamic hydrogen ionization
and CO formation in the simulation. A possibility to get more accurate pressure and temperature would
consist in the use of the entropy equation instead of the energy equation for the computation of the
internal energy in regions with strong magnetic field. This was included in the original test version of the
MHD module. In the present version, we mak use of the equation for the thermal energy itself depending
on the ratio of thermal to magnetic pressure, i.e., the plasma β. The limiting β can be specified by the
model parameter beta_inv. This is the dual energy approach, used in many MHD codes. Its advantage
goes at the expense of violation of strict conservation of the total energy.

Due to the Courant condition, the time step in case of MHD can become considerably smaller than
in the hydrodynamic case. This happens because the time step is also limited by the Alfvén speed which
is large in regions with strong magnetic field and low density (small plasma β).

To avoid an extreme time step reduction, the Alfvén speed can be artificially limited. This this is
done by reducing the Lorentz force in the momentum equation by a factor f. This factor is calculated
with the following formula:

f =
v2Amax

(v2A + v2Amax)
, (2.19)

where vA is the original Alfvén speed and vAmax is the desired maximum value of the Alfvén speed. Cur-
rently, this feature works only with the HLL-solver. It is advisable to use this feature only in combination

2.3. A COLLECTION OF THERMODYNAMIC RELATIONS (M. STEFFEN, AIP) 23

with either the thermal energy equation (beta_inv = 0.0) or the dual energy method. In the latter case,
beta_inv should be chosen small enough so that the region where the Lorentz-force reduction is active
is handled by the thermal energy equation. This is obtained with beta_inv / γv2Amax/c

2
s, where cs is

the speed of sound and γ the adiabatic exponent.

This module has been extensively tested. It should be able to handle many MHD flows of astrophysical
interest. Bugs and problems can be reported to werner.schaffenberger@gmx.at.

2.3 A collection of thermodynamic relations (M. Steffen, AIP)

2.3.1 Basic thermodynamic equations

Differential relations:

de = Tds+
p

ρ2
dρ (20)

where e is the internal energy .

dh = Tds+
1

ρ
dp (21)

where the specific enthalpy , h, is defined as

h = e+ p/ρ (22)

This implies: (
∂e

∂s

)
ρ

= T (23)

(
∂e

∂ρ

)
s

=
p

ρ2
(24)

(
∂h

∂s

)
p

= T (25)

(
∂h

∂p

)
s

=
1

ρ
(26)

2.3.2 Definition of often-used thermodynamic coefficients

Definition of specific heats:

cp ≡
(
∂h

∂T

)
p

= T

(
∂s

∂T

)
p

=

(
∂s

∂ lnT

)
p

(27)

cv ≡
(
∂e

∂T

)
ρ

= T

(
∂s

∂T

)
ρ

=

(
∂s

∂ lnT

)
ρ

(28)

Definitions of further thermodynamic coefficients:

χT ≡
(
∂ ln p

∂ lnT

)
ρ

(29)

χρ ≡
(
∂ ln p

∂ ln ρ

)
T

≡ (Kp)−1 (30)

δ ≡ −
(
∂ ln ρ

∂ lnT

)
p

≡ αT =
χT
χρ

(31)

24 CHAPTER 2. EQUATIONS

It can be shown that

cp − cv = α2T/(Kρ) =
p

ρT
δ2 χρ =

p

ρT
δ χT =

p

ρT
χ2
T /χρ (32)

Definition of adiabatic exponents:

Γ1 ≡
(
∂ ln p

∂ ln ρ

)
s

(33)

Γ3 ≡
(
∂ lnT

∂ ln ρ

)
s

+ 1 (34)

∇ad ≡
(
∂ lnT

∂ ln p

)
s

≡ Γ2 − 1

Γ2
(35)

2.3.3 CO5BOLD equation of state

CO5BOLD equation of state input:

ρ; e (36)

CO5BOLD equation of state output:

s; P ; T ;

(
∂p

∂e

)
ρ

;

(
∂p

∂ρ

)
e

;

(
∂T

∂e

)
ρ

(37)

All required thermodynamic coefficients can be expressed in terms of
(
∂p
∂e

)
ρ
,
(
∂p
∂ρ

)
e
,
(
∂T
∂e

)
ρ
:

2.3.4 Derived thermodynamic coefficients

First, the missing derivative
(
∂T
∂ρ

)
e

can be found from the relation:

(
∂T

∂ρ

)
e

=
T

ρ2

(
∂p

∂e

)
ρ

− p

ρ2

(
∂T

∂e

)
ρ

(38)

which is obtained from the equality of the mixed derivatives in Eq.(20), written as:

ds =
1

T
de− p

Tρ2
dρ (39)

Then

∂2s

∂e∂ρ
=

∂

∂ρ

(
1

T

)
e

=
∂

∂e

(
− p

Tρ2

)
ρ

(40)

First adiabatic exponent:

Γ1 ≡
(
∂ ln p

∂ ln ρ

)
s

=
ρ

p

(
∂p

∂ρ

)
e

+
1

ρ

(
∂p

∂e

)
ρ

(41)

This relation is obtained by combining Eq.(20) with the identity

dp =

(
∂p

∂ρ

)
e

dρ+

(
∂p

∂e

)
ρ

de (42)

2.3. A COLLECTION OF THERMODYNAMIC RELATIONS (M. STEFFEN, AIP) 25

The adiabatic sound speed is then obtained as

cs ≡

√(
∂p

∂ρ

)
s

=

√
Γ1
p

ρ
(43)

Third adiabatic exponent:

Γ3 ≡ 1 +

(
∂ lnT

∂ ln ρ

)
s

= 1 +
1

ρ

(
∂p

∂e

)
ρ

(44)

This relation is obtained by combining Eq.(20) with the identity

dT =

(
∂T

∂ρ

)
e

dρ+

(
∂T

∂e

)
ρ

de (45)

and then using Eq.(38).

Adiabatic temperature gradient:

∇ad ≡
(
∂ lnT

∂ ln p

)
s

=
Γ3 − 1

Γ1
(46)

since (
∂ lnT

∂ ln p

)
s

=

(
∂ lnT

∂ ln ρ

)
s

·
(
∂ ln ρ

∂ ln p

)
s

=
Γ3 − 1

Γ1
. (47)

Adiabatic energy changes:

ρ

(
∂e

∂p

)
s

=
p

ρ

(
∂ρ

∂p

)
s

=

(
∂ ln ρ

∂ ln p

)
s

=
1

Γ1
(48)

or (
∂ρe

∂p

)
s

= e

(
∂ρ

∂p

)
s

+ ρ

(
∂e

∂p

)
s

=
1

Γ1

(
1 +

ρe

p

)
(49)

We define the coefficients c′v and c′p through the relation

ds = c′vd ln p− c′pd ln ρ (50)

Entropy change at constant density:

c′v =

(
∂s

∂ ln p

)
ρ

=
p

ρT

(
∂ ln ρ

∂ lnT

)
s

=
p

ρT

1

Γ3 − 1
(51)

This relation is obtained from the equality of the mixed derivatives in Eq.(20) together with Eq.(44).

Entropy change at constant pressure:

c′p = −
(

∂s

∂ ln ρ

)
p

=
p

ρT

(
∂ ln p

∂ lnT

)
s

=
p

ρT

Γ1

Γ3 − 1
(52)

This relation is obtained from the equality of the mixed derivatives in Eq.(21) together with Eq.(46).

Specific heat at constant density:

26 CHAPTER 2. EQUATIONS

cv = c′v χT =

(
∂s

∂ lnT

)
ρ

=

(
∂e

∂T

)
ρ

= 1/

(
∂T

∂e

)
ρ

(53)

To derive the specific heat at constant pressure, we start from the relation

d lnT =

(
∂ lnT

∂ ln ρ

)
s

d ln ρ+

(
∂ lnT

∂s

)
ρ

ds (54)

from which we get (
∂s

∂ ln ρ

)
T

= −
(
∂ lnT

∂ ln ρ

)
s

/

(
∂ lnT

∂s

)
ρ

(55)

Using Eqs.(44) and (53), we obtain

(
∂s

∂ ln ρ

)
T

= −cv (Γ3 − 1) (56)

Now

ds =

(
∂s

∂ ln p

)
ρ

d ln p+

(
∂s

∂ ln ρ

)
p

d ln ρ (57)

or

ds =

(
∂s

∂ ln p

)
ρ

d ln p+

(
∂s

∂ ln ρ

)
p

{(
∂ ln ρ

∂ lnT

)
s

d lnT +

(
∂ ln ρ

∂s

)
T

ds

}
(58)

hence

ds

{
1−

(
∂s

∂ ln ρ

)
p

(
∂ ln ρ

∂s

)
T

}
=

(
∂s

∂ ln p

)
ρ

d ln p+

(
∂s

∂ ln ρ

)
p

(
∂ ln ρ

∂ lnT

)
s

d lnT (59)

and finally (
∂ lnT

∂s

)
p

=

{
1−

(
∂s

∂ ln ρ

)
p

(
∂ ln ρ

∂s

)
T

}
/

{(
∂s

∂ ln ρ

)
p

(
∂ ln ρ

∂ lnT

)
s

}
(60)

or (
∂ lnT

∂s

)
p

=

(
∂ lnT

∂ ln ρ

)
s

{(
∂ ln ρ

∂s

)
p

−
(
∂ ln ρ

∂s

)
T

}
(61)

Using Eqs.(27), (44), (52), (56), we finally obtain the relation for the specific heat at constant pres-
sure:

1

cp
=

1

cv
− ρT

p

(Γ3 − 1)2

Γ1
=

1

cv
− T

(
Γ3 − 1

cs

)2

(62)

Alternatively, cp can be obtained from Eq.(32)

cp = cv +
p

ρT
δ χT (63)

or from

cp = δ c′p =
p

ρT
δ

Γ1

Γ3 − 1
(64)

once δ and χT are known (see below).

We can now express the thermodynamic coefficients provided by CO5BOLD in terms of cv, Γ1, Γ3, and
∇ad:

2.3. A COLLECTION OF THERMODYNAMIC RELATIONS (M. STEFFEN, AIP) 27

(
∂p

∂e

)
ρ

= ρ (Γ3 − 1) (65)

(
∂p

∂ρ

)
e

=
p

ρ
(1− Γ3 + Γ1) (66)

(
∂T

∂e

)
ρ

=
1

cv
(67)

(
∂T

∂ρ

)
e

=
T

ρ
(Γ3 − 1)− p

ρ2
1

cv
(68)

(
∂e

∂ρ

)
T

= −
(
∂T

∂ρ

)
e

/

(
∂T

∂e

)
ρ

=
p

ρ2

{
1− ρT

p
cv (Γ3 − 1)

}
(69)

(
∂e

∂ρ

)
p

= −
(
∂p

∂ρ

)
e

/

(
∂p

∂e

)
ρ

=
p

ρ2

{
1− Γ1

Γ3 − 1

}
=

p

ρ2
∇ad − 1

∇ad
(70)

We consider again Eq.(39), replacing de by

de =

(
∂e

∂T

)
ρ

dT +

(
∂e

∂ρ

)
T

dρ (71)

so

ds =
1

T

(
∂e

∂T

)
ρ

dT +

{
1

T

(
∂e

∂ρ

)
T

− p

Tρ2

}
dρ (72)

The requirement that the mixed derivatives must be equal then yields

∂

∂ρ

(
1

T

(
∂e

∂T

)
ρ

)
T

=
∂

∂T

(
1

T

(
∂e

∂ρ

)
T

− p

Tρ2

)
ρ

(73)

or

0 = − 1

T 2

(
∂e

∂ρ

)
T

− 1

ρ2

{
1

T

(
∂p

∂T

)
ρ

− p

T 2

}
(74)

Finally, (
∂e

∂ρ

)
T

=
p

ρ2

{
1−

(
∂ ln p

∂ lnT

)
ρ

}
=

p

ρ2
(1− χT) (75)

Comparison with Eq.(69) implies

χT =
ρT

p
cv (Γ3 − 1) (76)

Similarly, replacing de by

de =

(
∂e

∂p

)
ρ

dp+

(
∂e

∂ρ

)
p

dρ (77)

in Eq.(39), we get

ds =
1

T

(
∂e

∂p

)
ρ

dp+

{
1

T

(
∂e

∂ρ

)
p

− p

Tρ2

}
dρ (78)

28 CHAPTER 2. EQUATIONS

and the requirement that the mixed derivatives must be equal then yields

∂

∂ρ

(
1

T

(
∂e

∂p

)
ρ

)
p

=
∂

∂p

(
1

T

(
∂e

∂ρ

)
p

− p

Tρ2

)
ρ

(79)

or (
∂e

∂p

)
ρ

(
∂T

∂ρ

)
p

=

(
∂T

∂p

)
ρ

{(
∂e

∂ρ

)
p

− p

ρ2

}
+
T

ρ2
(80)

or (
∂e

∂p

)
ρ

(
∂ lnT

∂ ln ρ

)
p

=

(
∂ lnT

∂ ln p

)
ρ

{
ρ

p

(
∂e

∂ρ

)
p

− 1

ρ

}
+

1

ρ
. (81)

Since (
∂ lnT

∂ ln ρ

)
p

/

(
∂ lnT

∂ ln p

)
ρ

= −
(
∂ ln p

∂ ln ρ

)
T

= −χρ (82)

we finally obtain, using Eqs.(29), (65) and (70),

χρ = Γ1 − χT (Γ3 − 1) (83)

and

δ = χT / {Γ1 − χT (Γ3 − 1)} (84)

The isothermal sound speed is then obtained as

cT ≡

√(
∂p

∂ρ

)
T

=

√
χρ
p

ρ
=

√
Γ1
p

ρ

{
1− χT

Γ3 − 1

Γ1

}
= cs

√
(1− χT∇ad) (85)

2.3.5 Ideal gas with constant specific heats (polytropic gas)

In this case, we obtain much simpler relations:

e = cvT =
p

ρ

1

γ − 1
(86)

h = cpT =
p

ρ

γ

γ − 1
(87)

s = cv {ln p− γ ln ρ}+ const. (88)

γ ≡ cp
cv

= Γ1 = Γ2 = Γ3 = const. (89)

cp − cv =
p

ρT
≡ R (90)

cv = R 1

γ − 1
= c′v (91)

cp = R γ

γ − 1
= c′p (92)

χT = χρ = δ = 1 (93)

cs ≡

√(
∂p

∂ρ

)
s

=

√
γ
p

ρ
(94)

cT ≡

√(
∂p

∂ρ

)
T

=

√
p

ρ
(95)

Chapter 3

CO5BOLD file overview

In this section, all the files and modules CO5BOLD contains are listed.

3.1 Fortran directories

The files necessary to compile CO5BOLD are distributed over a few directories in the main directory
for. The source files are located as shown in Tab. 3.1.

Paths Abb. Description

for/cons/f90/ CON constants and units
for/eos/f90/ EOS equation of state
for/hd/chem/ CHEM chemical reaction network
for/hd/dust/ DUST source terms due to dust or molecules
for/hd/hion/f90/ HION time-dependent hydrogen ionization
for/hd/mhd/ MHD MHD
for/hd/rhd/ RHD RHD: main, HD, Bernd’s radiation transport
for/hd/rhdb/ RHDB basic RHD: I/O, box handling, averaging
for/hd/tweak/ TWEAK various optional tweak modules
for/hd/unitt/ UT unit-test subroutines and main program
for/mat/str/ STR string handling
for/opa/opta/ OPTA opacities
for/rad/hdrad/ RAD Matthias’ radiation transport
for/time/f90/ TIME timing
for/uio/f90/ UIO I/O

Table 3.1: List of source directories with path name, abbreviation, and a short description.

The executables (and Makefiles, object files, module information files) are usually located in subdi-
rectories of the source code directories. These subdirectories typically have the name of the machine,
architecture, or operating system the executable is compiled for.

29

30 CHAPTER 3. CO5BOLD FILE OVERVIEW

3.2 Fortran files

Tables 3.2 and 3.3 show a list of all source files necessary to compile the complete version of CO5BOLD.

File and path Abb. Description

hd/rhd/rhd.F90 RHD main program

hd/rhd/rhd_hyd_module.F90 RHD hydrodynamics routines
hd/rhd/rhd_baserad_module.f90 RHD basic radiative transfer
hd/rhd/rhd_lhdrad_module.F90 RHD radiative transfer routines

long characteristics, global models
hd/rhd/rhd_shortrad_module.F90 RHD radiative transfer

short characteristics, global models
hd/rhd/rhd_shortrad_dtauop01.f90 RHD short-characteristics tau coupling
hd/rhd/rhd_shortrad_dtauop02.f90 RHD short-characteristics tau coupling
hd/rhd/rhd_shortrad_operator00.f90 RHD short-characteristics operator
. . .
hd/rhd/rhd_shortrad_operator05.f90 RHD short-characteristics operator
hd/rhd/rhd_shortrad_operator06.f90 RHD short-characteristics operator
hd/rhd/rhd_shortrad_bound01.f90 RHD short-char. boundary condition
hd/rhd/rhd_vis_module.F90 RHD tensor viscosity

hd/mhd/rhd_mhd_module.F90 MHD magnetic fields

rad/hdrad/rhd_rad_module.F90 RAD interface for:
rad/hdrad/MSrad3D.F90 RAD Matthias’ radiation-transport

long characteristics, local models

eos/f90/gasinter_routines.F90 EOS equation of state

opa/opta/cubit_module.f OPTA cubic interpolation
opa/opta/opta_par_module.f90 OPTA parameters for opacity routines
opa/opta/opta_routines.F90 OPTA opacity reading & interpolation
opa/opta/opta_dust.f90 OPTA dust opacity

hd/dust/rhd_dust_module.F90 DUST dust/molecule-formation master
hd/dust/dust_k3mon_module.f DUST 1- or 2-component dust model
hd/dust/dust_bins_module.f90 DUST multi-bin dust model
hd/dust/dust_momentc2_module.f DUST 4-moment C dust model
hd/dust/C2.INC DUST dust include file: C2 molecule
hd/dust/C2H.INC DUST dust include file: C2H molecule
hd/dust/C2H2.INC DUST dust include file: C2H2 molecule
hd/dust/CHPAR_CT.INC DUST dust include file
hd/dust/DINDEX.INC DUST dust include file
hd/dust/DKSPLINT.INC DUST dust include file
hd/dust/H2.INC DUST dust include file: H2 molecule

hd/chem/chem_rn_module.F90 CHEM chemical reaction network
hd/chem/chem_rn_dvode.F90 CHEM chemical reaction network: solver

hd/hion/f90/hion_main_module.f90 HION hydrogen ionization
hd/hion/f90/hion_io_module.f90 HION hydrogen ionization: I/O
hd/hion/f90/hion_def_module.f90 HION hydrogen ionization: definitions
hd/hion/f90/hion_dvode_module.f90 HION hydrogen ionization: solver
hd/hion/f90/hion_lineq_module.f90 HION hydrogen ionization: linear algebra
hd/hion/f90/hion_util_module.f90 HION hydrogen ionization: utility package
hd/hion/f90/hion_devel_module.f90 HION hydrogen ionization: developer kit
hd/hion/f90/edens_module.f90 HION electron densities

Table 3.2: List of all high-level modules: the table shows the file name with part of its path, the shortcut
for the directory, and its description.

3.2. FORTRAN FILES 31

Path and file Abb. Description

hd/rhdb/rhd_action_module.f90 RHDB control-parameter passing
hd/rhdb/rhd_box_module.F90 RHDB box handling
hd/rhdb/rhd_dat_module.F90 RHDB handling of averages
hd/rhdb/rhd_gl_module.f90 RHDB global parameters
hd/rhdb/rhd_io_module.F90 RHDB input/output
hd/rhdb/rhd_mean_module.f90 RHDB averaging routines
hd/rhdb/rhd_mpi_module.F90 RHDB MPI routines (under construction)
hd/rhdb/rhd_phys_module.f90 RHDB physics routines, source terms
hd/rhdb/rhd_prop_module.f90 RHDB box properties
hd/rhdb/rhd_rec_module.f90 RHDB reconstruction routines
hd/rhdb/rhd_sub_module.f90 RHDB additional routines

cons/f90/const_module.f90 CON physical & mathematical constants
mat/str/str_module.f90 STR string handling
time/f90/timing_module.F90 TIME timing routines

uio/f90/uio_base_module.f90 UIO I/O routines
uio/f90/uio_bulk_module.f90 UIO I/O routines
uio/f90/uio_filedef_module.f90 UIO I/O routines
uio/f90/uio_mac_module.F90 UIO I/O routines, machine-dependend part

Table 3.3: List of all low-level modules: the table shows the file name with part of its path, the shortcut
for the directory, and its description.

Path and file Abb. Description

hd/tweak/rhd_scale_module.F90 TWEAK scale parameters

hd/tweak/rhd_tweak_massreduction_module.F90 TWEAK reduce mass
hd/tweak/rhd_tweak_ppdamp_module.F90 TWEAK damp plane-parallel modes
hd/tweak/rhd_tweak_ppdamp12_module.F90 TWEAK damp plane-parallel modes
hd/tweak/rhd_tweak_ppdamp45_module.F90 TWEAK damp plane-parallel modes
hd/tweak/rhd_tweak_smallrhodamp_module.F90 TWEAK damp fluctuation at small densities
hd/tweak/rhd_tweak_smallrhodampmassred_module.F90 TWEAK damp fluctuations and change mass
hd/tweak/rhd_tweak_smallrhodampnurotinc_module.F90 TWEAK damp fluctuations and change rotation

Table 3.4: List of all tweak and sccale modules: the table shows the file name with part of its path, the
shortcut for the directory, and its description.

Path and file Abb. Description

hd/unitt/rhdut.F90 UT unit-test program

hd/unitt/UT_module.F90 unit-test routines

hd/rhd/rhd_baseradUT_module.f90 unit tests of basic radiative transfer
hd/rhdb/rhd_meanUT_module.f90 unit tests of averaging routines
hd/rhdb/rhd_recUT_module.f90 unit tests of reconstruction routines

Table 3.5: List of all unit-test modules (including the unit-test main program): the table shows the file
name with part of its path, the shortcut for the directory, and its description.

32 CHAPTER 3. CO5BOLD FILE OVERVIEW

3.3 Script files

The Linux scripts in Tab. 3.6 perform various tasks like producing the CO5BOLD (or UIO or gas2eos.exe)
Makefile, starting or aiding the compilation of the manual from the LATEX source, etc.

Path (and files) Description

bin/collect_for Collect all CO5BOLD files in a tar file for.tar.gz

bin/ls_for List all CO5BOLD Fortran files
bin/* Further utility scripts
doc/manual/extractmpi Create dummy Fortran file with MPI routine calls
doc/manual/for2tex_co5bold Transform CO5BOLD source code into LATEX
doc/manual/for2tex Transform Fortran source code into LATEX
doc/manual/mk_co5bold Produce PDF and HTML versions of the manual
eos/f90/conf/configure Produce the gas2eos.exe Makefile
eos/f90/job/j2/eos_r8tor4.sh Transform EOS tables from double to single precision
hd/rhd/conf/configure Produce the CO5BOLD Makefile, see Sect. 4.3
uio/bin/uiocat Concatenate files in UIO form, see Sect. 6.2.6.3
uio/bin/uioinfo Print machine-dependent UIO information, see Sect. 6.2.6.4
uio/bin/uiolook Print entry headers of file in UIO form, see Sect. 6.2.6.2
uio/f90/conf/configure Produce the UIO Makefile
uio/f90/conf/install Set some paths to install UIO

Table 3.6: List of Linux script files.

3.4 Documentation files

The files in Tab. 3.7 provide various information. Among them is the general README file and the
LATEX source of the CO5BOLD manual. PDF and HTML versions of the manual are not included and
have to be compiled individually (by executing mk_co5bold).

Path (and files) Description

README CO5BOLD installation instructions
README_MHD Short description of MHD parameters
doc/examples/ReadMe Description of some CO5BOLD parameter files
doc/examples/*.par Some CO5BOLD sample parameter files
doc/info/*.txt A mix of info files (release notes, todo list,. . .)
doc/manual/co5bold.tex The LATEX source of the manual
uio/man/man1/ man pages for UIO scripts, see Sect. 6.2.6

Table 3.7: List of documentation files.

Chapter 4

Compilation & installation

In this section, the installation procedure is outlined and compiler switches necessary to compile
CO5BOLD and to optimize its performance are described.

4.1 Quickstart: How to compile CO5BOLD

If you are going to install CO5BOLD on a machine with a “known” (to setup script and generated
Makefile) operating system and compiler (see Sections 4.3 and 4.5), then the procedure should be fairly
easy. The general compilation procedure is now:

tar -zxvf for.tar.gz

cd for/hd/rhd

mkdir -p YOUR_MACHINE

cd YOUR_MACHINE

ln -s ../conf/configure .

./configure

make

The compilation process is explained in more detail in Sect. 4.2. The configure script is described in
its header and in Sect. 4.3. The directory structure is shown in Tab. 3.1. All Fortran files are listed in
Tables 3.2 and 3.3.

4.2 Compilation procedure for CO5BOLD

The installation procedure has changed significantly since the early releases: now, there is a configure
script (see Sect. 4.3) that creates the complete (temporary) Makefile, which can be used to compile
CO5BOLD and produce the executable rhd.exe. The detailed installation procedure is:

1. Choose/create a proper base directory. This could be $HOME. Then the master directory will typi-
cally be $HOME/for – this is the default created by the tar file. However, you might prefer to put
the files into $HOME/CO5BOLD or $HOME/CO5BOLD/VersionNumber instead.

2. Put all source files and the configure script there. This will be done typically by expanding the
gzipped tar file for.tar.gz e.g. with

tar -zxvf for.tar.gz

(or by copying all files from an existing installation). On a restricted UNIX you might be forced to
use

gunzip for.tar.gz

tar -xvf for.tar

33

34 CHAPTER 4. COMPILATION & INSTALLATION

instead. Unpacking the tar file creates a sub directory for in the local directory (and possibly
overwrites existing files!). You get sub sub directories as described in Sect. 3.1 and files as listed in
Tables 3.2 and 3.3. See the Readme file ’for/README’.

3. Change with

cd for/hd/rhd

into the main directory.

4. Look at the existing sub directories, e.g. with

ls -og | grep "^d"

to see if you find one that fits your machine. The directory

for/hd/rhd/conf

should not be used. It contains only the configure script. But any other directory will do. If you
don’t like any of the existing directories – or there are none, create your own e.g. with

mkdir YOUR_MACHINE

Change into this directory with

cd YOUR_MACHINE

5. Check if there is a configure script or a link to it with

ls -og configure

which should give something like

lrwxrwxrwx 1 17 2014-01-07 15:15 configure -> ../conf/configure

If it is not there, create the link with

ln -s ../conf/configure .

6. Start the configure script to create the (first version of the) Makefile with

./configure

A partly colorized output can be generated with

./configure -c

This gives you a screen output like

Configuration script for CO5BOLD Makefile

===

No ./.configurerc file found.

Writing template ./.configurerc.

Checking default settings for environment variables:

4.2. COMPILATION PROCEDURE FOR CO5BOLD 35

No compiler specified : F90_COMPILER=

No parallelization requested, assuming default: F90_PARALLEL= scalar

No debugging requested, assuming default: F90_DEBUG = 0

No LHDrad module requested, assuming default: F90_LHDRAD = 0

No MSrad module requested, assuming default: F90_MSRAD = 0

No SHORTrad module requested, assuming default: F90_SHORTRAD= 1

No chem. module requested, assuming default: F90_CHEM = 0

No hion. module requested, assuming default: F90_HION = 0

No dust module requested, assuming default: F90_DUST = 0

No MHD module requested, assuming default: F90_MHD = 0

No TWEAK module requested, assuming default: F90_TWEAK = 0

No explicit machine specified, assuming default: F90_MACHINE = local

No explicit path specified, assuming default: F90_BASEPATH= /home/bf/for

List of control environment variables:

F90_COMPILER =

F90_PREFLAGS =

F90_POSTFLAGS=

F90_PARALLEL = scalar

F90_DEBUG = 0

F90_LHDRAD = 0

F90_MSRAD = 0

F90_SHORTRAD = 1

F90_CHEM = 0

F90_HION = 0

F90_DUST = 0

F90_MHD = 0

F90_TWEAK = 0

F90_MACHINE = local

-> MACHINE = i686

MACMODEL = Intel Pentium

F90_BASEPATH = /home/bf/for

System and compiler info:

Linux system with i686 architecture

PGI compiler

version=3.3-2

Compiler call:

pgf90 -byteswapio -fast -Mvect=sse -Mcache_align -Minfo=inline

Write compiler name and flags into file compiler_flags.info

New Makefile written..

A new ’Makefile’ is produced. An existing one is appended to ’Makefile_old’. Additionally, the
file ’compiler_flags.info’ is written which contains the compiler call in Fortran format.

7. Check the output of the configure script and the header of the new Makefile. You get an overview
over the existing environment variables that control the configure script (see Sect. 4.3) with

env | grep F90_

Obs.: at the beginning there might be none.

36 CHAPTER 4. COMPILATION & INSTALLATION

It is convenient to collect the control environment variables in the configure resource file
.configurerc. During the first call of configure in any directory, a template .configurerc

file is produced.

8. Look into the header (and if necessary the rest) of the configure script or into Sect. 4.3 or try

./configure -h

to find out how to change the environment variables to control the script. For instance, if you want
to enable debugging options, type:

export F90_DEBUG=1

Restart the configure script after every change in the control variables! With e.g.

export F90_MACHINE=dummy

export F90_PREFLAGS="-Oprettyfast +Qsomethingelse"

./configure

it is possible to specify all machine-dependent settings yourself (see Sect. 4.3.1.16 and Sect. 4.3.1.3).
This is useful when dealing with a compiler hitherto unknown to the configure script.

9. Start the compilation with

make

to produce the executable rhd.exe. Symbolic links are created that point from the current directory
to each source-code file needed to compile CO5BOLD in its requested configuration.

A simple sample installation might look like the following (the sub directory ’for’ is put directly into
the home directory).

--- Choose the base directory ---

cd $HOME

--- Put the tar file there ---

...

--- Expand the tar file ---

tar -zxvf for.tar.gz

--- Go into (default) master directory ---

cd for/hd/rhd/YOUR_MACHINE

--- Activate OpenMP und MSrad radiation transport ---

export F90_PARALLEL=openmp

export F90_MSRAD=1

--- Start the configure script to produce the Makefile ---

./configure

--- Compile using the Makefile ---

make

echo ’Voila!’

4.3. CONFIGURE SCRIPT 37

If you want to compile in a directory in a completely different place (not in a sub directory of for
as described above), you have to set the environment variable F90_BASEPATH (see Sect. 4.3.1.17) to make
the paths to the source files known to the configure script. That might look like

mkdir SOME_REMOTE_PLACE

cd SOME_REMOTE_PLACE

export F90_BASEPATH=$HOME/for

ln -s $F90_BASEPATH/hd/rhd/conf/configure .

./configure

The variable F90_BASEPATH also has to be set explicitly if the main directory for should have another
name. Renaming the sub-directories with the source files is not a good idea – it requires modifications
of the configure script itself.

If you install a new CO5BOLD version on top of an older one it might be safer (particularly, if Fortran
file names have change), to remove all earlier generated temporaty links and files with

make removeall

so that the entire sequence looks like:

./configure

make removeall

make

If you want to remove temporary object and info files after a successful compilation, you could use

make clean

as in:

./configure

make

make clean

4.3 Configure script

The configure script produces a Makefile.

It is controlled by environment variables (see below). It tries to use reasonable default values if they
are not set (properly). In the script the machine type is determined with ‘uname -m‘. According to the
control variables and the machine architecture the compiler name and its compiler flags are composed.
These are written into the header of a Makefile which is produced in the end. An existing Makefile is
appended to

Makefile_old.

Additionally, the compilation command is written into the file

’compiler_flags.info’

in a form ready to be included in a Fortran program.

4.3.1 Control environment variables

The environment variables that control the script are listed in the following. It is convenient to put them
into the configure resource file .configurerc that is read by the configure script.

38 CHAPTER 4. COMPILATION & INSTALLATION

4.3.1.1 F90 COLOR

Activate color output of the configure script:

• 0: standard black & white output

• 1: color output

4.3.1.2 F90 COMPILER

Fortran compiler, e.g.:

• ’’: a machine-dependent default is chosen individually for each architecture

• f90: general default

• gfortran: GNU compiler

• ifort: Intel compiler

See Sect. 4.6 for a more complete list and further details.

4.3.1.3 F90 PREFLAGS

Compiler flags to be put at the beginning of the list. Usually, the list of compiler flags produced by the
configure script should be pretty complete. But you might want to add special switches like ’-Bstatic’ to
enforce static linking of libraries.

• ’’: no extra flags

4.3.1.4 F90 POSTFLAGS

Compiler flags to be put at the end of the list. Usually, the list of compiler flags produced by the configure
script should be pretty complete. However, you might want to overwrite some settings. This can be done
by setting this variable to a none-empty value because typically a compiler should interpret the flags
from left to right.

• ’’: no extra flags

4.3.1.5 F90 PARALLEL

Parallelization scheme:

• scalar: no parallelization (default)

• openmp: OpenMP (appropriate for CO5BOLD)

• auto: auto-parallelization (not implemented for all machines)

4.3.1.6 F90 DEBUG

Debugging level:

• 0: no extra debugging information produced, full optimization is chosen (default)

• 1: standard debugging mode (typically switch ’-g’ instead of ’-fast’)

• 2: other debugging (or array checking) modes possible if implemented for the requested machine

4.3. CONFIGURE SCRIPT 39

4.3.1.7 F90 OPTIMIZE

Optimization:

• 0: no explicit optimization (default if F90_DEBUG=1)

• 1: try to find automatically sensible optimization flags. That’s the default if F90_DEBUG=0. How-
ever, often it is better to specify the optimization flags explicitly

• -ipo -O3 -xHost (example): set the optimization flags by hand. This is a better way to specify
the optimization than using F90_POSTFLAGS

4.3.1.8 F90 LHDRAD

LHDrad radiation transport:

• 0: do not activate (compile and link) this module (default)

• 1: activate this radiation transport module

4.3.1.9 F90 MSRAD

MSrad radiation transport:

• 0: do not activate (compile and link) this module (default)

• 1: activate this radiation transport module

4.3.1.10 F90 SHORTRAD

SHORTrad radiation transport:

• 0: do not activate (compile and link) this module (default)

• 1: activate this radiation transport module

4.3.1.11 F90 CHEM

CHEM module (chemical reaction networks):

• 0: do not activate (compile and link) this module (default)

• 1: activate this source step module

Setting this variable to 1 will set F90_DUST=1. The compiler is then called with -Drhd_chem01.

4.3.1.12 F90 HION

HION module (time-dependent hydrogen ionization):

• 0: do not activate (compile and link) this module (default)

• 1: activate this source step module

Setting this variable to 1 will set F90_DUST=1. The compiler is then called with -Drhd_hion01.

4.3.1.13 F90 DUST

DUST module:

• 0: do not activate (compile and link) this module (default)

• 1: activate this source step module

If this variable is set to 1 the compiler is called with -Drhd_box_quc01=1, see Sect. 4.4.1.6.

40 CHAPTER 4. COMPILATION & INSTALLATION

4.3.1.14 F90 MHD

MHD module:

• 0: do not activate (compile and link) this module (default)

• 1: activate this magnetohydrodynamics module (MHD HLL solver)

If CO5BOLD is compiled with the MHD module, your start model should include magnetic fields, oth-
erwise zero magnetic fields are created and used. In the latter case, the magnetic field arrays are not
written into the output files.

4.3.1.15 F90 TWEAK

TWEAK module:

• 0: do not activate (compile and link) this module (default)

• 1: activate the TWEAK module rhd_tweak_module.F90

• rhd_tweak_name_module: activate the TWEAK module with this name

A TWEAK module is a user-provided set of routines performing some simple but non-standard task.

4.3.1.16 F90 MACHINE

Explicit machine specification. This is usually not necessary, use ’local’ or ” instead.

• ’’: local machine

• sun4u: Sun

• . . . : See the header of the configure script for an up-to-date list

• local: local machine (default)

• dummy: do not use any machine-dependent flags but use module selections

• empty: compiler flags are composed from F90_PREFLAGS and F90_POSTFLAGS only

4.3.1.17 F90 BASEPATH

Path for the CO5BOLD base directory.

• ’’: the configure script tries to determine the base-directory name automatically (default). This
should work if the local directory is located somewhere below .../hd/rhd/

• otherwise: this string is used as base directory name (e.g. /home/user/for)

Some examples can be found in Sect. 4.2.

4.4 Compiler macros

Some of the modules of the CO5BOLD code (with suffix “.F90”) employ compiler macros to switch
between code versions during compile time. Typically you define at least one of the three switches
rhd_r01, rhd_r02, or rhd_r03 to choose a radiation transport module. The others have reasonable
default values. To find the combination with the optimal performance, you should look into Sect. 4.5

The macros are sorted into different categories:
Some activate a certain feature (like a radiation transport module or the dust module). They have to

be selected by the user (typically via environment variables and the configure script, see Sect. 4.3) each
time the code is compiled for a certain purpose.

4.4. COMPILER MACROS 41

Other macros are meant to improve the performance by offering the choice between e.g. different loop
structures or case distinctions. These macros are set by the configure script to the best knowledge of the
author(s). Ideally, they should be checked and modified if necessary each time CO5BOLD is compiled
on a new machine. It should be save to modify these settings: the results between runs with different
settings should only differ slightly due to round-off errors.

Some macros select between different numerical approximations. A change here should be visible in a
(more or less drastic) change of the results of a simulation. Usually, the default values should be accepted.
Other settings typically only exist to allow the comparison with older versions of CO5BOLD or because
there are new developments going on which have not yet managed to become the default.

A couple of macros only activate timing measurements and result in additional output . Some of them
are not thread-save und should only be activated for runs on one thread (as done by the configure script).
It is always save to switch any of them off (by removing or undefining them).

The macros in the category test mark parts of code under development. The default values should
only be changed with great care (typically by the author of that code segment). The configure script
does not touch these settings.

4.4.1 General

4.4.1.1 timing c factor

(“timing count factor”) in timing_module.F90.
Category: account for property of machine.
To produce the timing statistics printed at the end of a simulation run the standard Fortran routine
SYSTEM_CLOCK is used. The macro timing_c_factor specifies by how much the count rate of this
routine is reduced when storing its count value. This does not prevent all overflows but can make the
output much more useful. Values:

• 1: (default) count rate of SYSTEM_CLOCK is used directly.

• otherwise: e.g. 1000, count rate of SYSTEM_CLOCK is reduced by this factor.

By a proper choice of this factor the timing measurements of individual routines can be made meaningful:
the reduction of the count rate prevents overflows due to the addition of several measurements. An
overflow during an individual measurement can not be prevented. Therefore, the count rate for the entire
program still tends to produce overflows.

4.4.1.2 timing c range

(“timing counter range”) in timing_module.F90.
Category: account for property of machine.
To produce the timing statistics printed at the end of a simulation run the standard Fortran routine
SYSTEM_CLOCK is used. The macro timing_c_range specifies the number of digits (the “range”) used for
the integers storing the counters. The value appears in the code e.g. in
integer(kind=selected_int_kind(timing_c_range)) :: count_total.
Fortran standard is the use of 4-byte integers. However, that is often not sufficient and can lead to over-
flows. Many compilers can use longer integers, though. That can be tried by setting the timing_c_range
not to 9 (the default) but e.g. to 15. If it works, overflows are essentially ruled out. If it does not work,
the compilation stops with an error message. Values:

• 9: (default) use standard 4-byte integers for timing counters.

• 15 or otherwise: use this number for the range of Fortran integers

By a proper choice of this number all the timing measurements can be made meaningful, even for long
runs on machines with fast counters.

42 CHAPTER 4. COMPILATION & INSTALLATION

4.4.1.3 timing r type

(“timing rate type”) in timing_module.F90.
Category: account for property of machine.
During a CO5BOLD run, the total execution time is measured and printed after each time step. The
type of clock used can be chosen with:

• 1: Use call system_clock() (default).

• 2: Use call Date_and_Time().

• 3: Use t=etime() (Sun version, used in most cases).

• 4: Use call etime() (gfortran version).

• 5: Use call tremain() (Cray version).

• 6: Use call clock() (Hitachi version).

4.4.1.4 rhd box arrays01

(“rhd box arrays 01”) in rhd_box_module.F90.
Category: performance enhancement.
Switch to choose between the (“classical”) use of pointer arrays within the box structure to store arrays,
or the (“new”) version with allocatable arrays, that is potentially faster. Values:

• 0: classical pointer arrays (default).

• 1: new allocatable arrays (probably faster)

4.4.1.5 rhd box grav01

(“rhd box gravitation 01”) in rhd_box_module.F90.
Category: feature activation.
Switch to activate the array for the gravitational potential in the box structure. If the switch is set
to 1, a 3D array for the potential is created, copied, removed, ... There is no module to compute the
gravitational potential, yet. Therefore the entire thing has no practical value, yet. Values:

• 0: (default) no handling of array.

• 1: array handling activated.

4.4.1.6 rhd box quc01

(“rhd box quantity centered 01”) in rhd_box_module.F90 and rhd.F90.
Category: feature activation.
CO5BOLD is able to handle a number of further quantities (quc: “quantity centered”) in addition to
the basic hydrodynamics quantities (ρ, ei, ...) if this compiler switch is activated. These additional
quantities can be e.g. densities of dust distribution moments or densities of molecules. They are required
for the treatment of chemical reaction networks and time-dependent hydrogen ionization. For the latter
the quc arrays contain the number densities of the atomic level populations. For the chemical reaction
network, the arrays contain the species number densities in cm−3 and with headers following this example:
”Number density of H2”. Values:

• 0: (default) no handling of additional quantities (density arrays).

• 1: handling of additional density arrays is activated.

To actually include dust formation in a simulation, it is necessary to

4.4. COMPILER MACROS 43

1. set the switch -Drhd_box_quc01=1 during compilation (this is done by the configure script if the
environment variable F90_DUST is set to 1, see the description of the variable in Sect. 4.3.1.13),

2. put arrays specifying the initial conditions of the additional density into the start model (as
real quc001, real quc002, ...),

3. select a proper model describing dust (or molecule) formation in the parameter file (with
character dustscheme).

4.4.1.7 rhd box bmag01

(“rhd box b magnetic 01”) in rhd_box_module.F90 and rhd.F90.
Category: feature activation.
CO5BOLD can handle magnetic field arrays if this compiler switch is set. Values:

• : (default) no handling of magnetic field arrays.

• : handling of magnetic field arrays is activated.

To actually account for magnetic fields in a simulation, it is necessary to

1. set the switch -Drhd_box_bmag01=1 during compilation (this is done by the configure script if the
environment variable F90_MHD is set to 1, see Sect. 4.3),

2. put arrays specifying the initial conditions of the boundary-centered magnetic-field arrays into the
start model (as real bb1, real bb2, real bb3),

3. select an hydrodynamics scheme that is able to handle magnetic fields in the parameter file (with
character hdscheme).

4.4.2 Input/output with UIO

4.4.2.1 uio switch system l01

(“uio switch system list 01”) in uio_mac_module.F90.
Category: I/O, account for property of machine.
Sometimes, it is useful to have in the header of a UIO file information about the system that wrote the
file. How Fortran gets this information depends on the machine. Values:

• 0: Read information from file uioenvfile.txt. Don’t write or delete the file.

• 1: Call external function system() to produce the file uioenvfile.txt. Read and delete the file
(default).

• 2: Call routine system() to produce uioenvfile.txt. Read and delete the file.

• 3: Call external routine HF_SH() to produce uioenvfile.txt. Read and delete it.

• 4: Call external function uname() to get system information.

• 5: Call external routine pxfuname() to get system information.

4.4.2.2 uio switch native l01

(“uio switch native list 01”) in uio_mac_module.F90.
Category: I/O, account for property of machine.
All machines can read and write their native format – only that it might differ from one machine to the
other. It is there, if needed, but should be avoided in practise. Values:

• 1: Get information about word lengths from uio_deform() (default).

• 0,2: Set word lengths explicitly.

44 CHAPTER 4. COMPILATION & INSTALLATION

4.4.2.3 uio switch ieeebe l01

(“uio switch ieee big endian list 01”) in uio_mac_module.F90.
Category: I/O, account for property of machine.
This is the standard for files read of written by CO5BOLD. All machine/compiler combinations should
support it – either natively or via some conversion process. Values:

• 0: Don’t include this conversion type (default).

• 1: Get information about word lengths from uio_deform().

• 2: Set word lengths explicitly.

4.4.2.4 uio switch ieeele l01

(“uio switch ieee little endian list 01”) in uio_mac_module.F90.
Category: I/O, account for property of machine. Values:

• 0: Don’t include this conversion type (default).

• 1: Get information about word lengths from uio_deform().

• 2: Set word lengths explicitly.

4.4.2.5 uio switch ieee l01

(“uio switch ieee list 01”) in uio_mac_module.F90.
Category: I/O, account for property of machine.
This is a fallback for reading of UIO files, that should be activated for compilation if either of the Endian
formats above is allowed. It should not be used for writing. Values:

• 0: Don’t include this conversion type (default).

• 1: Get information about word lengths from uio_deform().

• 2: Set word lengths explicitly (4-byte words).

• 3: Set word lengths explicitly (8-byte words).

4.4.2.6 uio switch crayxmp l01

(“uio switch cray x-mp list 01”) in uio_mac_module.F90.
Category: I/O, account for property of machine.
This is the native format on old Cray X-MP and Cray TS machines. Values:

• 0: Don’t include this conversion type (default).

• 1: Get information about word lengths from uio_deform().

4.4.2.7 uio switch open l01

(“uio switch open list 01”) in uio_mac_module.F90.
Category: I/O, account for property of machine.
Many compilers support a transparent conversion between number representations during reading and
writing. This is not a Fortran standard, though, and has to be activated in different ways:

• 0: No conversion (default).

• 1: Use the’convert keyword in the open() statement (Intel and gfortran compilers on Linux
machines, standard compiler on Dec Alphas).

• 2: Use asnunit() Cray X-MP style.

• 3: Use asnunit() Cray TS style.

4.4. COMPILER MACROS 45

4.4.3 Equation of state

4.4.3.1 gasinter l01

(“gas interpolation l01”) in gasinter_routines.F90.
Category: performance enhancement.
This switch determines how temporary arrays are handled and loops are split to improve performance.
Values:

• 0: (old default) Temporary coefficient arrays are actually copied.

• 1: Temporary coefficient arrays just get a pointer link into the big arrays.

• 2: No temporary coefficient arrays.

• 3: Experimental; testing only (avoid!).

• 4: (default) Split inner loop into three to give better vectorization.

4.4.3.2 gasinter l02

(“gas interpolation l02”) in gasinter_routines.F90.
Category: performance enhancement.
This switch determines how coefficient arrays are handled to improve performance. Values:

• 0: Coefficients are stored as pointer arrays (old version).

• 1: (default) Coefficients are stored as allocatable arrays.

4.4.4 Opacity

4.4.4.1 opta switch l01

(“opacity table switch l01”) in opta_switch_routines.F90.
Category: performance enhancement.
This switch determines how arrays are handled and loops are split to improve performance. Values:

• 0: 3D-array single-loop scheme (old default)

• 1: 1D-array single-loop scheme

• 2: 3D-array three-loop scheme (default)

• 3: 1D-array three-loop scheme

4.4.5 Hydrodynamics (Roe solver)

4.4.5.1 rhd hyd gravcorr p01

(“rhd hydrodynamics gravitation correction parameter 01”) in rhd_hyd_module.F90.
Category: selection of approximation.
This parameter controls the way the Roe solver handles the source terms due to gravity. A different choice
results in different simulation results and not just in slightly faster (or slower) code. The problem is that
the original Roe solver interpretes the pressure gradient in a hydrostatic stratification a fluctuation due
to shock waves. In case of strong stratification this can lead to weird effects. With activated correction
the Roe solver treats only the deviations from a hydrostatic stratification as due to waves (or shocks).
Several correction formulas have been tried. The latest is the recommended default. Values:

• 0: No pressure correction terms in Roe solver.

• 1: Simple correction with rhomean, no new average pressure.

46 CHAPTER 4. COMPILATION & INSTALLATION

• 2: Simple correction with rhomean, new average pressure.

• 3: Correction with local rho, limited, new average pressure.

• 4: Correction with local rho, new (different formula) average pressure.

• 5: (default) Correction with local rho, new limit, new average pressure.

• 6: Modification of 5 with different geometry factors in case of non-equidistant grid.

4.4.5.2 rhd hyd entropyfix p01

(“rhd hydrodynamics entropy fix parameter 01”) in rhd_hyd_module.F90.
Category: performance enhancement.
The entropy fix can be done in one of two ways to get optimum performance (with essentially the same
results). Values:

• 0: (default) “if. . . then. . . else” construction

• 1: use a mask and the signum function

4.4.5.3 rhd hyd upwind p01

(“rhd hydrodynamics upwind parameter 01”) in rhd_hyd_module.F90.
Category: performance enhancement.
The determination of the upwind direction can be done in one of two ways to get optimum performance
(with essentially the same results). Values:

• 0: (default) “if. . . then. . . else” construction

• 1: use a mask and the signum function

4.4.5.4 rhd roe1d flux l01

(“rhd roe 1 dimension flux loop 01”) in rhd_hyd_module.F90.
Category: performance enhancement.
This switch allows to choose between various ways of computing the upwind-centered Roe states. Values:

• 0: Use upwind-index arrays in all Roe-state computations. Do it in one step (old default).

• 1: Use if-then-else-constructs in all Roe-state computations. Do it in one step (default, recom-
mended).

• 2: Use upwind-index arrays in all Roe-state computations. Do it in two steps.

• 3: Use if-then-else-constructs in all Roe-state computations. Do it in two steps.

4.4.5.5 rhd bound t01

(“rhd bound timing 01”) in rhd_hyd_module.F90.
Category: additional output.
Produce timing information for “inner boundary” routine (central potential) or lower and upper boundary
routines (constant gravitation). It can be used together with OpenMP. Values:

• undefined: (default) no timing information.

• defined: call subroutines to measure elapsed time.

4.4. COMPILER MACROS 47

4.4.5.6 rhd roe1d flux t01

(“rhd roe 1 dimension flux timing 01”) in rhd_hyd_module.F90.
Category: additional output.
Produce timing information for the routine which computes the Roe fluxes. It should not be used in
conjunction with OpenMP. Values:

• undefined: (default) no timing information

• defined: call subroutines to measure elapsed time

4.4.5.7 rhd roe1d step t01

(“rhd roe 1 dimension step timing 01”) in rhd_hyd_module.F90.
Category: additional output.
Produce timing information for the routine which performs the Roe step. It should not be used in
conjunction with OpenMP. Values:

• undefined: (default) no timing information

• defined: call subroutines to measure elapsed time

4.4.6 Hydrodynamics (tensor viscosity)

4.4.6.1 rhd vis density p01

(“rhd viscosity density parameter 01”) in rhd_vis_module.F90.
Category: selection of approximation.
Choose formula for density average at cell boundary in tensor-viscosity routines. Values:

• 0: rhomean=min(rholeft,rhoright)

• 1: (default) rhomean=0.5 * (rholeft + rhoright)

4.4.6.2 rhd vis t01

(“rhd viscosity timing 01”) in rhd_vis_module.F90.
Category: additional output.
Produce timing information for 2D/3D tensor-viscosity routines. It should not be used in conjunction
with OpenMP. Values:

• undefined: (default) no timing information

• defined: call subroutines to measure elapsed time

4.4.7 Radiation transport

4.4.7.1 rhd r01

(“rhd radiation 01”) in rhd.F90.
Category: feature activation.
Switch to include LHDrad radiation transport module. It uses long characteristics and is restricted to
an equidistant grid and open boundaries at all surfaces (old “supergiant module”). Values:

• undefined: (default) LHDrad routines are deactivated.

• 1: LHDrad routines are recognized by the compiler.

48 CHAPTER 4. COMPILATION & INSTALLATION

4.4.7.2 rhd r02

(“rhd radiation 02”) in rhd.F90.
Category: feature activation.
Switch to include MSrad radiation transport module. It uses long characteristics. The lateral boundaries
have to be periodic. Top and bottom can be closed or open (“solar module”). Values:

• undefined: (default) MSrad routines are deactivated.

• 1: MSrad routines are recognized by the compiler.

4.4.7.3 rhd r03

(“rhd radiation 03”) in rhd.F90.
Category: feature activation.
Switch to include SHORTrad radiation transport module. It uses short characteristics and is restricted
to an equidistant grid and open boundaries at all surfaces (new “supergiant module”). Values:

• undefined: (default) SHORTrad routines are deactivated.

• 1: SHORTrad routines are recognized by the compiler.

4.4.7.4 rhd rad3d toray l01

(“rhd radiation 3 dimensions to ray loop 01”) in rhd_lhdrad_module.F90,
Category: performance enhancement.
There might be a performance gain by splitting the main loop in routine rhd_rad3d_toray into three
separate loops. Typically, one big loop is to be preferred. Values:

• undefined: (default) One big loop

• defined: Three smaller loops

4.4.7.5 rhd rad3d fromray l01

(“rhd radiation 3 dimensions from ray loop 01”) in rhd_lhdrad_module.F90,
Category: performance enhancement.
There might be a performance gain by splitting a big loop in routine rhd_rad3d_fromray into two
separate loops. Typically, one big loop is to be preferred. Values:

• undefined: (default) One big loop

• defined: Two smaller loops

4.4.7.6 rhd rad3d r02

(“rhd radiation 3 dimensions radiation 02”) in rhd_lhdrad_module.F90,
Category: test.
Module rhd_lhdrad_module contains a routine for the handling of periodic boundaries. It is in an
experimental state and is deactivated by default. Values:

• undefined: (default) Skip routine rhd_rad3d_dirper during compilation

• defined: Compile routine rhd_rad3d_dirper

4.4. COMPILER MACROS 49

4.4.7.7 rhd rad3d solve t01

(“rhd radiation 3 dimensions solve timing 01”) in rhd_lhdrad_module.F90,
Category: additional output.
Produce timing information for the routines which solves the 1D radiation transport equation along single
ray. This routine is called very frequently. The timing measurement might slow it down somewhat. It
should not be used in conjunction with OpenMP. Values:

• undefined: (default) no timing information

• defined: call subroutines to measure elapsed time

4.4.7.8 rhd rad3d dir t01

(“rhd radiation 3 dimensions direction timing 01”) in rhd_lhdrad_module.F90,
Category: additional output.
Produce timing information for the routines which solves the radiation transport equation for one direc-
tion field. The timing measurement are called very frequently and might slow down the code. It should
not be used in conjunction with OpenMP. Values:

• undefined: (default) no timing information

• defined: call subroutines to measure elapsed time

4.4.7.9 rhd rad3d step t01

(“rhd radiation 3 dimensions step timing 01”) in rhd_lhdrad_module.F90,
Category: additional output.
Produce timing information with main 3D radiation transport routine. It can be used together with
OpenMP and should cause no noticeable performance loss. Values:

• undefined: (default) no timing information

• defined: call subroutines to measure elapsed time

4.4.7.10 rhd shortrad operator l01

(“rhd short-characteristics radiation operator loop 01”) in rhd_shortrad_module.F90.
Category: performance enhancement, selection of approximation.
Choose type of short characteristics operator. The operators usually come in pairs (1/2, 3/4, 5/6). There
is a development from 1/2 over 3/4 to 5/6 towards higher stability. Both members of each pair should
do the same operation but use different ways to do a case distinction. The ’even’ operator has in some
cases the better performance. But the ’odd’ operator might be saver to use. Values:

• 0: simple test operator, fast but results are utterly useless!

• 1: case distinction with “if..then..else” construct.

• 2: case distinction with masks (weights 0.0 or 1.0).

• 3: case distinction with “if..then..else” construct, slope reduction of source function.

• 4: case distinction with masks (weights 0.0 or 1.0), slope reduction of source function.

• 5: (default) case distinction with “if..then..else” construct, modified slope reduction of source func-
tion.

• 6: (old default) case distinction with masks (weights 0.0 or 1.0), modified slope reduction of source
function.

• 8: test version.

50 CHAPTER 4. COMPILATION & INSTALLATION

4.4.7.11 rhd shortrad operator l02

(“rhd short-characteristics radiation operator loop 02”) in rhd_shortrad_module.F90.
Category: performance enhancement.
Select the way the short characteristics operator is accessed. Values:

• 0: (old default) The routine with the short characteristics operator is called within a loop and
should be inlined.

• 1: (default) The program fragment with the short characteristics operator is included. No inlining
necessary.

4.4.7.12 rhd shortrad dtauop l01

(“rhd short-characteristics radiation delta tau operator loop 01”) in rhd_shortrad_module.F90.
Category: performance enhancement.
Choose type of short characteristics tau coupling operator. Values:

• 1: case distinction with “if..then..else” construct, default if rhd_shortrad_operator_l01=1,3,5.

• 2: case distinction with masks (weights 0.0 or 1.0), default if rhd_shortrad_operator_l01=2,4,6.

4.4.7.13 rhd shortrad dtauop l02

(“rhd short-characteristics radiation delta tau operator loop 02”) in rhd_shortrad_module.F90.
Category: performance enhancement.
Select the way the operator for the tau coupling (short characteristics module) is accessed. Values:

• 0: (old default) The routine with the tau coupling operator is called within a loop and should be
inlined.

• 1: (default) The program fragment with the tau coupling operator is included. No inlining necessary.

4.4.7.14 rhd shortrad formal l01

(“rhd short-characteristics radiation formal loop 01”) in rhd_shortrad_module.F90.
Category: performance enhancement.
Select version of loop splitting for exp(-dtau) computation. Values:

• 0: (default) dtauhalf, exp_mdtauhalf, expl2t_mdtauhalf are computed in a single loop

• 1: (dtauhalf, exp_mdtauhalf), (expl2t_mdtauhalf) are computed in separate loops. This pre-
vents the SUN1 machine (Sunfire, Solaris, Forte 6.2) from doing some performance degrading
optimization

4.4.7.15 rhd shortrad dir1 l01

(“rhd short-characteristics radiation direction 1 loop 01”) in rhd_shortrad_module.F90.
Category: performance enhancement.
Choose routine version for rays in x1 direction. Values:

• 0: (old default) Use routine with permuted indices for rays in x1 direction. In this case the innermost
loop index is the third array index. The transposition of arrays is not needed but some machines
(e.g. SUN1) do not like this index arrangement.

• 1: (default) Transpose arrays and use routine rhd_shortrad_dir3 for rays in x1 direction. The
extra step for the transposition of some arrays (and the reverse procedure) needs some time. But
now the routine with the optimum index ordering can be used.

• 2: Transpose arrays serially and use routine rhd_shortrad_dir3 for rays in x1 direction. The extra
step for the transposition of some arrays (and the reverse procedure) needs some time. But now
the routine with the optimum index ordering can be used.

4.4. COMPILER MACROS 51

4.4.7.16 rhd shortrad dir l02

(“rhd short-characteristics radiation direction loop 02”) in rhd_shortrad_module.F90.
Category: performance enhancement, OpenMP.
Determine position of PARALLEL statement relative to outer loop in rhd_shortrad_dirX. Both settings
give the same results but might show a different performance on a specific machine. Values:

• 0: (old default) PARALLEL statement inside of outer loop.

• 1: (default) PARALLEL statement outside of outer loop.

4.4.7.17 rhd shortrad lambda l01

(“rhd short-characteristics radiation lambda loop 01”) in rhd_shortrad_module.F90.
Category: feature activation.
Handling of extra arrays to allow partially implicit Lambda* iteration. Values:

• 0: (default) Only fully implicit Lambda* iteration allowed (or fully explicit treatment).

• 1: Also partially implicit Lambda* iteration allowed.

4.4.7.18 rhd shortrad formal t01

(“rhd short-characteristics radiation formal timing 01”) in rhd_shortrad_module.F90.
Category: additional output.
Produce timing information for routine which gives the formal solution of the radiation transport equation
with the help of short characteristics. It can be used together with OpenMP and should cause no
noticeable performance loss. Values:

• undefined: (default) no timing information

• defined: call subroutines to measure elapsed time

4.4.7.19 rhd shortrad step t01

(“rhd short-characteristics radiation step timing 01”) in rhd_shortrad_module.F90.
Category: additional output.
Produce timing information for main short characteristics routine. It can be used together with OpenMP
and should cause no noticeable performance loss. Values:

• undefined: (default) no timing information

• defined: call subroutines to measure elapsed time

4.4.7.20 MSrad raytas

(“Matthias Steffen radiation ray tau s”) in MSrad3D.F90.
Category: performance enhancement.
Values:

• 0: (default) Loop with IF..THEN..ELSE

• 1: Loop with ABS,SIGN

• 2: Loop with MIN,MAX

52 CHAPTER 4. COMPILATION & INSTALLATION

4.4.8 Obsolete macros

4.4.8.1 IDF

(“Integer Delta Flux”) in rhd_hyd_module.F90.
Category: performance enhancement.
Number of padding cells for flux-like variables. This number was introduced to check whether the increase
of the size of vectors for flux-like quantities (defined at cell boundaries) can improve the performance
(especially on a CRAY machine). The gain is marginal (if present at all). The parameter is usually set
to zero or left undefined. Values:

• 0: (default) no padding cells

• 1,2,3,. . . : extra padding cells

This switch is not recognized anymore.

4.4.8.2 rhd hyd roe1d l01

(“rhd hydrodynamics roe 1 dimension loop 01”) in rhd_hyd_module.F90.
Category: performance enhancement.
The computation of the Roe fluxes can be done by either of two sets of routines to find the set which
gives optimum performance (with essentially the same results). Values:

• 0: (default) lots of small routines acting on scalars, inlining needed, cache reuse is optimized

• 1: routines acting on arrays, more temporary arrays necessary, vectorization is easier

This switch is not recognized anymore.

4.4.8.3 rhd roe1d slope l01

(“rhd roe 1 dimension slope loop 01”) in rhd_hyd_module.F90.
Category: feature activation.
When this compiler switch is set, a new extra stabilization mechanism can be activated: If one of the
reconstruction methods VanLeer, Superbee, or PP (see Sect. 7.1.8.4) is activated, the slope can be reduced
(by averaging with the results from a MinMod reconstruction) by setting c_slopered (see Sect. 7.1.9.7)
to a positive non-zero value. This can improve the stability without significantly reducing the effective
numerical resolution. Switch values:

• 0: (default) no slope reduction.

• 1: slope reduction in case of expansion wave.

• 2: slope reduction in case of strong density contrast.

This switch is not recognized anymore.

4.5 Optimization, compiler switches

In this section some mandatory or useful compiler flags are described. These have different functions:

• Enable necessary macro processing/expansion for the .F90 files.

• Force proper handling of binary I/O.

• Choose module for radiative transfer.

• Activate module for dust formation and/or magnetic field transport.

• Enable parallelization with OpenMP directives.

4.5. OPTIMIZATION, COMPILER SWITCHES 53

• Choose a version of a subroutine or loop which is optimized for a specific architecture.

• Tell the compiler if and what to inline.

• Improve the general performance.

4.5.1 OpenMP settings

The OpenMP specifications and many related links can be found on the OpenMP.org homepage.
Overviews can be found in “Shared Memory Programming With OpenMP” (M. D. Jones 2013)” and
“Intel Parallel Studio XE. Facing the Multicore-Challenge II” (Hans Pabst 2011). A complete online
tutorial is “Parallel Computing and OpenMP Tutorial” (Shao-Ching Huang 2013).

To activate OpenMP in the CO5BOLD executable you have to set the corresponding environment
variable (see 4.3.1.5) before calling the configure script, like

export F90_PARALLEL=openmp

./configure

make

This will insert the corresponding compiler switch (e.g. -openmp, -omp, -mp,. . . confer the following
sections) into the compiler calls in the Makefile (see Sect. 4.3).

The calls to the timing routines that would be executed in parallel are removed by (not) setting the
appropriate compiler macros (see Sect. 4.4).

In addition, the switch rhd_shortrad_dir_l02 (see Sect. 4.4.7.16) might be set, according to expe-
rience about performance enhancements.

The user has to find optimum values for the parameters n_hydcellsperchunk (for the Roe and the
HLLMHD solver module, see Sect. 7.1.8.9) and n_viscellsperchunk (for the tensor-viscosity module, see
Sect. 7.1.11.17) to optimize the size of the chunk given to one thread per time. For the Roe solver of the
hydrodynamics module, there exist also the optional parameters n_hydcellsperchunk2 (see Sect. 7.1.9.1)
and n_hydcellsperchunk3 (see Sect. 7.1.9.2).

For several modules the environment variable OMP_SCHEDULE can be set (before running CO5BOLD)
to control its OpenMP scheduling behavior. Important parallel loops in the SHORTrad module have
a SCHEDULE(RUNTIME) modifier that allows this external control. The old default is achieved by not
defining the variable or by setting

export OMP_SCHEDULE="STATIC,1"

On some machines (e.g. an older Intel Xeon with Linux and PGI compiler), a dynamic scheduling activated
with

export OMP_SCHEDULE="DYNAMIC,1"

is advantageous. The size of the individual chunks might be set to larger values than 1 (in
the examples above). The optimal value has to be found empirically. A good starting point is
number_of_grid_points_in_1D/Number_of_treads, which gives for a model with 1713 grid points on
a 4-processor machine

export OMP_NUM_THREADS=4

export OMP_SCHEDULE="STATIC,43"

However, usually the general default

export OMP_SCHEDULE="STATIC"

is a good choice. The number of threads should equal the number of available processors and has to be
set at run-time with the environment variable OMP_NUM_THREADS, e.g. with

http://openmp.org/wp
http://ccr.buffalo.edu/content/www/ccr/support/training-resources/tutorials/advanced-topics--e-g--mpi--gpgpu--openmp--etc--/2011-09---practical-issues-in-openmp--hpc-1-1/_jcr_content/par/download/file.res/omp-I-handout-2x2.pdf
http://multicore-challenge.org/resources/FMCCII_Tutorial_Pabst.pdf
https://idre.ucla.edu/sites/default/files/intro-openmp-2013-02-11.pdf

54 CHAPTER 4. COMPILATION & INSTALLATION

export OMP_NUM_THREADS=16

The size of the stack per thread can be set with OMP_STACKSIZE, as e.g. in

export OMP_STACKSIZE=300M

Usually, the default value is too small. On machines with many cores, experiments with KMP_AFFINITY

might be beneficial for the performance as e.g. in

export KMP_AFFINITY=verbose,granularity=core,compact

4.5.2 Vectorization

To ensure a good performance on modern CPUs vectorization has to be enabled usually by enabling a
sufficiently high optimization level with for instance -O3, -Ofast, -fast, etc, see Sect. 4.6.

The performance can be improved by choosing optimal branches in CO5BOLD, i.e., by determining
the optimal values for

• rhd_box_arrays01: pointer or (better) allocatable arrays in the data structure “box”, see
Sect. 4.4.1.4. The classical implementation with pointer arrays works in most (all?) cases and
is the default. However, the implementation with allocatable arrays is a bit faster but causes
runtime errors with several – current – compilers.

• gasinter_l01: array treatment in the EOS routines, see Sect. 4.4.3.1.

• gasinter_l02: pointer or (better) allocatable arrays in the data structure for the EOS tables, see
Sect. 4.4.3.2.

• opta_switch_l01: array treatment in the opacity routines, see Sect. 4.4.4.1.

• rhd_hyd_entropyfix_p01: loop with “if..then..else” or masks in rhd_hyd_module.F90, see
Sect. 4.4.5.2.

• rhd_hyd_upwind_p01: loop with “if..then..else” or masks in rhd_hyd_module.F90, see Sect. 4.4.5.3.

• rhd_roe1d_flux_l01: treatment of upwind direction in rhd_hyd_module.F90, see Sect. 4.4.5.4.

• rhd_shortrad_operator_l01: operator version in rhd_shortrad_module.F90, see Sect. 4.4.7.10.

• rhd_shortrad_operator_l02: way of operator inlining in rhd_shortrad_module.F90, see
Sect. 4.4.7.11.

• rhd_shortrad_dtauop_l01: operator version in rhd_shortrad_module.F90, see Sect. 4.4.7.12.

• rhd_shortrad_dtauop_l02: way of operator inlining in rhd_shortrad_module.F90, see
Sect. 4.4.7.13.

• rhd_shortrad_dir1_l01: direct integration or transpose for nearly vertical rays in
rhd_shortrad_module.F90, see Sect. 4.4.7.15.

• MSrad_raytas: loop type in MSrad3D.F90, see Sect. 4.4.7.20.

4.5.3 Cache usage

The user has to find optimum values for the parameters n_hydcellsperchunk (for the Roe and the
HLLMHD solver module, see Sect. 7.1.8.9) and n_viscellsperchunk (for the tensor-viscosity module,
see Sect. 7.1.11.17) to optimize the size of the chunk given to one thread per time. For the Roe solver of the
hydrodynamics module, there exist also the optional parameters n_hydcellsperchunk2 (see Sect. 7.1.9.1)
and n_hydcellsperchunk3 (see Sect. 7.1.9.2).

4.6. SPECIFIC MACHINES & COMPILERS 55

4.5.4 Inlining

Candidate routines for inlining are (i.e. they should be inlined if anyhow possible):

• file rhd_hyd_module.F90:
rhd_hyd_avg, rhd_hyd_upwind, rhd_hyd_pred0, rhd_hyd_predm, rhd_hyd_predp,
rhd_hyd_alpha, rhd_hyd_constanteq, rhd_hyd_minmodeq, rhd_hyd_minmod,
rhd_hyd_vanleereq, rhd_hyd_vanleer, rhd_hyd_superbeeeq, rhd_hyd_superbee,
rhd_hyd_ppeq, rhd_hyd_pp, rhd_hyd_hdflux

• file rhd_lhdrad_module.F90:
rhd_rad3d_raylhd, rhd_rad3d_solve, rhd_rad3d_solveeq

• file rhd_shortrad_module.F90:
rhd_shortrad_operator, rhd_shortrad_dtauop.

On some machines the Makefile generated by the configure script contains such a list explicitly. On
others, one has to rely on automatic inlining (see the following sections).

4.5.5 Single versus double precision

Usually, the files containing the hydrodynamics and EOS data use 4 byte to represent a single number
and most of the computations within CO5BOLD are performed in single precision – except for certain
routines in e.g. MSrad or some dust modules.

To switch to double precision everywhere one has to deal with the binary files and force the transfor-
mation of single precision variables to double precision during the compilation. Compiling all CO5BOLD
files with such a switch produces problems with the UIO modules: there would be a name conflict be-
tween the routines that usually deal with double precision reals and those that are written to deal with
single precision reals and are now forced to pretend to be also a double precision version.

Therefore, one should compile the UIO routines and the rest with separate settings, e.g. for the Intel
compiler:

./configure

make UIO

export F90_PREFLAGS="-r8 -fpconstant"

./configure

make

Code compiled in this way cannot read anymore single precision binary UIO files. However, there
are no problems with the opacity tables (ASCII files) and formatted UIO files. To make existing single
precision binary UIO files readable one could transform them to the formatted version with uiocat (see
6.2.6.3), e.g. like:

uiocat -f formatted -o rhd_ascii.sta rhd_binary.sta

New start models could be written in double precision binary UIO format directly using the
double_flag in the IDL routine rhd_wrboxdata.pro.

For the EOS table eos_mm00_l5.eos there exists a double precision binary version.

4.6 Specific machines & compilers

A (slightly outdated) overview about comparable switches of different compilers can be found in the
“Compiler and tools tricks” by Arnaud Desitter (2008).

http://www.fortran-2000.com/ArnaudRecipes/CompilerTricks.html

56 CHAPTER 4. COMPILATION & INSTALLATION

4.6.1 Cray: SV1

On craSHi in Kiel (a “CRAY SV1 20-32768 SN9542”, now out of service) CO5BOLD could use all 4
processors per board. The new configure script still includes a branch for this system even if has never
been tested on that machine.

In some cases the non-default versions of loops in the CO5BOLD code vectorize better and are
preferred over the standard ones:

• -F: Enable macro expansion

• -Otask1: Parallelization: Enable tasking (in this case OpenMP).

• -Oinline3: Optimization: enable (high level) of inlining.

• -Ovector3 -Oscalar3: General optimization

• -Drhd_hyd_roe1d_l01=1: Optimization: Choose non-standard set of routines for Roe solver. See
Sect. 4.4.8.2.

• -Drhd_hyd_entropyfix_p01=1: Optimization: version with masks (weights). See Sect. 4.4.5.2

• -Drhd_hyd_upwind_p01=1: Optimization: version with masks (weights).

• -Drhd_shortrad_operator_l01=2: Optimization: short characteristics operator with masks
(weights).

• -Drhd_shortrad_dir_l02=1: Optimization: OMP PARALLEL statement outside of outer loop in
rhd_shortrad_dirX.

4.6.2 Compaq: alpha

The UIO module allows the reading and writing of files in little_endian and big_endian format. In
4.4.2 the preprocessor switches are listed, that control the modern – single – version uio_mac_module.F90

of this file.

• -assume byterecl: Necessary for the UIO routines: specify that the length of a record is measured
in bytes (and not in words).

• -cpp: invoke the preprocessor on all source files.

• -inline speed -V: Force automatic inlining, optimized for speed.

• -O4: General optimization.

• -Drhd_hyd_roe1d_l01=0: Optimization: Choose standard set of routines for Roe solver. See
Sect. 4.4.8.2.

• -DMSrad_raytas=0: Optimization: choose default version of loop in SUBROUTINE raytas in file
MSrad3D.F90. See Sect. 4.4.7.20.

4.6.3 Hewlett-Packard: V2500

The 12-processor machine “zeipel” from Hewlett-Packard was a “V2500 PA 2.0” system. There was
some success to force the compiler to accept the OpenMP directives in CO5BOLD. Yet, when running
on several processors, only some routines (e.g. rhd_shortrad_dirsimple1) in CO5BOLD could benefit
while others (rhd_shortrad_dirsimple2, rhd_shortrad_dirsimple3) were significantly slower than on
one processor. In addition, the single-processor performance was not very good, partly because the
achievable optimization level is not very high.

Some macros, which seemed to be necessary:

• +U77: Link proper library to make the machine understand e.g. call flush(6).

4.6. SPECIFIC MACHINES & COMPILERS 57

• +cpp=yes: Switch on the C preprocessor. Note that all Fortran90 files have to end with “.f90”.
The “.F90” suffix does not seem to work.

• +Oparallel +Oopenmp +Onoautopar: Try to enable parallelization with OpenMP directives, dis-
able auto-parallelization.

• +Onoinline: Disables inlining. This can simplify things. With a proper choice of routine versions
inlining is not really necessary anymore.

• +O3 +Olimit: General optimization with limited resource usage during compilation. Some modules
should only be compiled with +O2, others compile even with +O3 +Onolimit.

The UIO modules and the string handling module should be compiled in debug mode. A proposed
compiling sequence is (MSrad does not compile; all other modules are activated):

export F90_LHDRAD=1

export F90_MSRAD=0

export F90_SHORTRAD=1

export F90_DUST=1

export F90_MHD=1

export F90_PARALLEL=openmp

export F90_DEBUG=1

./configure

make UIO STR

export F90_DEBUG=0

./configure

make

4.6.4 Hewlett-Packard: Itanium 2

The 2-processor system “gunnar” from Hewlett-Packard is a dual Itanium 2 machine with two 900MHz
ia64 CPU modules, 4GB of RAM and 70GB user disk space.

The single-processor performance of CO5BOLD is very good. On two processor the code runs even
faster but just stops after a few time steps. The number of time steps varies even for simulations with
the very same start model and parameter file. Therefore, OpenMP should not be activated currently.

The compiler settings are somewhat similar to the settings of the HP V2500 system in Section 4.6.3:

• +U77: Link proper library to make the machine understand e.g. call flush(6).

• +cpp=yes: Switch on the C preprocessor. Note that all Fortran90 files have to end with “.f90”.
The “.F90” suffix does not seem to work.

• +Ofast: High optimization level. And +Ofaster is even higher.

• +Oopenmp +Onoautopar: Try to enable parallelization with OpenMP directives, disable auto-
parallelization. The code compiles and runs fast but crashes after a few time steps.

A proposed compiling sequence is (LHDrad, DUST, MHD do not compile):

export F90_MSRAD=1

export F90_SHORTRAD=1

./configure

make

58 CHAPTER 4. COMPILATION & INSTALLATION

4.6.5 Hitachi SR8000

Some information about the Hitachi compiler is here.
In 4.4.2 the preprocessor switches are listed, that control the modern – single – version

uio_mac_module.F90.

• -conti199: Up to 199 continuation lines can be interpreted (otherwise not more than 39 continu-
ation lines are accepted).

• -limit: Limits the amount of time and memory for compilation.

• -opt=ss: use highest possible optimization level.

• -nopredicate: this option switches off a sub-option activated by opt=ss. It is necessary to disable
the -predicate option because the code crashes otherwise (segmentation violation). The switch must
appear after setting -opt=ss.

• -pvfunc=2: References the pseudo-vectorizing mathematical function and applies the temporary
array to reference the pseudo-vectorizing mathematical function.

• -omp -parallel=1: parallelize based on OpenMP directives only.

• -procnum=8: generate code for 8 processors on one node.

• -orphaned=1: Checks if the regions sequentially executed contain orphaned directives during run-
time when PROCNUM=8 is specified. If a sequentially executed region contains an orphaned
directive, the system outputs a message and terminates the program.

• -nestcheck=1: Checks for nesting errors in parallel regions. If a parallel region is nested, the
system returns an error and terminates the program. Without this option, the code aborts with an
error message, indicating illegal nesting. Compiler bug?

• -pmpar: Collects the performance monitor information for each parallelization unit.

• -pmfunc: Collects the performance monitor information for each procedure.

• -Drhd_hyd_roe1d_l01=1: Optimization: Choose non-standard set of routines for Roe solver. See
Sect. 4.4.8.2.

• -DMSrad_raytas=0: Optimization: choose default version of loop in SUBROUTINE raytas in file
MSrad3D.F90. See Sect. 4.4.7.20.

• Important note: The UIO routines need in addition the compiler option -subchk: Array bound
checking. Without this checking option, some UIO routines are not working properly (compiler
bug?).

A proposed compiling sequence is (only default modules activated):

export F90_PREFLAGS="-subchk"

./configure

make UIO

export F90_PREFLAGS=

./configure

make

Performance tests on hwwsr8k

Some tests have been performed on the machine hwwsr8k at HLR Stuttgart in order to determine the
optimum chunk sizes which are set by the parameters n_hydcellsperchunk and n_viscellsperchunk

http://www.hitachi.co.jp/Prod/comp/hpc/foruser/sr8000/tebiki-e/fort_opt.html

4.6. SPECIFIC MACHINES & COMPILERS 59

Figure 4.1: Performance tests on Hitachi SR8000 at HLR Stuttgart. For models with 128x128x192 and
252x252x188 grid cells different values for the hydrodynamics and viscosity chunk size parameters were
used. See text for more details.

60 CHAPTER 4. COMPILATION & INSTALLATION

(see Sect. 7.1.8.9 and Sect. 7.1.11.17). Two different models have been used, one consisting of 128x128x192
grid cells, the other of 252x252x188, respectively. Grey radiative transfer has been performed with the
MSrad module. Different values for the chunk size(s) have been assumed where the hydrodynamics and
the viscosity parameter were set equal. In all cases three time steps have been computed. The results are
shown in Fig. 4.1. The number of resulting chunks for step HYD1 (the values for HYD2, HYD3, and VIS
are very similar), total memory, performance, and the wall clock duration of the hydrodynamics and the
viscosity routines are shown as functions of the chunk size parameter(s). Clearly, the number of chunks
decreases towards larger chunk sizes whereas the required memory increases – in particular for very
large chunk size values. Moreover, performance and CPU time can be optimized by choosing the right
parameter values. Interestingly, the optimum chunk size is different for hydrodynamics and viscosity.
Based on these tests, a larger value seems to be preferable for the viscosity (n_viscellsperchunk).
In the case of the smaller model, 50000 seems to be fine for the hydrodynamics whereas the optimum
viscosity chunk size is 200000. This difference explains the double-peaked structure of performance and
CPU time. Note that the optimum values do not only depend on the architecture used but also on the
dimensions of the model. We recommend to test some chunk size values since it might lead to a higher
performance.

4.6.6 IBM

Useful links:
IBM compiler documentation: “IBM: XL Fortran”, especially “IBM AIX compiler information center”.
Particularly useful hints: “Porting Programs from the Crays to the SP”.

The compiler to be used for OpenMP runs is called with xlf90_r which “binds the object files to the
thread-safe components” (IBM documentation). For scalar code xlf90 might be sufficient.

Important switches are:

• -qsuffix=f=f90 -qsuffix=cpp=F90: To tell the compiler about the existence of Fortran90 and to
enable the preprocessing for files with suffix “F90”.

• -qextname=flush:etime: Append underscore to both routine names. In 4.4.2 the preprocessor
switches are listed, that control the modern – single – version uio_mac_module.F90.

• -WF,-Drhd_r03: The compiler does not send switches starting with -D to the preprocessor but tries
to interpret them itself – unlike all other compilers. Therefore, each switch (e.g. -Drhd_r03) has
to “escaped” with -WF, (as e.g. -WF,-Drhd_r03).

• -q64: Activate the 64-bit mode. In the default 32-bit mode a very small model (with total memory
requirements far below the 2 GByte limit) might run. However, experienced IBM users might
experiment instead with the compiler switches -bmaxstack, -bmaxdata, and -qsmallstack, with
the UNIX commands limit or ulimit, or with the settings in the header of the batch script. . .

• -O3: Choose optimization level. Higher levels that involve interprocedural analysis cause the com-
piler to stop with an error message.

• -qarch=auto -qtune=auto -qcache=auto: To allow optimization specific for the local ma-
chine (default in the configure script). “Cross compilation” can be activated e.g. with
-qarch=pwr3 -qtune=pwr3 or -qarch=pwr4 -qtune=pwr4 (by setting an environment variable,
e.g. F90_MACHINE="(pwr3)" before calling configure).

• -Q -Q+...: To activate inlining and to specify the list of routines that should be inlined (see
Sect. 4.5.4).

• -qsmp=noauto:omp: Parallelization: OpenMP directives are activated.

A job script rhd.job on the Loadleveler batch system on io.cines.fr can be submitted with

llsubmit rhd.job

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/
http://publib.boulder.ibm.com/infocenter/comphelp/index.jsp
http://hpcf.nersc.gov/computers/SP/craytoSP.html/

4.6. SPECIFIC MACHINES & COMPILERS 61

The jobs in the queue for user testuser can be checked with

llq -u testuser

A job with ID n34.56789.0 can be cancelled with

llcancel n34.56789.0

4.6.7 Linux: PGI compiler

Under Linux the compiler of the Portland Group was first used to compile CO5BOLD. It is called with
pgf90.

Important switches are:

• -byteswapio: With this flag set, binary files in big_endian format (the standard for UIO files)
are automatically transformed to little_endian and vice versa.

• -fast: General optimization flag to choose (close to) optimum optimization for local machine.

• -Mvect=sse: Optimization: Allow Pentium III vector commands.

• -Mcache_align: Optimization: Align some data object on cache-line boundaries.

• -fastsse: From compiler version 4.0 on, this option can be used instead of the three previous ones.
It contains and supersedes them.

• -Minline=...: Optimization: the routines that should be inlined are listed in Sect. 4.5.4.

• -DMSrad_raytas=2: Optimization: choose non-default version of loop in SUBROUTINE raytas in
file MSrad3D.F90. See Sect. 4.4.7.20.

• -Drhd_hyd_roe1d_l01=0: Optimization: choose standard set of routines for Roe solver. See
Sect. 4.4.8.2.

• -Drhd_shortrad_operator_l02=1: Optimization: use the “manually inlined version” of the short
characteristics operator.

• -Drhd_shortrad_dtauop_l02=1: Optimization: use the “manually inlined version” of the optical
coupling operator.

4.6.8 Linux: Intel compiler

The compiler is called with ifort (ifc on older compiler versions).
With Version 7.0 and 7.1 of the Intel compiler (version 15.0 here) CO5BOLD compiled (with tricks,

see below). Version 8.0 still caused trouble. With version 9.1 (and up) everything compiles, with some
glitches for certain version every now and then.

The native binary format on Intel machines is little_endian. With

export F_UFMTENDIAN=big

(to be set at runtime after compilation before running CO5BOLD) the default can be changed to
big_endian. In 4.4.2 the preprocessor switches are listed, that control the modern – single – version
uio_mac_module.F90. Important switches are:

• -fast: Optimization:
choose a general optimization (close to) optimual for the local machine. It actually activates a
number of other optimization flags, that might change with compiler version. This option currently
is not recommended for CO5BOLD because the too aggressive optimization causes runtime errors
(the offending sub flag appears to be no-prec-div). Instead, the – working – sub flags are specified
individually.

http://www.pgroup.com/
http://software.intel.com/en-us/fortran-compilers/
http://software.intel.com/en-us/compiler_15.0_ug_f

62 CHAPTER 4. COMPILATION & INSTALLATION

• -ip: Optimization:
activate interprocedural optimization within each source file. This enables some inlining.

• -ipo: Optimization:
enable interprocedural optimization between files. The compiler makes a first step with a pre-
compilation and syntax check for each source file and then finishes the compilation and optimization
of all source files together in a second – time-consuming – step. It allows some global optimizations
and appears to have at least no adverse effects – in all recent compiler versions.

• -O3: Optimization:
activate a generally high level of optimization.

• -xHost: Optimization for hardware:
optimize for the architecture of the compiling host. This flag is recommended, although there
are a few issues: On AMD machines this might work less than perfect, because the features of
the processors might now be properly recognized: check it! Compiling with this option on a new
machine with a recent set of vector instructions will likely generate code that will nor run on
older machines. In the – rather uncommon – case that the CO5BOLD executable is distributed a
combination of other flags has to be used that ensures that the code runs in an optimal way on a
range of machines, see below and see the manual.

• -tpp6 -xK: Optimization for hardware (old):
optimize especially for Pentium III (and Athlon, includes SSE vector commands).

• -tpp7 -xW: Optimization for hardware (old):
optimize especially for Pentium IV (includes SSE2 vector commands).

• -xP: Optimization for hardware (old):
optimize especially for Core 2 Duo and simular architectures.

• -xSSE4.2: Optimization for hardware:
Optimize for machines with SSE 4.2 vector instructions.

• -xAVX: Optimization for hardware:
Optimize for machines with AVX vector instructions. By now, there are several – more advanced
– versions of this.

• -Drhd_box_arrays01=1: Optimization:
activate a faster way of handling arrays in structures (see Sect. 4.4.1.4). That works e.g. in version
12.1 of the compiler but not in more recent ones.

• -DMSrad_raytas=2: Optimization:
choose non-default version of loop in SUBROUTINE raytas in file MSrad3D.F90. See Sect. 4.4.7.20.

• -Drhd_shortrad_dir1_l01=1: Optimization:
Transpose arrays and use routine rhd_shortrad_dir3 for rays in x1 direction. See Sect. 4.4.7.15.

• -openmp: Parallelization:
activate OpenMP directives. Note that the for compiler versions before 9.0 the UIO routines
should be compiled without OpenMP support (even if they do not contain any OpenMP directives
themselves).

• -static: Linking:
prevent linking with shared libraries. This is usually part of -fast and does not seem to have any
positive effect on the performance.

• -static-intel: Linking:
link Intel-provided libraries statically. This option is recommended. This has the nice effect that
the executable now can be safely transferred from the compile node – where the Intel libraries are
available – to any of the compute nodes – where the Intel libraries should be available, but aren’t.

4.6. SPECIFIC MACHINES & COMPILERS 63

• -assume byterecl: I/O:
specify that the length of a record is measured in bytes (and not in words). That is necessary for
the UIO routines.

• -Duio_switch_system_l01=1 -Duio_switch_native_l01=1 -Duio_switch_ieeebe_l01=1

-Duio_switch_ieeele_l01=1 -Duio_switch_ieee_l01=1 -Duio_switch_open_l01=1: I/O:
activate the appropriate set of UIO switches.

• -Dtiming_c_range=15 -Dtiming_r_type=7: General:
configure the timing routines.

• -r8 -fpconstant: General:
force compilation in double precision (see 4.5.5). In general, single precision is sufficient. However,
e.g. for very cool objects with small-Mach-number flows, the general activation of double-precision
arithmetic is necessary.

• -fpp: General:
activate the preprocessor.

• -W0: General:
suppress warning messages.

On Macintosh machines the typical optimization flags are -O3 -no-prec-div -fno-alias -ip. A
big problem is the tiny stack size on those machines: large arrays taken from the stack should be avoided.
For the SHORTrad module, this can be achieved by setting -Drhd_arrays_l01=2 during compilation. In
addition, relatively small chunk sizes should be specified in rhd.par, see Sect. 7.1.8.9 and Sect. 7.1.11.17.

Using the Intel compiler (before version 9.1) there was a problem with the UIO modules when OpenMP
is activated. This was a bit weird because the UIO modules do not contain any OpenMP directives.
However, this means that OpenMP can be safely deactivated for these modules. A proposed compiling
sequence was:

export F90_COMPILER=ifort

export F90_MSRAD=1

export F90_PARALLEL=scalar

./configure

make UIO

export F90_PARALLEL=openmp

./configure

make

With more recent compiler version, this is much simpler. A realistic example (with several modules
activated, with an explicit choice if optimization flags) might look like:

export F90_COMPILER=ifort

export F90_MSRAD=1

export F90_SHORTRAD=1

export F90_MHD=1

export F90_PARALLEL=openmp

export F90_OPTIMIZE="-ipo -O3 -xHost -static-intel -W0 -Drhd_box_arrays01=1"

export F90_POSTFLAGS="-Drhd_hyd_gravcorr_p01=6 -Dtiming_c_range=15 -Dtiming_r_type=7"

./configure -c

make

For OpenMP (see Sect. 4.5.1), the number of threads can be set for instance with

64 CHAPTER 4. COMPILATION & INSTALLATION

export OMP_NUM_THREADS=16

for a machine with 16 threads (e.g., 2 processors, 4 cores per processor, 2 threads per core). With

export OMP_NUM_THREADS=‘cat /proc/cpuinfo | grep "processor.*:" | wc -l‘

the number of OpenMP threads is determined from the number of – logical – processors. Experimenting
with the scheduling, e.g. by setting

export OMP_SCHEDULE=DYNAMIC,1

or

export OMP_SCHEDULE=GUIDED,2

or (most often just)

export OMP_SCHEDULE=STATIC

might improve the performance (see Sect. 4.5.1). The last two OpenMP variables are recognized by
several compilers. However, there are Intel-specific ones.

In some cases it was helpful to set

export LD_ASSUME_KERNEL=2.4.19

when encountering problems with OpenMP. However, that seems not to be necessary with recent compiler
versions. Still, often the stack memory per thread is too small, which can be increased e.g. with

export KMP_STACKSIZE=300000000

or

export OMP_STACKSIZE=300M

To optimize the performance, particularly on many-core systems, the thread affinity (see “Intel Thread
Affinity Interface”) can specified at runtime (i.e., after compilation but before running the code) e.g. with

export KMP_AFFINITY=verbose,granularity=core,compact

4.6.9 Linux: PathScale compiler

Some experiments with the PathScale compiler have been made. It is called with pathf90. The result is
not entirely satisfying, yet.

Important switches are:

• -byteswapio: With this flag set, binary files in big_endian format (the standard for UIO files)
are automatically transformed to little_endian and vice versa.

• -O3: General optimization flag. More aggressive optimization can be activated with -Ofast or
-Ofast -ipa.

• -mp: Parallelization: OpenMP directives are activated.

http://software.intel.com/en-us/node/459494
http://software.intel.com/en-us/node/459494
http://www.pathscale.com/docs.html

4.6. SPECIFIC MACHINES & COMPILERS 65

4.6.10 Linux: GNU g95 compiler

One of the available GNU Fortran compilers is the g95 compiler with the g95 home page. It is called
with g95.

Important switches are:

• -fendian=big: With this flag set, binary files in big_endian format (the standard for UIO files)
are automatically transformed to little_endian and vice versa.

• -O3: General optimization flag.

In 4.4.2 the preprocessor switches are listed, that control the modern – single – version
uio_mac_module.F90.

OpenMP is not there yet. The binary I/O format (“unformatted”) is incompatible with the one used
before in CO5BOLD: no existing binary UIO files can be read.

4.6.11 Linux: GNU gfortran compiler

The Fortran compiler of the GNU project is called with gfortran. See this discussion for some recom-
mendations of options. There is a full list of Optimize Options available. Important switches are:

• -fconvert=big-endian -frecord-marker=4: With this flag set, binary files in big_endian format
(the standard for UIO files) are automatically transformed to little_endian and vice versa. In
addition, the old 32-bit record marker convention is maintained and existing UIO files can be read.

• -O3: General optimization flag.

• -fopenmp: Activates the OpenMP directives.

• -fdefault-real-8 -fdefault-double-8: Useful to force compilation in double precision (see
4.5.5).

In 4.4.2 the preprocessor switches are listed that control the modern – single – version
uio_mac_module.F90 of the UIO module.

The scalar code is slower than code compiled e.g. with the Intel compiler (see Sect. 4.6.8). However,
the factor is not prohibitive. For not too demanding runs the gfortran compiler can be useful.

4.6.12 NEC SX-5, SX-6, SX-8

First attempts to compile CO5BOLD on neSH at the Rechenzentrum Kiel and on hwwsx5 at
HLR Stuttgart:

An environment variable has to be set to F_RECLUNIT=BYTE (before execution of a program) to enable
UIO to compute proper record lengths. The cross compiler (on sunsrv or crossi) is called with sxf90.
Thus, the environment variable F90_COMPILER=sx90 has to be set before running the configure script.

No optimized version of CO5BOLD has been achieved yet.

Some maybe useful switches are

• sx5: generate instructions for SX-5. Use sx6 or sx8 when appropriate.

• C vopt: normal optimization in vector mode

• -Wf’-M noflunf -M noinv -M noinexact -M setall’: suppress some exceptions

• -P openmp: parallelization with OpenMP

• -Ep: call cpp preprocessor

• -pi exp=...: inlining of a list of routines (see Sect. 4.5.4)

http://g95.sourceforge.net/
http://www.g95.org/
http://gcc.gnu.org/fortran/
http://www.gnu.org/
http://thatcadguy.blogspot.fr/2011/03/gnu-fortran-gfortran-vs-intel-fortran.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

66 CHAPTER 4. COMPILATION & INSTALLATION

• -dw -float0 (no special environment variable): use internally and in files the 4 Byte big_endian

format

For the SX-5 the compiler flags in the configure script are

F90FLAGS="-C hopt -sx5 -dw -float0

-Wf’-L nostdout -L fmtlist -L inclist -L mrgmsg -L transform -M noflunf

-M noinv -M noinexact -M setall’

-pi exp=rhd_shortrad_operator exp=rhd_shortrad_dtauop $F90MODULES

$F90TIME -DMSrad_raytas=1"

For the SX-8 the configure scripts gives the output

sxf90 -EP -P openmp -Chopt -sx8 -Wl’-Z 8G -m’ -dw -float0

-Wf’-L nostdout -L fmtlist map summary transform -L inclist

-L mrgmsg -M noflunf -M noinv -M noinexact -M setall’

-Drhd_r03 -Drhd_shortrad_step_t01 -Drhd_shortrad_formal_t01 -DMSrad_raytas=1

-Drhd_hyd_entropyfix_p01=1 -Drhd_hyd_upwind_p01=1 -Drhd_hyd_roe1d_l01=1 -Dgasinter_l01=2

4.6.13 SGI: Origin

CO5BOLD has been compiled and tested on up to 8 processors on the SGI 2000 machine at TAC in
Copenhagen and the SGI 3800 machine at the NSC in Linköping. The code was used on the UKAFF
machines (see Sect. 4.6.14) and the computers at CINES.

See e.g. the excellent SGI Fortran90 manual (or here). Information about the CINES machines can
be found under CINES.
Important switches are:

• -macro_expand: Enable macro expansion

• -mp: Enable parallelization with OpenMP directives

• -INLINE:aggressive=ON -INLINE:list -INLINE:preempt=ON: General keywords for inlining

• -INLINE:must=...: Optimization: routines that should be inlined (see Sect. 4.5.4).

• -Ofast -OPT:Olimit=0: General optimization. On older compiler versions -O3 was the achievable
optimum.

• -IPA:plimit=5500: Even more optimization. This option requires lots of memory (> 1 GByte).
To get it it might be necessary to ask for more than one processor for the compilation (especially
on the CINES machines).

• -CG:longbranch_limit=60000: This switch limits needed compiler resources. It is suggested by
the compiler (on the CINES machines) itself.

• -Drhd_roe1d_step_l01=1: Slight performance improvement

4.6.14 SGI: Origin 2000/3800 at UKAFF

CO5BOLD has been also compiled and tested on up to 22 processors on the machines of the UK Astro-
physical Fluids Facility (UKAFF) in Leicester, England. UKAFF operates two machines: an SGI Origin
3800 with 128 processors (named “ukaff”), and an older SGI Origin 2000 with 22 processors (named
“grand”) which is mainly used for development and test purposes. Both machines are binary compatible.
At the time of testing (April 2003) the SGI MIPSpro Compilers (Version 7.4) was installed.

Most of the compiler switches given in the previous section were used, except for the following modi-
fications which either gave empirically a better performance or were recommended by the UKAFF Hints
for users:

http://www.nsc.liu.se/
http://techpubs.sgi.com/library/tpl/cgi-bin/init.cgi
http://techpubs.sgi.com:80/library/tpl/cgi-bin/browse.cgi?coll=0650&db=bks&cmd=toc&pth=/SGI_Developer/MPro7F90CD_RM
http://www.cines.fr/anglais0.html
http://www.ukaff.ac.uk/
http://www.ukaff.ac.uk/

4.6. SPECIFIC MACHINES & COMPILERS 67

• -Ofast: Replaces -O3, gave better performance

• -LNO:cs1=32k:ls1=32:cs2=8M:ls2=128: Explicit cache architecture added

The option -Ofast is now the default selected by the configure script for all SGIs with IP35 architecture.
The cache architecture settings are activated for the UKAFF machines only.

A glitch in the system libraries made it necessary to add a work-around to the source code (file
rhd.F90). A “bus error” occurred whenever the system routine “flush” was trying to flush an empty file
buffer. The temporary work-around was simply to add a write statement before every call of “flush”.
This made the log-file look less nice but did the job. Now, the few “flush” statements that are not
necessarily preceded by a write statement are removed.

The main goal was to investigate the scaling of the performance of CO5BOLD with the number of
processors. This was done only for the MSrad module, considering local surface convection models. Two
model sizes were tested: a small one with 125x125x81 grid points employing non-grey radiative transfer
(4 frequency bands), and a large one with 315x315x81 grid points employing grey radiative transfer.
Rather short runs of 10 (small model) and 3 (large model) time steps were performed. Even for the large
model the memory demand was ca. 800Mb, which is very modest considering that every sub-node of the
machine — consisting of 4 processors — has 2Gb of memory.

The results are summarized in the following three figures. The black lines give the scaling of the total
time, the green lines the scaling of the time needed by the hydrodynamics routines, and the red lines the
scaling of the radiative transfer routines. The scaling is presented as the increase of processing time per
processors as the problem is distributed among more and more processors. The times are normalized to
the time that is used in a scalar, i.e. single processor setup. Ideally, one would like a constant behavior
which stays close to one.

0 5 10 15 20 25
Number of processors

1.0

1.2

1.4

1.6

1.8

2.0

P
e
r

p
ro

c
e
s
s
o
r

e
x
e
c
u
ti
o
n
 t
im

e
 i
n
c
re

a
s
e

Machine: grand

125x125x81 grid points, 4 OBM band, 10 time steps

Figure 4.2: UKAFF: machine: grand; small model

The perhaps most interesting result is that the speedup on “ukaff” is about 11 for the large model on
16 processors. Perhaps not ideal, but within the range of practical interest. In general, the hydrodynamics

68 CHAPTER 4. COMPILATION & INSTALLATION

0 5 10 15 20 25
Number of processors

1.0

1.2

1.4

1.6

1.8

2.0
P

e
r

p
ro

c
e
s
s
o
r

e
x
e
c
u
ti
o
n
 t
im

e
 i
n
c
re

a
s
e

Machine: grand

315x315x81 grid points, 1 OBM band, 3 time steps

Figure 4.3: UKAFF: machine: grand; large model

0 5 10 15 20 25
Number of processors

1.0

1.2

1.4

1.6

1.8

2.0

P
e
r

p
ro

c
e
s
s
o
r

e
x
e
c
u
ti
o
n
 t
im

e
 i
n
c
re

a
s
e

Machine: ukaff

315x315x81 grid points, 1 OBM band, 3 time steps

Figure 4.4: UKAFF: machine: ukaff; large model

4.6. SPECIFIC MACHINES & COMPILERS 69

routines scale more favorably than the radiation routines. This is perhaps simply related to the fact that
in explicit hydrodynamics communication is restricted to neighboring grid cells.

For those wondering: the black curves do not lie between the red and green curve since more compo-
nents than just radiation and hydrodynamics add up to the total time. Furthermore, the normalization
of the execution times given by CO5BOLD is not exact.

4.6.15 Sun: SunFire

CO5BOLD has been used on the SunFire machines“fire1”, “fire2”, and “fire3” in Uppsala with compiler
version “Sun WorkShop 6 update 2 Fortran 95 6.2 2001/05/15” and later. An older version was not able
to compile CO5BOLD properly.

Important switches are:

• -openmp: Enable OpenMP.

• -fast -xvector=yes/no: General optimization. On the Sun the -fast option switches on more
or less all optimization features of the compiler. That works reasonable well. However, during the
compilation of gasinter_routines.f90 (and only there) the switch -xvector=no is required! This
is done automatically in the Makefile.

• -inline=...: Optimization: routines that should be inlined: see Sect. 4.5.4.

• -DMSrad_raytas=2: Optimization: choose non-default version of loop in SUBROUTINE raytas in
file MSrad3D.F90. See Sect. 4.4.7.20.

• -Drhd_shortrad_formal_l01=1: Optimization: split loop for exp(-dtau) computation into two
loops. See Sect. 4.4.7.14.

• -Drhd_shortrad_dir1_l01=1: Optimization: Transpose arrays and use routine
rhd_shortrad_dir3 for rays in x1 direction. See Sect. 4.4.7.15.

• -Drhd_hyd_entropyfix_p01=1: Optimization: version with masks (weights). See Sect. 4.4.5.2.

• -xarch=native64: Produces 64-bit code optimized for local machine.

70 CHAPTER 4. COMPILATION & INSTALLATION

Chapter 5

Programmer’s guide

5.1 General code organization

The directory structure is shown in Tab. 3.1. In the master directory for (for “Fortran”), there are
a number of sub directories for groups of files. Most of the files are located somewhere below for/hd.
Exceptions are files with modules that might be used outside CO5OLD, like the UIO, EOS, or OPTA
routines. A master group (as e.g., for/hd or for/uio) can have a number of sub-group directories (as
e.g., for/hd/rhd and for/hd/mhd or just one (as e.g., for/uio/f90), that contain the actual Fortran
files.

Although a few ancient subroutines still use the FORTRAN fixed format, for newer code parts, the
Fortran free format is strongly recommended.

Subroutines, functions, type definitions, global data, etc. should be collected in modules. Typically,
there is one module per file – with some exceptions.

Standard Fortran statements and commands (if, then, subroutine,. . .) is written in lower case.
Preprocessor directives (e.g., #ifdef) are written in lower case. OpenMP declarations and compiler
directives are written in upper case. Names of variables, subroutines, and modules can use CamelCase
(and underscores).

Implicit type declarations should be avoided, although there is still the tendency to start integer
variables with i, m, or n. Instead, all type declarations should be preceded by

implicit none

which enforces an explicit type declaration of all variables.
All quantities are measured in cgs units.

5.2 Indentation and spaces

5.2.1 General layout and indentation recommendations

Lines should be limited to a maximum of 101 characters, if anyhow possible. That ensures that an editor
window with this width does not wrap or cut lines. The version of the CO5BOLD manual that includes
the source code cannot display much more than 100 characters in a line.

The code should be carefully indented. Each indentation level shifts the text by 2 spaces to the
right. Tabs should not be used. Special care should be taken for the indentation and alignment of stencil
operations of assignments and equations (see below). To have sufficient “screen estate” left for these, the
recommended indentation amount per level (2 spaces) is rather small. For the same reason, module and
subroutine headers should not be indented, even if logically a contained subroutine is a level below the
corresponding module.

5.2.2 Alignment of assignments and equations

Indentation and alignment of stencil operations are important, as in

! --- Save original values into local copies ---

rho=model%rho

71

72 CHAPTER 5. PROGRAMMER’S GUIDE

ei =model%ei

v1 =model%v1

or

eip_ll=ei(i1-2,i2,i3) + P(i1-2,i2,i3)/rho(i1-2,i2,i3)

eip_l =ei(i1-1,i2,i3) + P(i1-1,i2,i3)/rho(i1-1,i2,i3)

eip_r =ei(i1 ,i2,i3) + P(i1 ,i2,i3)/rho(i1 ,i2,i3)

eip_rr=ei(i1+1,i2,i3) + P(i1+1,i2,i3)/rho(i1+1,i2,i3)

or

! --- Fill buffer zones of temperature array ---

T(m1-1 , m2 :n2 , m3 :n3)=T(m1 , m2 :n2 , m3 :n3)

T(n1+1, m2 :n2 , m3 :n3)=T(n1 , m2 :n2 , m3 :n3)

T(m1-1:n1+1, m2-1 , m3 :n3)=T(m1-1:n1+1, m2 , m3 :n3)

T(m1-1:n1+1, n2+1, m3 :n3)=T(m1-1:n1+1, n2 , m3 :n3)

T(m1-1:n1+1, m2-1:n2+1, m3-1)=T(m1-1:n1+1, m2-1:n2+1, m3)

T(m1-1:n1+1, m2-1:n2+1, n3+1)=T(m1-1:n1+1, m2-1:n2+1, n3)

In this case, blanks around the “=” sign might be appropriate. Other examples are

lambda_til_mi(i1,i2,i3)=(1.0-mask_up_mi) * (v1(i1-1,i2,i3)-cs(i1-1,i2,i3)) + &

mask_up_mi * (v1(i1 ,i2,i3)-cs(i1 ,i2,i3))

or

! --- Delete all global boxes ---

if (rhd_box_Exist(modelVis)) call rhd_box_Delete(modelVis)

if (rhd_box_Exist(modelB)) call rhd_box_Delete(modelB)

if (rhd_box_Exist(modelA)) call rhd_box_Delete(modelA)

Properly aligned assignments facilitate the understanding and debugging enormously.
In more complex assignments, corresponding brackets should be carefully positioned. However, dif-

ferent styles and conventions can be used, as e.g.,

model%v1(i1,i2,i3)=model%v1(i1,i2,i3) - &

(dtimeoverrhodx1 * (flux_rhov11(i1+1, i2 , i3) - &

flux_rhov11(i1 , i2 , i3)) + &

dtimeoverrhodx3 * (flux_rhov13(i1 , i2 , i3+1) - &

flux_rhov13(i1 , i2 , i3)))

or

model%v1(i1,i2,i3)=model%v1(i1,i2,i3) - &

(dtimeoverrhodx1 * (flux_rhov11(i1+1, i2 , i3) - &

flux_rhov11(i1 , i2 , i3)) + &

dtimeoverrhodx3 * (flux_rhov13(i1 , i2 , i3+1) - &

flux_rhov13(i1 , i2 , i3)) &

)

or

model%v1(i1,i2,i3)=model%v1(i1,i2,i3) - &

(dtimeoverrhodx1 * (flux_rhov11(i1+1, i2 , i3) - &

flux_rhov11(i1 , i2 , i3) &

) + &

dtimeoverrhodx3 * (flux_rhov13(i1 , i2 , i3+1) - &

flux_rhov13(i1 , i2 , i3) &

) &

)

Sometimes, the “fluffy” (third) form can greatly increase the readability. Sometimes (probably in the
example above), it might just be overdoing it.

5.2. INDENTATION AND SPACES 73

5.2.3 Normal code indentation

Usual if..then..else constructs and do loops should be indented with 2 blanks per level as for instance in

do i3=m3,n3

do i2=m2,n2

do i1=m1,n1

rho(i1,i2,i3)=model%rho(i1,i2,i3)

end do ! i1

end do ! i2

end do ! i3

or

if (Copyrho_flag) then

! --- Copy original rho array into array with buffer zones ---

rho(m1:n1,i2,i3)=model%rho(m1:n1,i2,i3)

!

! --- Copy original quc array into array with buffer zones ---

do iquc=1,nquc

quc(m1:n1,i2,i3,iquc)=model%quc(m1:n1,i2,i3,iquc)

end do ! iquc

endif ! (Copyrho_flag)

or

if (time_flag > 0) then

boxout%itime =box%itime

boxout%time =box%time

boxout%time_db=box%time_db

endif (time_flag > 0)

or

! --- Set default value ---

if (present(grid_flag)) then

grid_flag0=grid_flag

else

grid_flag0=1

endif

5.2.4 Further recommendations

To save space for the alignments of assignments, headers of files, modules, subroutines, or programs
should not be indented.

Usually, there should be no blanks around the “=” in an assignment. However, in some cases they
can be inserted to improve readability. Likewise, a blank after a comma in parameter lists is inserted in
some but not all cases.

In if..then..else constructs, the new comparison operators are preferred ober the old ones, i.e. “==”
instead of “.eq.”. A single space is used before and after the comparison operator. The general outline
should be

if (Copyrho_flag) then

if (time_flag > 0) then

if (ierr /= 0) then

if (model%n1 == model%m1) then

The use of possibly redundant brackets is encouraged as in

if ((par%OutFile_full /= ’’) .or. (par%OutFile_mean /= ’’)) then

if ((par%A%hdScheme == hdScheme_RoeWave) .or. &

(par%A%hdScheme == hdScheme_RoeState) .or. &

(par%A%hdScheme == hdScheme_RoeMagKin)) then

if ((ierr > 0) .and. (ierr < 100)) then

There is no space between subroutine of function name and following open bracket.

74 CHAPTER 5. PROGRAMMER’S GUIDE

5.3 Naming conventions

5.3.1 File names

(Most of) the file names of the CO5BOLD tar ball are shown in Tables 3.2 and 3.3. Available tweak and
scaling files are listed in Tab. 3.4. The – few – corresponding unit-test files are listed in Tab. 3.5.

Program-file names are short, without hyphen (rhd.F90, rhdmpi.F90, rhdut.F90). However, to
avoid name-space pollution, very short names for subroutines, functions, modules and their correspond-
ing files are strongly discouraged. Instead, one level of grouping as, e.g., subroutine timing_start

and subroutine timing_stop in timing_module, or two levels as, e.g., subroutine rhd_hyd_Step in
rhd_hyd_module, are recommended. In these cases, the files are named as the modules they contain, i.e.,
timing_module.F90 and rhd_hyd_module.F90, respectively.

As Fortran free format is preferred, the normal file suffix is .f90 (or .F90 for files that have to be
processed with a preprocessor during the compiling step), even if language elements beyond Fortran90
are used.

5.3.2 Program names

Program names are short, without hyphen (rhd, rhdmpi, rhdUT). Programs should reside in files with
the same name (plus suffix).

5.3.3 Names of modules, subroutines, and functions

Module names should end in _module. They should have at least one and at most two underscores
indicating the module group name and subgroup name like group_module or group_subgroup_module.

Contained routines are then named group_DoThis or group_subgroup_DoThat or
group_subgroup_SomeOperation. Routine names should contain at least one, at most three un-
derscores. Thus, the name should indicate the module the routine belongs to. Short names like
Init or Output should not be used to avoid name-space pollution and be called group_Init or
group_subgroup_Output, instead. Ideally, all routines should have a globally uniq name even if that
not strictly necessary because modules are never used together or some subroutines are kept private in
the modules. The use of CamelCase for the subroutine name is encouraged.

If unit-test routines for a group_module or group_subgroup_module are collected in a separate mod-
ule this should be called groupUT_module or group_subgroupUT_module, respectively.

5.3.4 Variable names

As variable names are “more local” than subroutine or module names and the naming conventions vary
even more, depending on author and date.

Mathematical conventions should be used as guide lines (e.g., gamma for γ or Gamma1 for Γ1). Camel-
Case and/or underscores can be used to make variable names easier to read.

Variable names in often used structues (e.g., the box structure) should be used as guide for further
names (see, e.g., Sect. 8.1 and Sect. 8.3). The individual components of vector quantities (axes, velocities,
magnetic-field components) don’t get individual letters but indices 1, 2, 3 for the respective spatial
dimension. So far, these stand for the x, y, and z direction. But these names should be avoided, leaving
the possibility of – for instance – spherical coordinates open. Names of basic quantities are, e.g., rho,
v1, ei for density ρ, velocity v1 in x1 direction, and internal energy ei per mass unit. The centering of
variables can be indicated by c for cell-centered quantities and b for boundary-centered quantities (as in
xc1 or xb1). As cell centering is the default the c is often omitted (as in rho or ei).

Names of quantities that are simple combinations of existing quantities are often constructed as
combinations, as, e.g., rhov1 for the momentum rho*v1, instead of inventing an entirely unrelated name
(as, e.g., m1). The name of an energy tells abouts its components, e.g., eikg = ei + ek + eg (sum of
internal, kinetic, and potential energy per mass unit). Likewise, rhoeikg = rhoei + rhoek + rhoeg

(sum of internal, kinetic, and potential energy per volume). The convention of combining names obviously
has limits for more complex functions (as, e.g., fluxes). Due to the lack of a sufficient number of letters
in the alphabet loop indices don’t all get their individual letters, either. Instead, they look like i1, i2,

5.4. COMMENTS 75

i3, iquc, inu, idir, itime. The lower grid index is m, the upper is n. So, cell-centered quantities (in the
absence of ghost cells) go from m to n, whereas boundary-centered quantities go from m to n+1.

5.4 Comments

5.4.1 Header of files

The header of a file should contain a short summary of its contents, as for example:

!**

!

! ##### # # ##### # # # # #####

! # # # # # # # # # # # #

! # # ###### # # ###### # # #

! ##### # # # # # # # # #

! # # # # # # # # # # #

! # # # # ##### ####### # # # ##### _module

!

! Radiation-Hydrodynamics Code: hydrodynamics module

!

!**

! Fortran90

! 2015-04-04

!**

! With contributions from:

! Bernd Freytag: Kiel, Copenhagen, Uppsala, Montpellier, Lyon, Naples

! Werner Schaffenberger: Exeter

! Sven Wedemeyer-Boehm: Freiburg

!**

! MODULES:

! rhd_hyd_module: Hydrodynamics routines

!

!**

Dates should be written in the form YYYY-MM-DD. The date in the header should be updated each time
a file is edited. The banner at the top can be generated, e.g., with the ASCII Generator (Font=banner,
Width=100). Usually, a file contains one module with more detailed information in its respective header.

5.4.2 Header of modules

The header of a module could look like:

!------**************--

module rhd_hyd_module

!--

! NAME:

! rhd_hyd_module (’rhd_hydrodynamics_module’)

!

! PURPOSE:

! Provide hydrodynamics routines for rhd.

!

! CATEGORY:

! Hydrodynamics

!

! CALLING SEQUENCE:

! use rhd_hyd_module

!

! TYPES:

! None

!

! VARIABLES:

! None

!

! ROUTINES: (all contained routines; public ones are marked with ’>’)

http://www.network-science.de/ascii/

76 CHAPTER 5. PROGRAMMER’S GUIDE

! > rhd_hyd_SwitchInfo: Print information about used compiler switches

! rhd_bound_3DTransmit: Adjust density values in top cells for the open boundary condition

! rhd_bound_3DInOutFlow: Adjust values in bottom cells to fulfill the open boundary condition

! > rhd_bound_3DCenter: Modify energy in central cells to keep entropy constant

! > rhd_bound_3DHeatBottom: Modify energy in bottom cells to keep entropy constant.

! rhd_bound_1DTransmit: Adjust values in top or bottom cells for transmitting boundary condition

! rhd_hyd_Roe1Doutput: Extract some averaged quantities

! rhd_hyd_sDiff: Compute 1D energy flux down an entropy step with state reconstruction

! rhd_hyd_FluxState: Compute 1D flux from state vector for single quantity

! rhd_hyd_Pred: Compute reduced pressure as gravity correction for Roe solver.

! rhd_hyd_RoeWavealpha12: Compute 1D Roe sound-wave fluxes

! rhd_hyd_RoeWavealpha36: Compute 1D Roe entropy-wave and ionization-energy fluxes

! rhd_hyd_RoeWavealpha45: Compute 1D Roe transversal-momentum fluxes

! rhd_hyd_Fluxrhoei: Compute 1D internal energy flux from the fluxes of individual waves

! rhd_hyd_RoeWave1Dflux: Compute 1D Roe fluxes with wave reconstructions

! rhd_hyd_RoeState1Dflux: Compute 1D Roe fluxes with state reconstructions

! rhd_hyd_Dust: Advect passive tracers

! rhd_hyd_mhd: Advect magnetic fields

! rhd_hyd_Roe1DStep: Perform 1D hydrodynamics step in x1 direction with Roe scheme

! rhd_hyd_Roe1DMincedStep: Perform 1D hydro step in x1 direction, call Roe solver repeatedly

! rhd_hyd_SingleStep: Perform entire (single) 2D or 3D hydrodynamics step, employ Roe scheme

! > rhd_hyd_Step: Perform entire 3D hydro step, possibly composed of multiple time-steps

!

! CALLING TREE:

! rhd_hyd_SwitchInfo

! |

! rhd_bound_3DCenter

! | * eosinter

! |

! rhd_bound_3DHeatBottom

! | * eosinter

! |

! rhd_hyd_Step

! * rhd_hyd_SingleStep

! + rhd_hyd_CoriolisOMP

! + rhd_bound_3DTransmit

! | * eosinter

! + rhd_bound_3DInOutFlow

! | * eosinter_all

! + rhd_hyd_Roe1DMincedStep

! | * rhd_hyd_Roe1DStep

! | ...

! + rhd_hyd_Roe1DStep

! * rhd_bound_1DGhost

! * rhd_grav

! * rhd_bound_1DTransmit

! * + eosinter_PdPTdT

! * rhd_bound_1DGhost

! * eosinter_all

! * eosinter_PdPTdT

! * eosinter_PdP

! * rhd_hyd_RoeState1Dflux

! | + rhd_hyd_RecVecEq

! | + rhd_hyd_RecVec

! * rhd_hyd_RoeWave1Dflux

! | + rhd_hyd_Pred

! | + rhd_hyd_RoeWavealpha12

! | * rhd_hyd_Fluxalpha

! | * rhd_hyd_FluxalphaEq

! | + rhd_hyd_RoeWavealpha36

! | * rhd_hyd_Fluxalpha

! | * rhd_hyd_FluxalphaEq

! | * rhd_hyd_FluxState

! | . rhd_hyd_RecVecEq

! | . rhd_hyd_RecVec

! | * rhd_hyd_sDiff

! | . rhd_hyd_RecVecEq

5.4. COMMENTS 77

! | . rhd_hyd_RecVec

! | + rhd_hyd_RoeWavealpha45

! | * rhd_hyd_FluxState

! | . rhd_hyd_RecVecEq

! | . rhd_hyd_RecVec

! | + rhd_hyd_Fluxrhoei

! * rhd_hyd_Roe1Doutput

! | + rhd_mean_weight

! | + rhd_mean_x23mean

! | + rhd_mean_x23weight

! | + rhd_mean_rindex

! | + rhd_mean_rcmean

! | + rhd_mean_VecProj

! | + rhd_mean_rbmean

! * rhd_hyd_Dust

! | + rhd_hyd_FluxState

! | * rhd_hyd_RecVecEq

! | * rhd_hyd_RecVec

! | + rhd_hyd_Rossow78tfall

! | + rhd_hyd_RecVecEq

! | + rhd_hyd_RecVec

! | + rhd_mean_weight

! | + rhd_mean_x23mean

! * rhd_hyd_mhd

! + rhd_hyd_Fluxalpha

!

! MODIFICATION HISTORY:

! 1997-06-19 (B.F. Kiel) First version

! 1999-05-11 (B.F. Copenhagen) Routine bound3d_inoutflow added

! ...

! 2014-08-17 (B.F.) Use global boxes for working copies

! 2014-12-02 (B.F.) Remove "rhd_roe1d_step_l01=0" option

!--

The description of modules, routines, and functions should start at column 27, unless the name is too
long.

5.4.3 Header of subroutines and functions

!----------********************--

subroutine rhd_bound_3DTransmit(model, action, dtime)

!--

! NAME:

! rhd_bound_3DTransmit (’rhd_boundary_conditions_3_Dimensions_Transmit’)

!

! PURPOSE:

! Adjust density values in top cells to contribute to the open upper boundary condition.

!

! CATEGORY:

! Hydrodynamics

!

! CALLING SEQUENCE:

! call rhd_bound_3DTransmit(model, action, dtime)

!

! INPUT:

! action: (’action’) derived type with collection of control parameters

! dtime: (’delta_time’) real, time step to be used

!

! INPUT/OUTPUT:

! model: (’model’) derived type, model data: rho, ei, v, x, time, ...

!

! OUTPUT:

!

! LOCAL VARIABLES:

!

! ROUTINES:

78 CHAPTER 5. PROGRAMMER’S GUIDE

! eosinter: Solve EOS by bicubic interpolation: rho, e -> P, dPdrho, dPde, T, dTde, s

! MPI_AllReduce: Perform a reduction and send result to all processes

! MPI_Comm_Split: Split a communicator

!

! MODULES:

! rhd_gl_module: Global type definitions and parameters for RHD

! rhd_action_module: Routines to handle the control structure ’action’

! rhd_box_module: Box-handling routines

! rhd_prop_module: Properties of quantities in ’box’ structure

! gasinter_module: Routines for interpolating GAS or EOS quantities

! MPI: Standard MPI routines and definitions

!

! SIDE EFFECTS:

!

! RESTRICTIONS:

! Works only for upper (bound_r3) boundary, not for all 6 sides.

!

! PROCEDURE:

!

! EXAMPLE:

! call rhd_bound_3DTransmit(model, action, 0.5)

!

! MODIFICATION HISTORY:

! 2010-04-05 (B.F.) First Version

! 2010-04-28 (B.F.) bound_transmitting3

! 2012-11-08 (B.F.) Minor modifications

! 2012-11-09 (B.F.) New parameters in call, MPI version

! 2012-11-12 (B.F.) MPI parameters put into prop structure

!--

The description of modules and routines should start at column 27, unless the name is too long. With
the script listroutines these entries can be generated (almost) automatically.

The description of a variable should start at column 18, unless the name is too long. It should start
with a long variable name (delta_time for dtime) that explains the short name, followed by a short
comment about the purpose of the variable.

5.4.4 Comment lines

A subroutine, function, or program should not contain completely empty lines but should start such a
line with a – properly indented – exclamation mark.
Comments should be indented as the surrounding Fortran code.
Comments should typically be formulated as an order and start with a verb.
Comments should start with a space-separated triple-hyphen block as in

! --- Show a typical comment ---

5.4.5 Short comments after Fortran statements

The final statement of a counting do loop should have the loop index as comment as in:

do i3=m3,n3

do i2=m2,n2

do i1=m1,n1

rho(i1,i2,i3)=model%rho(i1,i2,i3)

end do ! i1

end do ! i2

end do ! i3

Long if..then..else constructs can have the branching condition (or an abbreviated version) as
comment after the endif statement as in the (very short) example:

if (Copyrho_flag) then

rho(m1:n1,i2,i3)=model%rho(m1:n1,i2,i3)

endif ! (Copyrho_flag)

5.5. COMPILER SWITCHES AND DIRECTIVES 79

5.5 Compiler switches and directives

5.5.1 OpenMP

CO5BOLD is parallelized with OpenMP directives. They should be capitalized and indented with the
surrounding code, as in:

!$OMP PARALLEL DEFAULT(SHARED), PRIVATE(i1, i2, i3)

!

! --- Set bulk HD quantities to zero ---

!$OMP DO SCHEDULE(RUNTIME)

do i3=m3-nghost3,n3+nghost3

do i2=m2-nghost2,n2+nghost2

!DIR$ IVDEP

do i1=m1-nghost1,n1+nghost1

box%rho(i1,i2,i3)=0.0

box%ei(i1,i2,i3)=0.0

box%v1(i1,i2,i3)=0.0

box%v2(i1,i2,i3)=0.0

box%v3(i1,i2,i3)=0.0

end do ! i1

end do ! i2

end do ! i3

!$OMP END DO

!

!$OMP END PARALLEL

5.5.2 Compiler directives

Some directives are inserted into the code to improve performance. They are only understood by the
Intel compiler, though. In the following example, unrolling is enforced (or highly recommended) by the
directive:

do i3=m3,n3

do i2=m2,n2

do i1=m1,n1+1

!DIR$ UNROLL

do j=-1,1

alpha_til_1(i1,j,i2,i3)=alpha0_til_1(i1,i_up_mi(i1,i2,i3)-i1+j,i2,i3)

end do ! j

end do ! i1

!

do i1=m1,n1+1

!DIR$ UNROLL

do j=-1,1

alpha_til_2(i1,j,i2,i3)=alpha0_til_2(i1,i_up_pl(i1,i2,i3)-i1+j,i2,i3)

end do ! j

end do ! i1

end do ! i2

end do ! i3

5.5.3 Compiler macros or switches

Compiler switches are used to (des)activate modules or compile alternative branches to improve perfor-
mance. The default values are set in the header section of each file as, e.g., in:

!# /* --- Default values for some preprocessor macros -- */

!#

!# /* --- Number of additional quantities --- */

ifndef rhd_box_quc01

define rhd_box_quc01 0

endif

!#

80 CHAPTER 5. PROGRAMMER’S GUIDE

!# /* --- Gravity correction: 0:’off0’, 1:’default0’, 2,3,4,5,6,11:’defaultn’ --- */

ifndef rhd_hyd_gravcorr_p01

define rhd_hyd_gravcorr_p01 5

endif

!#

!# /* --- Method of entropy-fix calculation: 0, 1, 2 --- */

ifndef rhd_hyd_entropyfix_p01

define rhd_hyd_entropyfix_p01 0

endif

!#

!# /* --- Method of upwind calculation: 0 or 1 --- */

ifndef rhd_hyd_upwind_p01

define rhd_hyd_upwind_p01 0

endif

!#

!# /* --- Loop type for alpha value (amplitude) calculation: 0 (default), 1, 2, 3 --- */

ifndef rhd_roe1d_flux_l01

define rhd_roe1d_flux_l01 1

endif

!#

!# /* --- MPI activation --- */

ifndef rhd_mpi_l01

define rhd_mpi_l01 0

endif

!#

!# /* -- */

To document which switches were used to compile the code each module that uses compiler switches
should contain a _SwitchInfo routine, that is called by the main program. It can look like:

!----------******************--

subroutine rhd_hyd_SwitchInfo(ncp)

!--

! NAME:

! rhd_hyd_SwitchInfo (’rhd_hydrodynamics_Switch_Information’)

!

! PURPOSE:

! Print information about used compiler switches.

!

! CATEGORY:

! Hydrodynamics

!

! CALLING SEQUENCE:

! call rhd_hyd_SwitchInfo(ncp)

!

! INPUT:

! ncp: (’number_channel_print’) integer with output channel number (usually 6)

!

! OUTPUT:

! None

!

! LOCAL VARIABLES:

!

! ROUTINES:

! None

!

! MODULES:

! None

!

! SIDE EFFECTS:

! Write to requested output channel.

!

! RESTRICTIONS:

! If another compiler switch is used anywhere in the module it has to be explicitly

! included in this routine.

!

! PROCEDURE:

5.5. COMPILER SWITCHES AND DIRECTIVES 81

! Just print the value of all compiler switches used for the module.

!

! EXAMPLE:

! call rhd_hyd_SwitchInfo(6)

!

! MODIFICATION HISTORY:

! 2002-08-12 (B.F.) Written

!--

implicit none

!

! --- I/O parameters ---

integer, intent(in) :: ncp

!

! --- Local variables ---

character(len=*), parameter :: defstr=’ defined’, undefstr=’undefined’

!--

!

write(ncp,’(A)’) ’Compiler switches: rhd_hyd_module’

!

write(ncp,’(A,I6)’) ’ rhd’ // ’_hyd_gravcorr_p01: ’, rhd_hyd_gravcorr_p01

write(ncp,’(A,I6)’) ’ rhd’ // ’_hyd_entropyfix_p01: ’, rhd_hyd_entropyfix_p01

write(ncp,’(A,I6)’) ’ rhd’ // ’_hyd_upwind_p01: ’, rhd_hyd_upwind_p01

write(ncp,’(A,I6)’) ’ rhd’ // ’_roe1d_flux_l01: ’, rhd_roe1d_flux_l01

write(ncp,’(A,I6)’) ’ rhd’ // ’_mpi_l01: ’, rhd_mpi_l01

!

!#

ifdef rhd_bound_t01

!#

write(ncp,’(A,A)’) ’ rhd’ // ’_bound_t01: ’, defstr

!#

else

!#

write(ncp,’(A,A)’) ’ rhd’ // ’_bound_t01: ’, undefstr

!#

endif

!#

!

!#

ifdef rhd_roe1d_flux_t01

!#

write(ncp,’(A,A)’) ’ rhd’ // ’_roe1d_flux_t01: ’, defstr

!#

else

!#

write(ncp,’(A,A)’) ’ rhd’ // ’_roe1d_flux_t01: ’, undefstr

!#

endif

!#

!

!#

ifdef rhd_roe1d_step_t01

!#

write(ncp,’(A,A)’) ’ rhd’ // ’_roe1d_step_t01: ’, defstr

!#

else

!#

write(ncp,’(A,A)’) ’ rhd’ // ’_roe1d_step_t01: ’, undefstr

!#

endif

!#

!

end subroutine rhd_hyd_SwitchInfo

82 CHAPTER 5. PROGRAMMER’S GUIDE

5.6 Unit tests

For a number of subroutines in a few modules, there exist automated unit tests. The master unit-test
routine hd/unitt/UT_module.F90 and the corresponding main program hd/unitt/rhdut.F90 reside
in for/hd/unitt/.

The Makefile is produced with the usual configure script (see Sect. 4.3). The usual environment
variables e.g. for optimization are still valid. However, the unit testing is controlled with the variable
F90_UNIT and the new make target is UT or rhdut.exe. A complete installation, compilation, and run
of the unit tests could look like:

tar -zxvf for.tar.gz

cd for/hd/rhd

mkdir -p UNIT_TESTS_ON_YOUR_MACHINE

cd UNIT_TESTS_ON_YOUR_MACHINE

ln -s ../conf/configure .

export F90_UNIT=1

./configure

make UT

echo -e "$(./rhdut.exe)"

The trickery with echo causes colored output – that is activated by default – to be properly displayed.
So far, the coverage of the unit tests is microscopic, i.e., a successful unit-test run does not tell much

about the correctness of the entire code. While the coverage will hopefully increase with time, there is
no intention to try to cover higher-level modules or the entire code. Such tests are and will be made with
normal test runs of the entire code – hopefully better automated in the future.

5.6.1 F90 UNIT

Specify, which unit-test modules should be activated:

• 0: Don’t activate any unit-test modules. This is the default for normal code compilation and does
not make much sense for actual unit testing.

• 1: Activate all unit-unit test modules.

• rhd_baseradUT_module: Activate this module.

• rhd_meanUT_module: Activate this module.

• rhd_recUT_module: Activate this module.

• rhd_baseradUT_module rhd_meanUT_module: Activate these two modules (this is an example; any
combination is possible).

Chapter 6

Data file types

6.1 File overview

Table 6.1 shows a list of all files necessary to run CO5BOLD. Figure 9.1 gives similar information but is
not quite up to date. Executing the Makefile produces an executable rhd.exe. Its name can of course
be changed afterwards. The names of the control files rhd.par, rhd.stop, rhd.cont, and rhd.dump and
of the status file rhd.done cannot be changed (without modification of the source code). The names of
EOS, opacity, and CO5BOLD data files can be chosen freely in the parameter file rhd.par. Table 6.1
only contains dummy names.

6.2 UIO data format

6.2.1 Quickstart: Introduction to UIO

The UIO (“Universal Input Output”) routines are a set of routines in Fortran90 and IDL to manage
I/O of scalars, arrays and a certain table type. Files can be formatted or unformatted. The formatted
(ASCII text) data representation is machine-independent and appropriate for human reading (for short
files).

The binary representation uses the Fortran “unformatted” read and write routines, provides much
faster I/O, gives smaller files, and the IEEE format is a quasi-standard among many platforms/compilers.
On all machines the native binary representation can be chosen. On some platforms additional conversion
types are offered (IEEE on most machines, CRAY format an CRAYs).

The Fortran standard does not guarantee that unformatted (i.e. also UIO) files are readable on all
machines. But it is always possible to produce (formatted) UIO files on a machine which are readable
on all others. And with some fiddling with compile options or the call of machine-specific subroutines
provided by the compiler vendor it was up to now always possible to enable the access to binary UIO
files (of one common format: IEEE big_endian) on all machines and compilers tested: Compaq alpha,
Cray, Hitachi, HP V2500, HP Itanium2, IBM, Intel/AMD (with Linux OS and PGI, Intel, or Pathscale
compiler), NEC SX-5, SGI, and Sun. Problems might arise with the transition to records larger than
2 GByte which require an extension of the current standard. The GNU Fortran compilers (particularly
g95) might introduce a 64-bit system that does not allow to read older 32-bit files (even small ones).

Each file entry is a header-data-unit. The header contains information to identify the entry and to
specify the format and size of the following data block. This block usually consists of a scalar or an array.
In some cases it is empty (e.g. for labels) or it contains more complex information (for tables).

The first version of UIO routines was written in FORTRAN77. It still exists. However, further
development was done with the Fortran90 versions. Therefore, the use of the FORTRAN77 routines
is not recommended anymore. The current Fortran version of the UIO routines is a set of Fortran90
modules.

To allow a communication between Fortran and IDL programs, an IDL version of the UIO routines
has been written. The correspondence between Fortran and IDL routines is rather close. But in detail,
there are differences. Currently, IDL Version 6.0 is used. Amazingly, the UIO routines also used to work
under PV-WAVE (Version 6.01, sun4 solaris sparc).

83

84 CHAPTER 6. DATA FILE TYPES

File Sect. I/O Type Description

rhd.exe 4.2 - executable main program

rhd.par 7.1 I ctrl/data: UIO central control file

rhd.par2 7.1.22.1 I ctrl/data: UIO additional control file

rhd.stop 7.7 I ctrl: empty file to force controlled stop of simulation
rhd.cont 7.7 I ctrl: empty file to force continuation after stop
rhd.dump 7.7 I ctrl: empty file to request output of current model

data.eos 7.1.6 I data: UIO tabulated equation of state
data.opta 7.1.7 I data tabulated opacities

rhd.sta 8.1 I data: UIO start model (e.g. end file of last run)
rhd.done 8.7 O status: text exit status: written if run was successful
rhd.end 8.1 O data: UIO end model
rhd.full 8.1 O data: UIO sequence of (2D or 3D) snapshots, large
rhd.mean 8.3 O data: UIO horizontal and spherical means, intensity
rhd.mcyl 8.3 O data: UIO azimuthal means (of global models)
rhd.chu1 8.2 O data: UIO small chunk of full dataset, written often
rhd.chu2 8.2 O data: UIO small chunk of full dataset, written often
rhd.chu3 8.2 O data: UIO small chunk of full dataset, written often
rhd.snap 8.7 O data: UIO model snapshot if requested

rhd.out 8.6 O data: text human readable text output

data.dat 7.5 I data: text chemical reaction data

data.atom 7.6 I data: text HION data file (model atom)
edens.dat 7.6 I data: UIO HION data file (electron density table)
abundance.input 7.6 I data: text HION data file (abundances)
pf_kurucz.dat 7.6 I data: UIO HION data file (partition functions)
HION.time.H.*.out 8.5 O data: UIO HION: additional output
HION.step.H.*.out 8.5 O data: UIO HION: additional output

Table 6.1: List of all control and data files of CO5BOLD with the file name, where e.g., “rhd” and “data”
are in most cases only placeholders for the real model or data table name, a reference to a section with a
more detailed description of the file, a column indicating whether the file is used for input or output, the
type of the file distinguishing between executable, control, data, and status files, and a (slightly) more
detailed description.

So far, there exist three UNIX shell scripts (calling Fortran routines) useful to quickly examine data
sets or to change the format or conversion type of files. The installation of these scripts with a “configure-
make-make install” sequence is described in Sect. 6.2.6.1.

Without these scripts an UIO file in ASCII format can be examined with any text editor or with
more. To get an overview about the contents of a binary file the command

strings -30 uio_example_file.dat

can be useful.

6.2.2 Example of UIO data file

To give a first impression about the data structure, here follows a simple test file, which contains the
header, a label, a couple of scalars, an array, and a short table:

fileform uio form=formatted convert=native version=0.1.1997.11.29 &

date=’29.11.1997 21:23:39.835’ system=IRIX machine=atlas osrelease=6.3 &

osversion=12161207 hardware=IP32 language=Fortran90 program=uiotst

label testdata n=’sample test data field’ date=’29.11.1997 21:23:39.835’

6.2. UIO DATA FORMAT 85

integer ia f=I3 b=4 n=’This is the answer’

42

complex ca f=’’’(’’,E13.6,’’,’’,E13.6,’’)’’’ b=8 n=’This is a complex answer’

(0.400000E+01, 0.200000E+01)

real da f=E23.15 b=8 n=’precise answer’

0.420000000000000E+02

real answer f=F4.0 b=4 n=answer u=1

42.

real real2d d=(100:103,200:204) f=E13.6 p=4 b=4

0.100000E+01 0.200000E+01 0.300000E+01 0.400000E+01

0.500000E+01 0.600000E+01 0.700000E+01 0.800000E+01

0.900000E+01 0.100000E+02 0.110000E+02 0.120000E+02

0.130000E+02 0.140000E+02 0.150000E+02 0.160000E+02

0.170000E+02 0.180000E+02 0.190000E+02 0.200000E+02

table f77table d=(1:5,1:7) f=1X b=1 n=’test table to test the table routines’

integer int1 f=I5 b=4 n=’Integer: 1. column’

real real1 f=F5.1 b=4 n=’Real: 2. column’

character char1 f=A16 b=16 n=’Char: 3. column’

real real2 f=E13.6 b=4 n=’Real: 4. column’

integer int2 f=I5 b=4 n=’Integer: 5. column’

int1 real1 char1 real2 int2

1 2.0 a 0.100000E+02 1

2 4.0 ab 0.200000E+02 2

3 6.0 abc 0.300000E+02 3

4 8.0 abcd 0.400000E+02 4

5 10.0 abcde 0.500000E+02 5

6 12.0 abcdef 0.600000E+02 6

7 14.0 abcdefg 0.700000E+02 7

6.2.3 Structure of UIO files

6.2.3.1 Data representation: ASCII or binary

While opening a file for writing, the file format (“formatted” or “unformatted”) and the conversion type
(“native”, e.g. “ieee 4”, . . .) have to be specified.

The formatted ASCII data representation allows I/O independent of platform or compiler. It is useful
for parameter files which can be read and edited by hand, for the direct inspection of data, the transfer
between very different systems, or for the import of data which exist e.g. in a table format. From the
specified conversion type only the default output format for numbers (e.g. “E13.6” for 4 byte reals) is
determined.

The unformatted binary I/O is much faster and gives usually more compact files with higher accuracy
(ideally exact) in the numerical data representation. But – in principle – the file format is machine
dependent. Fortunately, the IEEE format turns out to become a quasi-standard among a variety of
machines. Most workstations work internally with this format. Some CRAYS which have a different
internal data representation allow the hidden transformation between the internal and IEEE format
during the I/O process. The UIO routines support this feature of CRAY FORTRAN compilers by means
of a module (uio_mac_module), individually designed for (two types of) CRAY machines using certain
CRAY specific system calls (CRAY FFIO assign logic). Nevertheless, there is also a machine independent
version of this module, written completely in standard Fortran90 but providing less features than the
machine-dependent versions.

Besides the format, the conversion type (see table 6.2) has to be specified. The “native” conversion
type is the internal binary-data representation, which is also standard for unformatted Fortran output.
If this representation happens to be conformal with the IEEE standard the conversion type “ieee 4”
should be used. It gives the same data format, but in the header of the file the term “convert=ieee 4”
instead of “convert=native” describes the data format precisely – in a way also understandable by other
machines. On CRAY machines the native format is equal to the conversion type “crayxmp 8”, but also

86 CHAPTER 6. DATA FILE TYPES

the conversion types “ieee 4”, and “ieee 8” can be chosen. The last two conversion types correspond to
the CRAY internal types “ieee 32” and “ieee 64”, respectively.

On a machine with an internal data representation not within the list in the existing
uio_mac_module.F90 file, one could use the “native” conversion type only. But it is better to invent an
appropriate name for the new data format and to build a proper machine-dependent branch with its own
compiler switch. However, it was possible in all cases so far to activate some internal conversion process,
which allowed the handling of UIO files in the standard Big-Endian-IEEE format.

conversion type I R D description

native ? ? ? internal data format on all machines
(sometimes useful but not recommended)

ieee_4 4 4 8 standard IEEE big_endian format (recommended)
ieeele_4 4 4 8 IEEE little_endian format
ieee_8 8 8 16 double precision IEEE big_endian format

(on some machines possible)
crayxmp_8 8 8 16 CRAY internal data format
idl 4 4 8 IDL format (but IDL also supports ieee_4)
xdr 4 4 8 format possible with IDL

ieee_4_limit 4 8 8 standard IEEE format → ieee_4

ieee ? ? ? IEEE format, unknown length (not recommended)

Table 6.2: UIO conversion types with length of integers, single precision reals, and double precision reals
in bytes, and an explanation.

Some attention has to be paid if weird compiler switches (as e.g. -r16 -i2) are used to modify the
accuracy and standard memory size of variables.

If an existing file is opened for reading, the file format and conversion type are determined automat-
ically from the file if the conversion type of the data in the file is among the conversion types supported
by the compiler. If the file has a conversion type “native” but is created on a machine with different
internal data representation, the file header might be readable, but an error will probably occur during
the reading of a real variable.

6.2.3.2 Data file structure

The UIO routines only handle sequential files. Each file consists of a list of entries. The first entry
describes the file format, conversion type, and the machine who is responsible for it. The following
entries contain data (scalars and 1D . . . 4D arrays of type integer, real (single & double precision),
complex (single precision), character; tables with columns of type integer, real (single precision), or
character), or structuring information (labels).

Each entry consists of the header and the (possibly empty) data block.

Each header is a list of at most 20 terms separated by blanks or linefeeds. The first term is the entry
type (e.g. real, see table 6.3), followed by an identifier. This identifier should follow the standard rules
for variables (lowercase letters, numbers, underscore; starting with letter). It is a name as e.g. rho, v_1.
The rest of the terms come in the form “keyword=value”. See Tab. 6.4 for some pre-defined keywords.

A header line has a maximum length of 80 characters. A continuation line is indicated by & at the
end of the line. A header consists of 20 lines at maximum. It can be preceded by empty lines (except for
the file header entry). Example:

real time f=F9.2 b=4 n=’Time’ u=s c0=’Simulation time in seconds’ &

c1=’Time count starts at 0.0’

12.34

The entry header is followed by the entry data block. This block is empty for labels and the fileform
entry but non-empty otherwise.

6.2. UIO DATA FORMAT 87

entry type entry contents

fileform file description (first entry)
integer scalars, 1D . . . 4D arrays
real scalars, 1D . . . 4D arrays, single & double precision
complex scalars, 1D . . . 4D arrays, single precision
character scalars, 1D . . . 4D arrays
table table with integer, real, character columns
label label entry for file structuring

Table 6.3: UIO entry types

keyword description example descriptor info. necessary

b byte number 4 format yes
d dimension (0:9) format yes (arrays)
ds dimension shift (1:1) yes
f Fortran format E13.6 format yes
p values per line 4 format yes (arrays)
t transformation log10 format
n name density yes
u unit g/cm^3 yes
date date 1.1.98 yes
c0. . . 9 comment Dichte yes

form file format formatted file yes (file header)
convert conversion ieee 4 file yes (file header)
version version 0.1.1997.11.29 yes
system system IRIX yes
machine machine name atlas yes
osrelease OS release 6.3 yes
osversion OS version 12161207 yes
hardware machine hardware IP32 yes
language program. language Fortran90 yes
program program uiotst yes

xyz. . . user defined source yes

Table 6.4: Standard UIO entry header keywords: The keyword is given with a short description and an
example. The fourth, fifth, and sixth column indicate if the keyword is a mandatory descriptor (in the
file header or for the format of an entry) or if it gives only additional information and is optional and
therefore not necessary to specify.

In an unformatted file each header line is an individual record containing a string with exactly 80 char-
acters. The following data block (scalar or array) is one single record.

In a formatted file each header line is a string of at most 80 characters delimited by a LINEFEED of
whatever the operating system decided to be appropriate as EOL character (sequence). The following data
block is written as sequence of lines. The number of items per line is specified by the “p=?” keyword in
the header.

6.2.3.3 Tables

For a table the entry header is followed by a list of headers for the individual table columns, a single
table header line consisting of (abbreviations of) the table entry identifiers and the table itself (see the
example in section 6.2.2). The dimension keyword gives the number of columns and rows in the form
“d=(1:columns,1:rows)”.

The Holweger-Müller-Atmosphere is chosen as the following “real world” example for a file with a

88 CHAPTER 6. DATA FILE TYPES

table in UIO format:

fileform uio form=formatted convert=ieee_4 version=0.0.1996.10.29 &

date=’20-Feb-1997 18:40:45’ system=SunOS machine=saturn osrelease=4.1.3 &

osversion=3 hardware=sun4m language=’IDL 4.0’ program=’by hand’

character description d=(0:3) f=A80 p=1 b=80 d=’13-Nov-1996 18:29:48’

Holweger-Mueller-Atmosphere,

Hartmut Holweger & Edith Mueller (1974) Solar Physics 39, 19-30, table II,

empirical solar temperature stratification to fit solar spectral lines and

limb darkening

character history d=(0:3) f=A80 p=1 b=80 d=’13-Nov-1996 18:29:52’

Holweger-Mueller-Atmosphere, from 1974

uio-form: 13-Nov-1996 18:29:52

conversion type added: 20-Feb-1997 18:21:01

xi -> vmicro: 20-Feb-1997 18:23:43

real teff f=F6.1 b=4 n=’effective temperature’ u=K texa=’T_ eff’
5780.0

table atmosphere d=(1:7,1:29) f=X b=1 n=Holweger-Mueller-Atmosphere &

c0=’Hartmut Holweger & Edith Mueller (1974) Solar Physics 39, 19-30, table II’ &

c1=Teff(Sun)=5780K

real tauross f=E9.2 b=4 n=’optical depth (Rosseland)’ u=1

real tau5000 f=F7.3 b=4 n=’optical depth (lambda5000)’ u=1 t=log10

real t f=F7.0 b=4 n=temperature u=K

real pgas f=F6.3 b=4 n=’gas pressure’ u=dyn/cm^2

real pel f=F6.3 b=4 n=’electron pressure’ u=dyn/cm^2

real vmicro f=F4.2 b=4 n=microturbulence u=km/s

real q f=F8.5 b=4 n=’Hopf function’ u=1 c0=’q=((T(tau)/Teff)^4)/0.75)-tau’

tauross tau5000 t pgas pel vmic q

2.00E-07 -6.539 3900. 0.769 -3.140 0.00 0.27637

2.50E-07 -6.279 3920. 1.171 -2.752 0.00 0.28208

5.00E-07 -5.868 3970. 1.598 -2.342 0.00 0.29675

1.00E-06 -5.588 4030. 1.842 -2.105 0.00 0.31510

2.00E-06 -5.334 4080. 2.042 -1.910 0.00 0.33103

5.00E-06 -5.001 4160. 2.279 -1.674 0.00 0.35776

1.00E-05 -4.747 4210. 2.450 -1.508 0.00 0.37527

2.00E-05 -4.486 4270. 2.618 -1.341 0.00 0.39712

5.00E-05 -4.131 4340. 2.835 -1.128 0.00 0.42377

1.00E-04 -3.856 4400. 2.999 -0.967 0.50 0.44765

2.00E-04 -3.577 4460. 3.162 -0.804 0.50 0.47248

5.00E-04 -3.200 4530. 3.377 -0.596 0.50 0.50256

1.00E-03 -2.912 4590. 3.541 -0.437 0.50 0.52925

2.00E-03 -2.621 4640. 3.704 -0.279 0.50 0.55173

5.00E-03 -2.233 4720. 3.919 -0.070 0.50 0.58792

1.00E-02 -1.939 4800. 4.083 0.094 0.50 0.62415

2.00E-02 -1.645 4900. 4.245 0.266 0.65 0.66867

5.00E-02 -1.256 5080. 4.460 0.504 0.85 0.74558

1.00E-01 -0.961 5260. 4.622 0.705 1.00 0.81447

2.50E-01 -0.571 5560. 4.830 1.002 1.25 0.89163

4.00E-01 -0.371 5850. 4.926 1.251 1.40 0.99911

7.00E-01 -0.133 6260. 5.022 1.613 1.50 1.13453

1.00E+00 0.019 6570. 5.070 1.879 1.60 1.22581

1.50E+00 0.191 6880. 5.114 2.140 1.70 1.17659

2.00E+00 0.312 7160. 5.140 2.363 1.80 1.13964

4.00E+00 0.597 7920. 5.191 2.889 1.80 0.70033

6.00E+00 0.761 8250. 5.213 3.092 1.80 -0.46595

8.00E+00 0.877 8420. 5.229 3.196 1.80 -1.99552

1.00E+01 0.967 8500. 5.242 3.245 1.80 -3.76404

6.2. UIO DATA FORMAT 89

6.2.3.4 Recommendations for standard file structure

The very first entry in an UIO file is always the fileform uio entry, containing information about the
file format and conversion type. Afterwards, entries can follow in any order. But it is perhaps a good
idea to start the file with three special entries (file_id, description, history) as in

fileform uio form=formatted convert=ieee_4 ...

character file_id f=A80 b=80 n=’File identification’

uio-demofile

character description d=(1:2) f=A80 p=1 b=80 n=’File description’

This is a file to demonstrate the recommended start entries for all

UIO files.

character history d=(1:1) f=A80 p=1 b=80 n=’File history’

UIO demo file: 22-Dec-1997 14:15:15

A recommended format for sets of multi-dimensional arrays (e.g. hydrodynamics: x-axis, y-axis, z-
axis, density, velocities, energy, . . .) is shown in Sect. 8.1.

6.2.4 Files & directories & paths

All UIO-routines are located in sub-directories of a common directory uio. The subdirectories and their
contents are
uio/bin/ : shell scripts: uiolook (Sect. 6.2.6.2), uiocat (Sect. 6.2.6.3), uioinfo (Sect. 6.2.6.4)
uio/f90/ : Fortran90 source code, see Tab. 6.5
uio/man/man1/ : manual pages for shell scripts: uiolook, uiocat, uioinfo
idl/bflib/uio/: IDL routines (Sect. 6.2.7)

To use the UNIX scripts and the Makefile you could set a global system variable UIOPATH pointing
to this directory. The path to the shell scripts and to the man pages could be added to your shell path
variables e.g. in one of the login scripts:

C-shell (.cshrc):

--- uio ---

setenv UIOPATH "$HOME/uio"

setenv PATH "$PATH:$UIOPATH/bin"

setenv MANPATH "$MANPATH:$UIOPATH/man"

--- *** ---

Korn-shell (.kshrc) or bash (.bashrc):

--- uio ---

UIOPATH=$HOME/uio

export UIOPATH

PATH=$PATH:$UIOPATH/bin

export PATH

MANPATH=$MANPATH:$UIOPATH/man

export MANPATH

--- *** ---

However, with the UIO configure script and make, make install there is a different method available
that adds the path declarations automatically, see Sect. 6.2.6.1.

90 CHAPTER 6. DATA FILE TYPES

File Contents

uio_base_module.f90 Collection of basic modules
uio_mac_module.F90 Machine-dependent routines for all machines
uio_bulk_module.f90 Main part of UIO routines
uio_filedef_module.f90 Standard file descriptors and labels

uio_table_module.f90 Table manipulation routines

uio_var_module.f90 Definition and handling of UIO flexible variable
uio_varfile_module.f90 Definition and handling of file structure of

UIO flexible variables

uiocop.f90 Program to copy and transform UIO files
uiolok.f90 Program to look into UIO files
uioinf.f90 Program to give information about conversion types
uiotst.f90 Program to produce test UIO file

Table 6.5: UIO Fortran90 files

Module Contents

uio cst module Channel status information
uio cvl module Convert type list of current machine
uio inf module Information about environment
uio nam module Definition of names
uio siz module String length, table size
uio base module Basic set of UIO-routines: string processing,

header handling, I/O channel management

Table 6.6: Contents of uio base module.f90

6.2.5 Fortran90

6.2.5.1 Files

The Fortran UIO package is a collection of Fortran90 modules and programs described in Table 6.5. The
file uio_base_module.f90 contains the basic set of modules (see Table 6.6).

In older version of CO5BOLD, the files uio_mac*_module.f90 (Tab. 6.5) contained machine-
dependent routines collected in the module uio mac module (see Tab. 6.7).

Routine Purpose

uio getenv Get information about environment
uio mkcvls Make list with possible conversion types
uio uopen Open file with special handling for conversion type
uio uclose Close file with special handling for conversion type

Table 6.7: Contents of uio mac module

In the current version of CO5BOLD, there is only one file uio_mac_module.F90 – with a capital F90
– that can be changed during the compilation by preprocessor switches, see 4.4.2.

The main set of routines is contained in uio_bulk_module.f90 in the module uio bulk module.
The three files uio_base_module.f90, uio_mac_module.F90, and uio_bulk_module.f90 comprise the
standard set of UIO routines. Additionally, there exists a file uio_table_module.f90 with the single
module uio table module which permits the I/O and manipulation of a certain table format (see the
example in section 6.2.2).

The latest extension comes within the modules uio_var_module.f90 and uio_varfile_module.f90.
The module uio_var_module.f90 contains a type definition for a variable (“uio flexible variable”) of gen-

6.2. UIO DATA FORMAT 91

eral type (i.e. it may be a scalar integer value or a 1D character array or a 3D real array. . .) together with
some routines for the basic handling of the variables (I/O in UIO format, construction and modification
of variables. . .). The module uio_varfile_module.f90 contains a type definition for a file built of UIO
flexible variables together with routines for the handling of these files.

6.2.5.2 Use of UIO modules in Fortran90

To make the UIO routines available in a Fortran program the appropriate modules have to be specified
in a USE statement.

At maximum five modules play a role: The uio_bulk_module contains the main part of the
UIO routines (and also uses the relevant sub-modules). Instead of uio_bulk_module the module
uio_table_module is used if the UIO table routines are needed. The modules uio_siz_module and
uio_nam_module contain specifications about the size of some arrays and the length of strings, and the
names of types and keywords, respectively. The module uio_filedef_module contains some definitions
in addition to the basic UIO standard as e.g. the label names which delimit a data set (label dataset

and label enddataset).
A typical case for the use of UIO modules is

use uio_bulk_module

use uio_siz_module

use uio_nam_module

6.2.5.3 Compiling and Makefiles

For a certain platform, it was necessary to change the name of the module file with the machine-dependent
routines (uio_mac*_module.f90) in a Makefile for the UIO routines. For this purpose the environment
variable UIOMAC had to be set to the name of the appropriate routine (see Sect. 3.1).

In the current version of CO5BOLD, there is only one file uio_mac_module.F90 – with a capital F90
– that can be changed during the compilation by preprocessor switches, see 4.4.2.

For CO5BOLD or the UIO Unix scripts, the respective configure script takes care of either of these
steps. Many compilers generate module information files with suffixes like .M, .mod, or .kmo. To clean
up information files with other suffixes, they have to be included in the cleaning step. Calling examples:

make

make UIO

make UIO "F90FLAGS=-g"

make clean

make cleanall

make remove

make removeall

A section of a typical Makefile using the UIO routines may be

...

--- Compiler options ---

F90C=f90

F90FLAGS=

--- Libraries ---

UIOMAC=uio_mac_module

...

--- Dependencies of exe-files on object files and libraries ---

test.exe: test.o

$(F90C) $(F90FLAGS) -o $@

$(UIOPATH)/f90/uio_base_module.o $(UIOPATH)/f90/$(UIOMAC).o

$(UIOPATH)/f90/uio_bulk_module.o

92 CHAPTER 6. DATA FILE TYPES

test.o: $(UIOPATH)/f90/UIO test.f90

$(F90C) -c $(F90FLAGS) -M$(UIOPATH)/f90 test.f90

...

--- Dependencies on used modules ---

$(UIOPATH)/f90/UIO:

cd $UIOPATH/f90 ; make UIO "F90FLAGS=$F90FLAGS"

6.2.5.4 Sample calls of Fortran UIO routines

Examples for routines with UIO input/output in CO5BOLD are tabinter_rdcoeff, tabinter_wrcoeff,
rhd_box_RdData, rhd_box_WrData, rhd_datx_Write, and rhd_par_RdData. The needed modules have
to be declared by a use statement like:

use uio_bulk_module

In the initial phase of the program the UIO routine package has to initialized by exactly one call of
the uio_init routine with the name of the program as optional parameter:

call uio_init(progrm=’uiotst’)

The internal list of logical I/O unit numbers may be changed with calls of uio_chunit and
uio_chconv. A file can be opened for writing with

file=’test.txt’

form=’formatted’ ! or: ’unformatted’

conv=’ieee_4’ ! or: ’native’, ’crayxmp_8’,...

call uio_openwr(ncout, file, form=form,conv=conv)

Header and data block are written together with one command as e.g. in:

call uio_wr(ncout, time, ’time’, name=’time’, unit=’s’)

call uio_wr(ncout, rho(1:10), ’rho’, name=’density’, unit=’g/cm^3’)

There are two different routines to close a file after reading or writing. A file opened for writing is
closed by:

call uio_closwr(ncout)

To open a file for reading, only the file name has to specified. File form and conversion type are
determined automatically:

file=’test.txt’

call uio_openrd(ncin, file)

In contrast to the writing of an entry by one routine call the reading is performed in two separate
sub-steps for the header and the data part. After the reading of the header e.g. with

use uio_siz_module

use uio_nam_module

...

integer :: ntt

character*(let) :: termt(2,nttmx)

...

call uio_rdhd(ncin, termt,ntt)

the identifier, type, and dimension (if any) of the entry is contained in the character array termt with
ntt entries and special actions may be taken: The data part may be skipped with

6.2. UIO DATA FORMAT 93

uio_skipda(ncin, termt,ntt)

or it can be read with:

call uio_rd(ncin, termt,ntt, time, ident)

If the entry is an array it may be necessary to allocate memory:

call uio_exkeyw(termt,ntt, dimna,dimstr)

call uio_st2dim(dimstr, ilow, iup, ndim=ndim)

allocate(rho(ilow(1):iup(1)))

call uio_rd(ncin, termt,ntt, rho, ident, ilb=ilow(1:1))

Alternatively, it is possible to search in the file for a special entry or to search in a specially generated
entry list with:

call uio_srhd(ncin, termt,ntt, type=’real’,ident=’rho’,outstr=outstr,ierr=ierr)

Additionally, the uio_var_module makes it possible to read any entry into an UIO flexible variable,
and the uio_varfile_module allows the reading of a complete file into a special file structure of UIO
flexible variables.

To close a file after reading use

uio_closrd(ncin)

There are several examples of programs with UIO routines like uio_var_test.f90,
uio_varfile_test.f90, uiotst.f90, (uio_demo.f90) and – of course – CO5BOLD.

6.2.6 UNIX scripts

So far, there exist three UNIX shell scripts useful to quickly examine data sets (uiolook), to change
the format or conversion type of files (uiocat), or to print some information about the conversion types
possible on the local machine (uioinfo).

6.2.6.1 Installation of UIO UNIX scripts

The installation procedure for the UIO scripts has been updated to make use of its own configure script.
Therefore, the procedure should now look like

tar -zxvf for.tar.gz

cd for/uio/f90/YOUR_MACHINE

./configure

make

make install

or

tar -zxvf for.tar.gz

cd for/uio/f90

mkdir YOUR_MACHINE

cd YOUR_MACHINE

ln -s ../conf/configure .

./configure

make

make install

Some of the environment variables that control the CO5BOLD configure script are also recognized
(see the header of the UIO configure script). The command

make install

generates a directory ${HOME}/local and sub-directories. An init script is put into ${HOME}/bin.
And the resource files .cshrc and .bashrc are modified to call it. Therefore, this installation step is
potentially dangerous, because its effect is not restricted to the local directory!

94 CHAPTER 6. DATA FILE TYPES

6.2.6.2 Quick examination of files: uiolook

The shell script uiolook calls the Fortran program uiolok.f90. The man page:

UIOLOOK(1V) Misc. Reference Manual Pages UIOLOOK(1V)

NAME

uiolook - print entry headers of file in uio form

SYNOPSIS

uiolook [-h] [-p] [filename ...]

AVAILABILITY

DESCRIPTION

The routine uiolook reads each filename (file in uio form)

in sequence and displays the headers of the entries in

pretty form.

OPTIONS

-h Print usage of uiolook.

-p Entry header keywords in (long) pretty form

SunOS 5.5.1 Last change: 27 November 1996 1

6.2.6.3 Transformation of files: uiocat

The shell script uiocat calls the Fortran program uiocat.f90. The man page:

UIOCAT(1V) Misc. Reference Manual Pages UIOCAT(1V)

NAME

uiocat - concatenate file(s) in uio form

SYNOPSIS

uiocat [-c conversion] [-f format] [-h] [-l copylist

] [-o outputfilename] [filename ...]

DESCRIPTION

The routine uiocat reads each filename (file in uio form) in

sequence and displays its contents formatted on standard

output or writes it into a file. In the latter case the

format change from ’formatted’ to ’unformatted’ or vice

versa is possible.

OPTIONS

-c Conversion type: ’native’, ’ieee_4’, ... (machine

dependent), its specification is only relevant, if an

output file is specified with the -o option and output

format=’unformatted’.

-f Output format: ’formatted’ or ’unformatted’. Its

specification is only relevant, if an output file is

specified with the -o option.

-h Help: print usage of uiocat.

-l List of entries to be copied. E.g.

uiocat ... -l"real rho"

uiocat ... -l"real rho,integer i"

6.2. UIO DATA FORMAT 95

uiocat ... -l"label *,real rho,integer i"

uiocat ... -l"label *,real rho,* i"

Here, copylist is a list, separated by ",". Each item

consists of exactly two items, separated by a blank. No

additional blanks are allowed. Use copylist with "" as

above.

-o Output file name. If omitted, standard output is used

and "-c" and "-f" are meaningless.

SunOS 5.5.1 Last change: 12 January 1998 1

6.2.6.4 Information about conversion types: uioinfo

The shell script uioinfo calls the Fortran program uioinf.f90. The man page:

uioinfo(1V) Misc. Reference Manual Pages uioinfo(1V)

NAME

uioinfo - print machine-dependent information

SYNOPSIS

uioinfo

DESCRIPTION

The routine uioinfo prints information about its environment

and a list of possible conversion types.

OPTIONS

SunOS 5.5.1 Last change: 12 January 1998 1

6.2.7 IDL UIO routines

The UIO package for IDL comes as a list of routines with names quite similar to the Fortran90 version.
Instead of using global variables as in Fortran90 there are now common blocks in Include-files.

;**

; Routines, functions : uio_*.pro:

; (!: most important, +: user-routine, -: comfortable, .:useful)

; . adkey1: Add one keyword to term table, keyword-value=’ ’, no link character

; . adkey2: Add one keyword to term table with keyword-value

; . adkey3: Add one keyword to term table with keyword-value or default

; . chconv: Actualize list of conversion types for all channels

; + chpos: Give current file position or jump to specified position

; . chunit: Initialize, store and actualize a list of free and occupied unit

; numbers

; + closrd: Close file after reading

; + closwr: Close file after writing

; - cpentr: Copy entry from one file to another

; + d: Read data from uio-file(s) in quasi direct-access mode

; + data: Handle uio-file(s) in quasi direct access mode

; ! dataset_rd: Read uio file and put data into anonymous structure

; ! datasetlist_rd: Read data from list of files and put it into an. structure

; deform: Determine the default output format for numbers

; dim2st: Compose dimension string

; . exkeyw: Extract value of keyword from table

; ex1trm: Extract one term from the input line

; exmtrm: Transform a list of items into its components

96 CHAPTER 6. DATA FILE TYPES

; . filcon: Determine file contents: list of all entries with its positions

; getenv: Get information about environment

; ! init: Initialization procedure for input/output routines

; me1trm: Merge the input term: ’keyword’, ’value’ -> ’keyword=value’

; memtrm: Merge a list of terms (keywords and their values) into a line table

; mkcvls: Make list with possible conversion types

; . nc2nt: From column number or entry name find table entry number

; + openrd: Open file for reading, read header

; + openwr: Open file for writing, write header

; - pptrmt: Print term table in pretty form

; qmaadd: Transform a string into a string with quotation marks if necessary

; qmadel: Parse string "inline" and remove quotation marks if necessary

; + rd: Reading scalar and array data of all types

; . rdfifo: Read file header

; + rdhdex: Read header of variable and extract keywords

; rdhead: Read header

; + rdlabl: Read label

; + rdtab: Read table of integer, real, and/or character data from file

; + skipda: Skip data block

; - slhdex: Search header of variables given by list and extract keywords

; . st2dim: Parse dimension string

; ! struct_rd: Read uio file and put data into anonymous structure

; . tab0: Create empty table structure

; + tabc: Change and modify table contents: rearrange lines.

; + tabm: Merge two tables in different ways

; + tabr: Read 1d array from 2d table array (all types)

; + tabw: Write 1d array into table (all types)

; uclose: Close file with special handling for conversion type

; uopen: Open file with special handling for conversion type

; vnanrm: Transform a string to give a correct name of a variable

; wf2rf: Produce from write format string corresponding read format string

; + wr: Writing scalar and array data of all types

; . wrfifo: Write file header

; wrhdme: Write header of variable, input: term table.

; wrhead: Write header of variable, input: line table.

; + wrlabl: Write label

; + wrtab: Write table of integer, real, and/or character data to file

;**

; Include-Files uio_*.pro:

; filedefinc:

; uiocstinc: channel status information (common uio_chainf)

; uiocvlinc: convert type list of current machine (common uio_cvlist)

; uionaminc: names of types, keywords, identifiers; default formats

; (common uio_defnam)

; uiosizinc: length of strings, size of tables (trmtab, lintab)

; uiotabinc: empty table structure (common uio_taborg)

;**

Most of the routines are low-level ones and do not have to be worried about because they rarely will
be used directly.

For accessing data in UIO format within IDL the initialization routine uio_init (see
Sect. 6.2.7.1) and the high-level reading routines (uio_struct_rd.pro, uio_dataset_rd.pro, and
uio_datasetlist_rd.pro, see Sect. 6.2.7.3) might suffice.

6.2.7.1 Initialization of UIO routines under IDL

The directory containing the IDL UIO routines should be added to the IDL variable !PATH. This could
be done by a program segment in the startup procedure, like:

; --- Try to determine language ---

if (n_elements(!X.TICKV) eq 150) then langua=’WAVE’ else langua=’IDL’

6.2. UIO DATA FORMAT 97

;

; --- Add user IDL directory to search path ---

if (langua eq ’IDL’) then begin &$

addpath=expand_path(’+$UIOPATH/idl’) &$

endif else begin &$

addpath=’/home/supas024/uio/idl’ + ’:’ + ’/home/supas024/wave’ &$

endelse

if strtrim(addpath,2) ne ’’ then !path=addpath+’:’+!path

delvar, addpath

Alternatively, one might want to set the IDL path variable accordingly like

export IDL_PATH="+$UIOPATH/idl"

for example in the .bashrc file. Or one just copies or links the UIO IDL routines to a location in the
standard IDL search path.

It is reasonable to include the UIO initialization in the startup procedure as e.g.:

; --- Initialize uio-routines ---

uio_init, progrm=’by hand’

IDL can handle the conversion types native, ieee_4, ieeele_4, ieee, idl, xdr (compare Tab. 6.2
in Sect 6.2.3.1). Here, ieee_4 is the default and should be used as a standard.

Attention: The IDL type “long” corresponds to the standard Fortran type “integer”. The IDL types
“byte” and “integer” are not known in standard Fortran and are therefore transformed to the IDL type
“long” before writing (in the IDL routine uio_wr).

Be aware of: The parsing and interpretation of the entry headers can only be done by scalar
operations which are comparatively slow in IDL.

6.2.7.2 Reading data with uio data.pro

The IDL routine uio_data and the IDL function uio_d were the first set of “high-level” routines to read
UIO data in IDL. They were useful for the easy reading of not too complex data files. By now, they are
replaced by the routines uio_struct_rd and uio_dataset_rd (see see next Section and Sect 10).
The old routines allow the opening,

uio_data, mode=’open’, filename=’model.dat’

uio_data, mode=’open’, filename=’model*.txt’

uio_data, mode=’open’, filename=’model.dat’, family=’mod1’

uio_data, mode=’open’, filename=’model*.txt’, family=’mod2’

examination,

uio_data, mode=’content’

uio_data, mode=’files’

reading,

uio_data, mode=’read’, value=rho, ’rho’

uio_data, value=temp, ’temp’

uio_data, value=p, ’p’, filename=’model.dat’

uio_data, value=p, ’p’, family=’mod1’

plot_oi, uio_d(’p’), uio_d(’t’)

and closing,

uio_data, mode=’close’, filename=’model.dat’

uio_data, mode=’close’, filename=’model*.txt’

uio_data, mode=’close’, family=’mod2’

uio_data, mode=’allclose’

of UIO files.

98 CHAPTER 6. DATA FILE TYPES

6.2.7.3 Reading data with uio dataset rd.pro or uio datasetlist rd.pro

For a detailed description of how to handle UIO files in IDL see Sect 10.
With the new IDL routines uio_struct_rd.pro, uio_dataset_rd.pro, and

uio_datasetlist_rd.pro files are not read entry by entry anymore but in larger blocks (or “data
sets”).

With uio_struct_rd all entries in a file are read and put into an IDL structure variable. This is
appropriate for the CO5BOLD parameter file or for the UIO table file in Sect. 6.2.3.3, e.g.

par=uio_struct_rd(’st35gm04n05_03.par’)

atm=uio_struct_rd(’holmu.atm’)

When groups of entries in an UIO file are properly marked with label dataset and
label enddataset delimiters (confer the example in Sect. 8.1) each group can be accessed with
uio_dataset_rd. The first block can be read with

ful=uio_dataset_rd(’st35gm04n05_03.full’)

or

ful=uio_dataset_rd(’st35gm04n05_03.full’, ndataset=0)

Dataset number i+1 (counting starts at zero) can be read with

ful=uio_dataset_rd(’st35gm04n05_03.full’, ndataset=i)

If a dataset with that number does not exist, an empty structure is returned. In this case, when
called with additional keywords like

ful=uio_dataset_rd(’st35gm04n05_03.full’, ndataset=i, outstr=outstr,ierr=ierr)

an error message is returned in outstr and ierr is set to a value larger than 0.
To read all entries in a list of files in sequence the routine uio_datasetlist_rd.pro is convenient,

as in the short example

ierr=0

delvar, listdata

;

; --- Loop over all datasets ---

while (ierr eq 0) do begin &$

; --- Read the next dataset ---

ful=uio_datasetlist_rd(’testmodel_0?.full’, listdata=listdata, ierr=ierr) &$

if (ierr eq 0) then begin &$

print, ’--- ’, ful.z.time, format=’(A,E15.8)’ &$

;

; --- Now do the data handling (demo) ---

print, ’Mean density: ’, avg(ful.z.rho) &$

endif &$

endwhile

or in the more detailed example

model=’st33gm06n03’ & modelident=’_??’ & parmodelident=’_01’

modeldisk=getenv(’HOME’) + ’/dat/rhd/d’ + model + ’/’

;

modelfile=modeldisk + model + modelident + ’.full’

parfile =modeldisk + model + parmodelident + ’.par’

;

; --- Read parameter file ---

par=uio_struct_rd(parfile)

6.2. UIO DATA FORMAT 99

;

; --- Open first dataset to get some information about array sizes ---

delvar, listdata

ful=uio_datasetlist_rd(modelfile, listdata=listdata, ierr=ierr)

uio_closrd, listdata.channel

delvar, listdata

;

nxc1=n_elements(ful.z.xc1)

nxc2=n_elements(ful.z.xc2)

nxc3=n_elements(ful.z.xc3)

;

n_timestep=1000 ; --- Some huge value to get everything. Reduce for tests! ---

ierr=0

i=0

;

; --- Loop over all datasets ---

while ((ierr eq 0) and (i lt n_timestep)) do begin &$

; --- Read the next dataset ---

ful=uio_datasetlist_rd(modelfile, listdata=listdata, ierr=ierr) &$

if (ierr eq 0) then begin &$

print, ’--- ’, i, ful.z.itime, ful.z.time, format=’(A,I4,I6,E15.8)’ &$

;

; --- Now do the data handling (demo) ---

print, ’Mean density: ’, avg(ful.z.rho) &$

;

i=i+1 &$

endif &$

endwhile

All necessary counter information is stored in the structure listdata.
Note, that you can specify an entire group of files with e.g. modelident=’_*’, modelident=’_??’,

modelident=’_3?’, or modelident=’_{29,3[0-2]}’.

100 CHAPTER 6. DATA FILE TYPES

Chapter 7

Input and control files

7.1 Parameter file: rhd.par

The parameter file rhd.par also has the UIO format. But it will be usually Fortran “formatted” (ASCII).

It contains a list of parameter entries. which are collected in groups to make it easier to find an
entry. Otherwise, the order is arbitrary (except for the very first fileform uio entry). If there are more
than one entry with the same name, the first occurrence will be used by CO5BOLD. But the doubling
of entries is strongly discouraged because it will almost certainly lead to confusion at some time. In
addition, the IDL routine to read the parameter file will fail with an error message.

Additional entries can be added if the names differ from the standard ones described below. Theses
entries will be ignored by CO5BOLD but read by the IDL input routine. They can be used to provide
comments, additional information about the model, or control parameters for further processing.

7.1.1 Quickstart: How to make a proper parameter file

You will never write a new parameter file from scratch. Typically, you take an old file (e.g. the one
controlling the simulation which produced the model which is used to start the new run) and edit it:

1. Take the parameter file corresponding to the model you want the new simulation to start with.
Most of the parameters should be already OK.

2. Write a brief description of the purpose of the planned simulation into the character description

array (Sect. 7.1.2.3). You might add a remark about the parent file of the parameter file under
construction and the current date into the character history (Sect. 7.1.2.4) array in the header
(see Sect. 7.1.2).

3. Check/modify the name of start model and output files: infile_start (Sect. 7.1.21.8),
outfile_end (Sect. 7.1.21.10), outfile_full (Sect. 7.1.21.11), outfile_mean (Sect. 7.1.21.12),
etc. On a system with batch queue this has not to be done in the parameter file itself but in the
external command file (see Sect. 7.1.21).

4. Check/modify the fundamental parameters including boundary condition specifiers (see Sec-
tions 7.1.3 and 7.1.4, respectively)

• effective temperature: heat_mode (Sect. 7.1.4.4), s_InFlow (Sect. 7.1.4.7), Teff (Sect. 7.1.3.1),
LuminosityPerVolume (Sect. 7.1.4.6), . . .

• gravity: grav_mode (Sect. 7.1.3.2), grav (Sect. 7.1.3.3), mass_star (Sect. 7.1.3.4), . . .

• abundances: eosfile (Sect. 7.1.6.1), opafile (Sect. 7.1.7.1). Check the paths eospath

(Sect. 7.1.6.2) and opapath (Sect. 7.1.7.2)!

• boundary conditions:

5. If the gravity of the new model – and therefore the characteristic length and time scales – signifi-
cantly deviate from the values of the old one, some values have to be scaled accordingly:

101

102 CHAPTER 7. INPUT AND CONTROL FILES

• the time specifications controlling the output frequency: dtime_out_full, dtime_out_mean,
. . .

• the total length of the simulation if specified as stellar time: endtime, plustime,

• absolute boundaries for the time step: dtime_min, dtime_min_stop, dtime_max, dtime_start

• some radii for global models,

• some scale length for some boundary conditions,

Look for parameters with units u=s or u=cm (see Sections 7.1.20 and 7.1.21).

6. The rest of the parameters controls additional details. Most of the constants are specified in
dimensionless form and keep their value in a class of related simulations. The previously used
values will probably be reasonable for the new simulation, too. However, if typical Mach numbers
or ratios of radiative to advective time scales change significantly, also the values of the dimensionless
parameters should be checked.

Of course, a complete control of CO5BOLD is only possible after studying of the meaning of the
parameters in detail (e.g. by reading the following pages) AND – unfortunately – an accompanying look
into the source codetself.

7.1.2 Header

The header of the parameter file contains information about the file format and contents. The
description array can be used to specify the goal of the simulation, special model characteristics,
or important parameter changes compared to a previous or standard model. The history array may
contain the predecessor of the parameter file to simplify a tracing of parameter changes.

7.1.2.1 fileform uio

The header of the parameter file, e.g.

fileform uio form=formatted convert=ieee_4 date=’2002-01-01’ &

program=’by hand’

can be abbreviated to

fileform uio form=formatted convert=ieee_4

which indicates that the file is in UIO form and Fortran “formatted” (ASCII). The specification of
the conversion type (“convert=ieee_4”) is more relevant for unformatted files. These terms should
not be changed. But it can be of interest to append e.g. the date of the last modification (e.g.
“date=’2002-12-24’”).

7.1.2.2 character file id

The file identification string

character file_id f=A80 b=80 n=’File identification’

rhd-parameter

indicates the intended use of the file as parameter file for the RHD code CO5BOLD. Do not edit!

7.1.2.3 character description

The header of the file can (should) contain a short description of the simulation, as in e.g.

character description d=(1:4) f=A80 p=1 b=80 n=’File description’

Parameter file for RHD code:

Full size 3D Betelgeuse model: 5 M_Sun, 650 R_Sun

Start with st35gm04n03_09.end (127^3 -> 171^3)

Run with SHORTrad

This entry is optional (it can be omitted completely) but it is recommended to put at least some
relevant keywords into this array. If you change the number of lines (between 1 and 20) you have to
adjust the size specification (“d=(1:4)” in the example above).

7.1. PARAMETER FILE: RHD.PAR 103

7.1.2.4 character history

The file history has a similar purpose as the previous entry. It can be used to keep information about
the “parent” parameter file, as in

character history d=(1:2) f=A80 p=1 b=80 n=’File history’

Taken from st35gm04n03_09.par

Last Modification: 2002-01-01

Its use is optional.

7.1.3 Fundamental model parameters

7.1.3.1 real teff

The effective temperature is one of the basic model parameters and is specified e.g. with

real teff f=F13.3 b=4 n=’Effective Temperature’ u=K

3500.0

(for a relatively cool star). Note that this parameter specifies the average output flux only for local models
with closed radiative lower boundary and that in many cases the actual effective temperature can only be
determined a posteriori. For other lower (or inner boundary conditions) the entropy of the instreaming
material s_inflow (see below) is more important than teff itself. See Sect. 7.1.4.4 for different heating
modes controled with heat_mode.

7.1.3.2 character grav mode

Gravity is another characteristic of a stellar atmosphere. The type (or geometry) of the external gravity
field has to be specified e.g. with

character grav_mode f=A80 b=80 n=’Type of gravity field’ &

c0=’constant/central’

central

Three values are possible so far:

• central: For the global “star-in-a-box” case, a central potential is assumed with origin at x=0.
The stellar mass mass_star (Sect. 7.1.3.4) as well as some characteristic radii (r0_grav, r1_grav,
r2_grav, r1_grav, r0_core) have to be specified.

• constant: In the standard local “box-in-a-star” case, the constant gravity specified with grav

(Sect. 7.1.3.3) is directed downward in x3 direction.

• localboxtide: This activates a simple model for the action of a tidal wave on convection in a local
box model. It adds to the case of constant gravity a potential Φ̂ex which is harmonic in space and
time according to

Φex = Φ̂ex cos(khx1 + ωt). (7.1)

It is intended to mimic a travelling tidal wave. Since the setup is considered experimental the
parameters are set by the C_test parameters according:
Φ̂ex = C_test1 (amplitude of potential variations)
kh = C_test2 (horizontal wavenumber)
ω = C_test3 (frequency)

Boundary conditions: in order to be compatible with periodic lateral boundaries kh should be an
integer multiple of 2π times the inverse lateral box size.

7.1.3.3 real grav

In the case of a constant gravity the amount of the acceleration has to specified with

real grav f=E15.8 b=4 n=’Gravity’ u=cm/s^2

27500.0

Setting this value to zero switches off gravity.

104 CHAPTER 7. INPUT AND CONTROL FILES

7.1.3.4 real mass star

In the case of a central the mass (in cgs units) of the star has to be specified with

real mass_star f=E15.8 b=4 n=’Stellar Mass’ u=g

9.94500e+33

7.1.3.5 real r0 grav

To avoid the central singularity in a 1/r potential it is smoothed in the center to give a central potential
of 1/r0_grav, specified with

real r0_grav f=E15.8 b=4 n=’Inner Smoothing Radius’ u=cm

9.45833e+12

This parameter should always be non-zero for a central potential of a global model. For local models,
this parameter specifies the depth of the lower heating and damping region, see Sect. 7.1.4.4.

7.1.3.6 real r1 grav

The density in an atmosphere in hydrostatic equilibrium can decline to very low values. To artificially
enlarge the pressure (and density) scale height in the outer layers of the star (the corners of the box) the
gravity can be reduced by defining the potential at infinity to be 1/r1_grav, specified with

real r1_grav f=E15.8 b=4 n=’Outer Smoothing Radius’ u=cm &

c0=’0.0: Not used’

11.35000e+13

Setting this parameter to zero gives the usual 1/r behavior of the potential in the outer layers but
also chooses another smoothing formula in the central part (where r0_grav is relevant). But a value
somewhat larger than the remotest corner of the box effectively cancels this artificial smoothing in the
outer layers.

7.1.3.7 real r2 grav

Using r2_grav instead of r1_grav means that a potential function more appropriate for a polytropic
stellar interior model is used. It can be set, e.g. with

real r2_grav f=E15.8 b=4 n=’Outer Smoothing Radius’ u=cm &

c0=’0.0: Not used’

11.35000e+13

Setting this parameter to zero means the potential parameterized with r1_grav is used. This pa-
rameter is similar to r1_grav, i.e., it enlarges the pressure scale height in the outer layers but does not
change the smoothing formula in the center. This parameter is only effective if r1_grav is set to zero.

7.1.3.8 real r0 core

To insert energy in a sphere different with a radius other than r0_grav (the default), the heating radius
r0_core can be specified separately, e.g. with

real r0_core f=E15.8 b=4 n=’Core Radius’ u=cm

9.45833e+12

If this parameter is not specified or set to zero r0_grav is used as the radius of the core.

7.1. PARAMETER FILE: RHD.PAR 105

7.1.3.9 character centrifugal force

Usually, a centrifugal force is applied if nu_rotation6=0. To switch it off even for a non-zero rotation
rate, the parameter centrifugal_force can be used, e.g. by setting

character centrifugal_force f=A80 b=80 n=’Switch on/off the centrifugal force’ &

c0=’on: default, off: no centrifugal force, even for non-zero nu_rotation’

off

Two alternative values are possible so far:

• on: This is the default and can be set even for non-rotating objects.

• off: This skips the application of the centrifugal force in case of a non-zero rotation rate. In this
case, only the Coriolis force is applied.

By default, the centrifugal force is activated if the rotation rate nu_rotation is non-zero, but only for
global models as the centrifugal force for local models would in effect only modify the value of the gravity
constant.

7.1.3.10 real nu rotation

To transform onto a rotating coordinate-system a rotation rate can be specified with e.g.

real nu_rotation f=E15.8 b=4 n=’Rotation frequency’ u=1/s

0.01

The potential is modified by adding terms due to a centrifugal force unless centrifugal_force is set
to off. In addition, a Coriolis force is applied during the hydrodynamics step.

7.1.3.11 real ar rotationaxis

The rotation axis can be specified with

real ar_rotationaxis f=E10.4 b=4 p=1 d=(1:3) n=’Rotation axis’ u=1

1.0

0.0

0.0

The default value is (0.0,0.0,1.0) and should be used for rotating global models. A different axis only
makes sense for local models.

7.1.4 Boundary conditions (general)

The boundary conditions at the six sides of the computational box cannot be specified independently.
For the naming convention of the boundaries a gravitational acceleration in -x3 direction is assumed.
Accordingly, there is a bottom and a top boundary, and four side boundaries.

All boundary conditions of the hydrodynamic case are available in the MHD module.

7.1.4.1 character side bound

The boundary condition at all four sides is given by e.g.

character side_bound f=A80 b=80 n=’side boundary conditions’ &

c0=’closed, transmitting, periodic’

transmitting

Possible values are:

• reflective: closed wall, no gravity, no radiation. The velocity vector is mirrored at the boundary.

• constant: open boundary with constant extrapolation of all values, no gravity, no radiation.

• closed, closedtop: closed wall, can handle gravity, open for outward radiation.

106 CHAPTER 7. INPUT AND CONTROL FILES

• periodic: periodic boundaries for hydrodynamics, radiation.

• transmitting: transmitting boundary for hydro and outward radiation.

Any of these values can be specified. But in fact, not all of them are recognized by all modules. Therefore
some parameters are for test purposes (e.g. shock calculations) only. In simulations of a solar-like star
with the MSrad radiation transport module the side boundaries have to be periodic. In simulations of
a red supergiant all boundaries (including the sides) will typically be transmitting. As an alternative,
closed boundaries can be chosen in this case.

7.1.4.2 character top bound

The boundary condition at the top of the model is given by for instance

character top_bound f=A80 b=80 n=’top boundary conditions’

transmitting

Possible values are:

• reflective: closed wall, no gravity, no radiation. The velocity vector is mirrored at the boundary.

• constant: open boundary with constant extrapolation of all values, no gravity, no radiation

• closed, closedtop: closed wall, can handle gravity, open for outward radiation.

• periodic: periodic boundaries for hydrodynamics.

• transmitting: transmitting boundary for hydro and outward radiation: exponential decrease of
density (standard open boundary condition).

• transmitting2: transmitting boundary for hydro and outward radiation: exponential decrease of
density and extra velocity treatment.

• transmitting3: transmitting boundary for hydro and outward radiation: constant density extrap-
olation.

In almost every simulation of stellar convection a transmitting top boundary will be selected, the
closed one is an alternative. The periodic condition is only recognized by the hydrodynamics routines
and not by any radiation transport routine.

7.1.4.3 character bottom bound

The boundary condition at the bottom of the model is given for instance by

character bottom_bound f=A80 b=80 n=’bottom boundary conditions’ &

c0=closedbottom

transmitting

Possible values are:

• reflective: closed wall, no gravity, no radiation. The velocity vector is mirrored at the boundary.

• constant: open boundary with constant extrapolation of all values, no gravity, no radiation.

• closed, closedtop: closed wall, can handle gravity, open for outward radiation.

• closedbottom: closed wall, handles gravity, radiation in diffusion approximation.

• closedbottom2: closed wall, handles gravity, radiation in diffusion approximation. In this version,
the extrapolation of quantities should be smoother than for closedbottom.

• periodic: periodic boundaries for hydrodynamics.

7.1. PARAMETER FILE: RHD.PAR 107

• transmitting: transmitting boundary for hydro and outward radiation. The parameters
real c_tchange, real c_tsurf, and real c_hptopfactor have to be specified.

• inoutflow: ”classical” open lower boundary for deep convection, gravity and radiation possible.
The parameters real s_inflow, real c_schange, and real c_pchange have to be specified.

• inoutflow2: variant of the open lower boundary condition. The parameters real s_inflow,
real c_schange, real c_pchange have to be specified. In this version, the extrapolation of quan-
tities should be smoother than for inoutflow.

In simulations of a solar-like star with the MSrad radiation transport module the bottom boundary is
typically of type “inoutflow”. A supergiant simulation will have a transmitting lower boundary.

7.1.4.4 character heat mode

The mode in which energy is supplied can be adjusted with this parameter. The classical choice is to leave
it empty, in which case the mode is chosen from s_inflow (see Sect. 7.1.4.7) and luminositypervolume
(see Sect. 7.1.4.6). Example:

character heat_mode f=A80 b=80 n=’Heating mode’ &

c0=’-/bottom_entropy1/bottom_energy1’ &

c1=’core_entropy1/core_energyentropy1/core_energy1/core_energy2’

bottom_entropy1

Possible values, so far:

• : (empty). The classical value. For local models the energy comes through the lower boundary,
either by radiation (for a closed bottom boundary closedbottom) or by convection + radiation (for
an open bottom boundary inoutflow).

• bottom_entropy1: The entropy in the bottom layers (defined as being less than r0_grav above
the bottom of the model) is adjusted towards s_inflow on a rate given by c_schange.

• bottom_energy1: Energy in the bottom layers (defined as being less than r0_grav above the
bottom of the model) is added according to teff.

• core_entropy1: The entropy in the core is adjusted towards s_inflow on a rate given by
c_schange.

• core_energyentropy1: The entropy in the core is adjusted towards the mean core entropy (i.e.,
smoothed) on a rate given by c_schange. However, the total energy input is added according to
luminositypervolume. This avoids a local pile up of energy in case of a strong core drag force
(Sect. 7.1.4.22) or just slow flows.

• core_energy1: Energy in the core is added according to luminositypervolume.

• core_energy2: Energy in the core is added according to luminositypervolume with a Gaussian
distribution of the energy source.

7.1.4.5 character hdcoreheatprofile

This parameter allows to choose between various radial profiles for the core heating. It may be called by

character hdcoreheatprofile f=A80 b=80 n=’Core heat profile’

Constant

Possible values are:

• Constant, Constantdei: Apply the same change of ei in all core volume elements, (old) default.
This gives a larger change of ρei than Constantdrhoei in the central part of the core where the
density is higher.

• Constantdrhoei: Apply the same change of ρei in all core volume elements.

108 CHAPTER 7. INPUT AND CONTROL FILES

7.1.4.6 real luminositypervolume

The luminosity of a “star-in-a-box” or a local model with the appropriate heat_mode can be set with
this parameter. To avoid numbers that do not fit into a 4 Byte real the luminosity per volume has to be
specified as e.g. in

real luminositypervolume f=E15.8 b=4 n=’Luminosity per core volume’ &

u=’erg/cm^3/s’

4.5E-02

The reference volume is 4/3π r03grav or 4/3π r03core. If this parameter is set to a value of 0.0 or below
the entropy of the material within the core (defined by as all cells within radius r0_grav) is adjusted
instead.

7.1.4.7 real s inflow

The entropy of the material streaming through an open boundary of type “inoutflow” into the model
can be specified e.g. with

real s_inflow f=E15.8 b=4 n=’Entropy of core material’ &

u=erg/K/g

3.25E+09

In the case of a central potential, the entropy in a sphere with radius r0_grav is adjusted towards this
entropy value. In both geometries (supergiant as well as solar) this value is very important as it finally
(but indirectly) determines the luminosity and effective temperature of the star. A value of 0.0 (default)
or below disables this energy input.

7.1.4.8 real s inflradgrad

In the case of a central potential, one can decrease the entropy in the very center of the core to generate
some extra braking buoyancy, e.g. with

real s_inflradgrad f=E15.8 b=4 n=’Radial gradient of core entropy’ &

u=erg/K/g

1.0E+06

While the value of the core entropy s_inflow is typically of the order of 1.0E+09, this parameter is
typically of the order of 1.0E+06. A value of 0.0 (default) causes a zero gradient.

7.1.4.9 real s infllatgrad

In the case of a central potential, one can enforce a meridional flow (the x3 axis is the z axis) by
enforcing a lateral entropy gradient in the core, e.g. with

real s_infllatgrad f=E15.8 b=4 n=’Lateral gradient of core entropy’ &

u=erg/K/g

1.0E+06

This might come useful in the case of rotating models. While the value of the core entropy s_inflow is
typically of the order of 1.0E+09, this parameter is typically of the order of 1.0E+06. A value of 0.0
(default) causes a zero gradient.

7.1.4.10 real c schange

The entropy s_inflow of the material in the bottom layer (solar case, inoutflow boundary condition)
or the central region of the (global) model is not just set to the specified but adjusted towards it. The
adjustment rate can be controlled with e.g.

real c_schange f=E15.8 b=4 &

n=’Rate of entropy change for open lower boundary’ u=1

0.3

7.1. PARAMETER FILE: RHD.PAR 109

Guide values are

• 1.0: fast adjustment

• 0.3: typical value

• 0.1: slow adjustment

• <=0.0: not allowed

7.1.4.11 real c pchange

The inoutflow boundary condition not only controls entropy and velocity but also the pressure in the
bottom layers: It is locally adjusted towards the global average to damp out possible instabilities. The
adjustment rate can be specified e.g., with

real c_pchange f=E15.8 b=4 &

n=’Rate of pressure change for open lower boundary’ u=1

1.0

7.1.4.12 real c v3changelinbottom

For the open lower boundary condition (inoutflow and inoutflow2), a damping of the vertical velocity
at the open boundary can be specified, e.g., with

real c_v3changelinbottom f=E15.8 b=4 &

n=’Linear velocity reduction rate at bottom’ u=1

0.0025

The open lower boundary condition tends to produce a slight reduction of the horizontal velocities at the
very bottom. As the HD solver does not apply any extra viscosity at the bottom layers (the MHD solver
has this option), there is a tendency to produce a slight predominance of vertical velocities in the regions
where matter enters the computational box through the lower boundary. By introducing a little bit of
damping of the vertical velocity component, this tendency can be significantly reduced. Guide values are

• 0.0: off: no linear damping

• 0.002: small reasonable value

• 0.005: large, possible useful value

7.1.4.13 real c v3changesqrbottom

For the open lower boundary condition (inoutflow and inoutflow2), an additional damping of the
vertical velocity at the open boundary can be specified, e.g., with

real c_v3changesqrbottom f=E15.8 b=4 &

n=’Quadratic velocity reduction rate at bottom’ u=1

0.002

This damping is stronger for velocities that exceed the rms value of the velocities averaged over the entire
bottom layers.

7.1.4.14 real c visbound

An additional drag force can be added locally in inflow cells in the outer layer when the transmitting
boundary condition is chosen. The value can be set e.g. with

real c_visbound f=E15.8 b=4 &

n=’Boundary drag viscosity parameter’ u=1

0.001

This extra drag force is usually not necessary and should be switched off (with c_visbound=0.0).

110 CHAPTER 7. INPUT AND CONTROL FILES

7.1.4.15 real c rhochangetop

The transmitting upper boundary condition can smooth density fluctuations with this parameter. It is
locally adjusted towards the global average to damp out possible instabilities. It appears to be useful for
the HLLMHD solver. For simulations without magnetic fields, there is no need to set this parameter, so
far. The adjustment rate can be specified e.g. with

real c_rhochangetop f=E15.8 b=4 &

n=’Rate of density change for open upper boundary’ u=1

1.0

Obs.: So far, this parameter only switches the density damping on or off. All positive values have the
same effect as a value of 1.0.

7.1.4.16 real c tchange

In the case of a transmitting upper or outer boundary the temperature of the material streaming into
the model is adjusted with a rate given e.g. by

real c_tchange f=E15.8 b=4 &

n=’Rate of temperature change for open upper boundary’ u=1

0.3

7.1.4.17 real c tsurf

In the case of a transmitting upper or outer boundary the temperature of the material streaming
into the model is adjusted towards a temperature teff*c_tsurf. This temperature can be specified as
fraction of the effective temperature e.g. with

real c_tsurf f=E15.8 b=4 n=’Temperature factor for open upper boundary’ u=1

0.62

The value depends on where the outer boundary is located relative to the photosphere: If the boundary
lies at a point where the solar photospheric minimum temperature is located, it can be fairly small. If the
boundary is far away from the photosphere of a red supergiant, the value can be even smaller. On the
other hand, if the boundary lies somewhere within the solar chromosphere even values above 1.0 might
be reasonable.

7.1.4.18 real c hptopfactor

In the case of a transmitting upper or outer boundary the density stratification outside the model has
to be extrapolated properly. Assumptions about this density affects the amount of mass flowing into the
model. For the extrapolation it is assumed that the density scale Hρ scales with the pressure scale height
Hp as Hρ=Hp/c_hptopfactor.

real c_hptopfactor f=E15.8 b=4 &

n=’Correction factor for surface pressure scale height’ u=1

0.8

Possible values are

• C < 0.0: No effect (actually, a value of 1.0 is chosen).

• 0.0 ≤ C < 1.0: The density scale height is enlarged to account for possible effects of turbulent
pressure on the scale height: The density decays less rapidly with height than in an (isothermal)
hydrostatic stratification.

• C = 1.0: Density scale height is pressure scale height.

• C ≥ 1.0: Density scale height is smaller than pressure scale height. Not really useful.

7.1. PARAMETER FILE: RHD.PAR 111

7.1.4.19 real c radhtautop

Boundary conditions open for (essentially) emergent radiation need the specification of the scale height
of the optical depth to allow for small amounts of irradiation. The parameter can be set e.g. with

real c_radhtautop f=E15.8 b=4 n=’Scale height of optical depth at top’ u=’1’

60.0E+05

Possible values are

• C > 0.0: Older version: τ0(x1, x2) = C ∗ κ(x1, x2) (both MSrad and SHORTRAD).

• C ≤ 0.0: New version: τ0(x1, x2) = abs(C) ∗ Hp(x1, x2) ∗ κ(x1, x2). In this case, a value of
C_radHtautop=-1.0 might be a good choice (MSrad only).

7.1.4.20 real r1 rad

For a “star-in-a-box” and particularly when only “simple” ray directions are allowed in the radiation
transport step the temperature in the outer corners of the box tends to become very small. To artificially
increase the effect of radiative heating the parameter r1_rad can specify a radius beyond which only
positive contributions of the radiative energy transport to the energy budget are taken into account.
This ruins the conservativity of the code in these layers and should be applied only in very remote
corners which are then considered only as sort of extended boundary region but not as part of the “real”
model. The parameter can be specified e.g. with

real r1_rad f=E15.8 b=4 n=’Outer radiation transport radius’ u=cm &

c0=’0.0: Not used’

8.00000e+13

A value of 0.0 (default) or below deactivates this feature.

7.1.4.21 real rho min

During long periods of matter infall the density at an open outer boundary can become very low. To
limit the decrease of the density a lower limit in the extrapolated ghost cells can be set e.g. with

real rho_min f=E15.8 b=4 n=’Minimum boundary density’ u=g/cm^3

1.0E-25

The density within the model will typically not fall much below this value. A value of 0.0 (default) or
below deactivates this feature.

7.1.4.22 real c coredrag

To damp the flow in the core of models with central potential a drag force restricted to the inner part of
the model (r<r0_grav) can be applied. It is controlled e.g. with

real c_coredrag f=E15.8 b=4 n=’Core drag force parameter’ u=1

1.0

A value of 0.0 (default) or below deactivates this feature.

7.1.4.23 character hdcoredragprofile

This parameter allows to choose between various radial profiles for the core drag force used to damp
motions in the core of global models. It may be called by

character hdcoredragprofile f=A80 b=80 n=’Core drag profile’

Linear

Possible values are:

• Constant: Use a local drag force that depends on core radius r0_grav, local sound speed, and
real c_coredrag (default). The overlaid radial profile is a constant.

112 CHAPTER 7. INPUT AND CONTROL FILES

• Linear: Use a local drag force that employs as overlay a linear decay from center to r0_grav.

• Cosine: Use a local drag force that employs as overlay a cosine function from center to r0_grav.

• CosSqr: Use a local drag force that employs as overlay a (cosine2) function from center to r0_grav.

• Constant-Radial: Use the same radial profile as Constant but apply the drag force to the radial
velocity component only.

• Linear-Radial: Use the same radial profile as Linear but apply the drag force to the radial
velocity component only.

• Cosine-Radial: Use the same radial profile as Cosine but apply the drag force to the radial
velocity component only.

• CosSqr-Radial: Use the same radial profile as CosSqr but apply the drag force to the radial
velocity component only.

• Constant-Meridional: Use the same radial profile as Constant but apply the drag force to the
meridional velocity components only (x3 is the z axis).

• Linear-Meridional: Use the same radial profile as Linear but apply the drag force to the merid-
ional velocity components only.

• Cosine-Meridional: Use the same radial profile as Cosine but apply the drag force to the merid-
ional velocity components only.

• CosSqr-Meridional: Use the same radial profile as CosSqr but apply the drag force to the merid-
ional velocity components only.

7.1.5 Boundary conditions (MHD only)

The following parameters are specific to MHD simulations. For MHD calculations they must be set
additional to the hydrodynamic boundary parameters.

7.1.5.1 character side bound mag x1 and side bound mag x2

The boundary condition at the sides perpendicular to the x1 direction and perpendicular to the x2
direction, respectively. They are given by e.g.

character side_bound_mag_x1 f=A80 b=80 n=’side boundary conditions magnetic x1’

fixed

character side_bound_mag_x2 f=A80 b=80 n=’side boundary conditions magnetic x2’

periodic

Possible values are:

• constant: constant extrapolation of all magnetic field components into the ghost cells.

• periodic: periodic continuation of all magnetic field components into the ghost cells.

• fixed: the component normal to the boundary is kept fixed at its inital value. Constant extrapo-
lation applies for the transversal components.

• vertical: constant extrapolation for the vertical component. The transversal cell-centered field is
mirrored, with the opposite sign. That should result in transversal components of the boundary-
centered field being zero at the boundary.

• vertical2: constant extrapolation for the vertical component. The transversal cell-centered field
is set to zero.

7.1. PARAMETER FILE: RHD.PAR 113

• reflective: The magnetic field is mirrored at the boundary. This boundary condition is unphysi-
cal, because the magnetic field is an axial vector and because it violates the divergence free property
of the magnetic field. Therefore, this boundary condition should be used with caution.

The fixed conditions are realized by setting the electric field at those cell edges that coincide with the
physical boundary zero. This is done in the constrained transport module.

7.1.5.2 character top bound mag

The boundary condition at the top of the model is given by for instance

character top_bound_mag f=A80 b=80 n=’bottom boundary conditions magnetic’

vertical

Possible values are:

• constant: constant extrapolation of all magnetic field components into the ghost cells.

• periodic: periodic continuation of all magnetic field components into the ghost cells.

• fixed: the component normal to the boundary is kept fixed at its inital value. Constant extrapo-
lation applies for the transversal components.

• vertical: constant extrapolation for the vertical component. The transversal cell-centered field is
mirrored, with the opposite sign. That should result in transversal components of the boundary-
centered field being zero at the boundary.

• vertical2: constant extrapolation for the vertical component. The transversal cell-centered field
is set to zero.

• oblique: magnetic fields with a given inclination at the boundary. The inclination is specified
through parameters C_magthetaB and C_magphiB.

7.1.5.3 character bottom bound mag

The boundary condition at the bottom of the model is given by for instance

character bottom_bound_mag f=A80 b=80 n=’bottom boundary conditions magnetic’

inoutflow

Possible values are:

• constant: constant extrapolation of all magnetic field components into the ghost cells.

• periodic: periodic continuation of all magnetic field components into the ghost cells.

• fixed: the component normal to the boundary is kept fixed at its inital value. Constant extrapo-
lation applies for the transversal components.

• vertical: constant extrapolation for the vertical component. The transversal cell-centered field is
mirrored, with the opposite sign. That should result in transversal components of the boundary-
centered field being zero at the boundary.

• vertical2: constant extrapolation for the vertical component. The transversal cell-centered field
is set to zero.

• oblique: magnetic fields with a given inclination at the boundary. The inclination is specified
through parameters C_magthetaB and C_magphiB.

• inoutflow: magnetic field can be advected into the computational domain by ascending material
flow. Its strength can be specified with the parameter b1_inflow. The boundary condition for the
hydrodynamic variables must be set to inoutflow too, otherwise this boundary condition is the
same like constant.

114 CHAPTER 7. INPUT AND CONTROL FILES

In the case of inoutflow the magnetic field, which is advected into the computational domain has a
unique component which is in the x1 direction and it is only present where a velocity in the positive x3
direction exists. In all other places, the magnetic field components are constantly extrapolated into the
ghost cells.

7.1.5.4 real b1 inflow

This parameter controls the strength of the inflowing horizontal magnetic field at the lower boundary in
connection with bottom_bound_mag=inoutflow. The default value is 0.0. Example:

real b1_inflow f=E15.8 b=4 &

n=’Strength of inflowing horizontal magnetic field’ u=G

10.0

The unit of this parameter is gauss (no factor
√

4π!).

7.1.5.5 real c magthetab

This parameter specifies the angle between the magnetic field vector and the x3-axis (in radians) in the
case of oblique boundary conditions. The default value is 0.0. Example:

real c_magthetab f=E15.8 b=4 &

n=’angle magnetic field w.r. to the vertical direction’ &

u=rad c0=’used in combination with oblique conditions’

0.523598775598299

7.1.5.6 real c magphib

This parameter specifies the angle between the horizontal component of the magnetic field vector and
the x1-axis (in radians) in the case of oblique boundary conditions. The default value is 0.0. Example:

real c_magphib f=E15.8 b=4 n=’angle magnetic field w.r. to the x-axis’ &

u=rad c0=’used in combination with oblique conditions’

0.0

7.1.6 Equation of state

7.1.6.1 character eosfile

The equation of state file together with the opacity file implicitly determine the chemical composition.
The EOS file can be specified for instance with

character eosfile f=A80 b=80 n=’EOS file name’ &

c0=eos_gamma140.eos/eos_mm20_l.eos/eos_mm00_l3.eos

eos_mm00_l5.eos

There exists an increasing number of files, e.g.:

• eos_mm00_l3.eos: Standard EOS file for solar composition with extra large density range (towards
low densities). There exist two other files for the same composition but smaller density range
(eos_mm00.eos, eos_mm00_l.eos)

• eos_XXXX_l4.eos: Several EOS tables for various compositions.

• eos_mm00_l5.eos: EOS file for solar composition, with temperature range extended to very low
values by keeping µ fixed below 500 K. The number of points for the density sampling has been
reduced. The number of points for the energy sampling has been increased.

• eos_mm20_l.eos: Standard EOS file for metal-poor star ([M/H]=-2.0) with extended range in
internal energy and density (towards lower values). The older file (eos_mm20.eos) did not reach
far enough.

7.1. PARAMETER FILE: RHD.PAR 115

• eos_gamma140.eos: EOS table for simple gas with constant Γ=1.4. In this case all quantities could
be faster computed than by interpolation in a table. Nevertheless, for compatibility reasons (to be
able to use the existing EOS Fortran routines), the table is provided.

• eos_gamma166.eos: EOS table for simple gas with constant Γ=5/3.

• cpheos_mm00.eos: Copenhagen EOS for (their) solar composition.

7.1.6.2 character eospath

The equation of state file does not have to be in the working directory. Instead, its path can be specified
e.g. with

character eospath f=A80 b=80 n=’path of EOS file’ &

c0=/astro/b/bf/for/eos/dat

/home/bf/for/eos/dat

7.1.7 Opacities

7.1.7.1 character opafile

The opacity file can be specified with e.g.

character opafile f=A80 b=80 n=’opacity file name’ &

c0=g2va.opta/big_grey.opta &

c1=’empty -> no radiation transport’

phoenix_opal_grey.opta

So far, there exist already a couple of files, for example:

• davmf.opta:

• f5v.opta:

• g2va.opta:

• g2v_lowhe.opta:

• g2v_m20.opta:

• g2v.opta:

• hmin_p00.opta:

• opal_lowhe.opta:

• opal_m05.opta:

• opal_m10.opta:

• opal_m20.opta:

• phoenix_dust_grey.opta:

• phoenix_dust_ob4.opta:

• phoenix_opal_grey.opta:

• ross_m05.opta:

• ross_m10.opta:

• ross_m20.opta:

116 CHAPTER 7. INPUT AND CONTROL FILES

• sunur1.opta:

• sunur2.opta:

• t5000g44mm20.opta:

• t5000g47mm20.opta:

• t6300g40mm20.opta:

• t6500g44mm20.opta:

• zzceti1g.opta:

• zzceti1.opta:

7.1.7.2 character opapath

The opacity file does not have to be in the working directory. Instead, its path can be specified e.g. with

character opapath f=A80 b=80 n=’path of opacity file’ &

c0=/astro/b/bf/for/opa/dat

/home/bf/for/opa/dat

7.1.8 Hydrodynamics control (HD and MHD)

Many parameters in the control file that are valid for the HD module also apply for the MHD mod-
ule. A few parameters have somewhat different options for both modules (hdtimeintegrationscheme:
Sect. 7.1.8.2, hdsplit: Sect. 7.1.8.3, character reconstruction: Sect. 7.1.8.4). Several parameters have
meanings only for the HD (see Sect. 7.1.9) or the MHD module (see Sect. 7.1.10) and are ignored in the
other one.

hdScheme hdTimeIntegrationScheme hdSplit CCourMax CSndCourMax comment

Roe Single 123 1 old default
Roe Single unsplit 1/D don’t use
Roe Single CTU 1 1/2 for D=3 recommended default
Roe RungeKutta2 unsplit 1/D small Mach-number flow
Roe RungeKutta3 unsplit 1/D

HLLMHD Hancock 123 ≈ 1 recommended default
HLLMHD Hancock unsplit ≈ 1
HLLMHD RungeKutta2 unsplit ≈ 1/D
HLLMHD RungeKutta3 unsplit ≈ 1/D

Table 7.1: List of reasonable combinations of options for HD and MHD solver. The columns are the type
of the (M)HD scheme, see Sect. 7.1.8.1, the time-integration scheme, see Sect. 7.1.8.2, the (directional)
splitting method, see Sect. 7.1.8.3, the maximum Courant number (where D is the dimension of the
computational box), see Sect. 7.1.20.6, the maximum sound-Courant number (where D is the dimension
of the computational box) only specified for the case where it is actually a new constraint in addition to
the normal Courant condition, see Sect. 7.1.20.9, and a comment.

7.1.8.1 character hdscheme

With this parameter, the type of the hydrodynamics scheme can be specified as in

character hdscheme f=A80 b=80 n=’Hydrodynamics scheme’ &

c0=’Roe (approximate Riemann solver of Roe type)’ &

c1=’RoeMagKin (Roe solver + kinetic magnetic field transport)’ &

c2=’RoeMHD/HLLMHD (MHD solver)’ &

7.1. PARAMETER FILE: RHD.PAR 117

c3=’None (skip hydrodynamics step entirely)’

Roe

Possible values are

• None: The hydrodynamics step is skipped entirely (for test purposes). Note that in this case some
initializations necessary for the generation of the mean file are omitted, too.

• Roe: (default) The standard approximate Riemann solver of Roe-type is activated. This value will
be chosen for pure HD simulations without magnetic fields.

• RoeMagKin: The standard Roe solver is extended to transport passively a magnetic field. This
is a test implementation to check if the general magnetic-field handling works. For proper MHD
simulations use HLLMHD instead. This option is currently deactivated.

• RoeMHD: Use the MHD Roe solver. This option is currently deactivated.

• HLLMHD: Use the MHD HLL solver (the recommend value for MHD simulations).

7.1.8.2 character hdtimeintegrationscheme

With this parameter, the type of the time-integration scheme can be specified as in

character hdtimeintegrationscheme f=A80 b=80 n=’Time-integration scheme’ &

c0=’Single/Hancock/Euler1/RungeKutta2/RungeKutta3’

Single

Possible values are

• Single: (default for HD Roe) Compute all updates in one single step. Terms higher order in time
are provided by the Roe solver depending on the order of the reconstruction scheme.

• Hancock: (default for MHD HLLE) Terms of second order in time are approximated by a Hancock
predictor step.

• Euler1: (only for MHD) A single Euler step is used, which is only first order in time.

• RungeKutta2: A two-step (predictor-corrector) Runge-Kutta step is used.

• RungeKutta3: A three-step Runge-Kutta step is used.

For possible combinations see Tab. 7.1.

7.1.8.3 character hdsplit

With this parameter, the type of the hydrodynamics operator (directional) splitting scheme can be
specified as in

character hdsplit f=A80 b=80 n=’Hydrodynamics directional splitting scheme’ &

c0=’123: directional splitting (default)’ &

c1=’unsplit: unsplit (direct) operator’ &

c2=’CTU: Colellas Corner Transport Upwind scheme (Colella, 1990)’

123

Possible values are

• 123: (default) The standard directional splitting is activated, where the 1D operators for the
individual directions are applied in the given order. So far, only the order 123 is possible.

• unsplit: The standard solver is applied. However, the changes from the individual steps are
computed from (and applied to) the same model configuration. The result is an unsplit scheme.

118 CHAPTER 7. INPUT AND CONTROL FILES

• CTU: Use Colella’s ”Corner Transport Upwind” scheme (’CTU’, see Colella, 1990). It first com-
putesand stores the changes from hydrodynamics in x1, x2, and x3 direction. Then (half of) the
contributions from the steps in x1 and x2 direction are used as sort of a predictor step for the full
(’corrector’) step in x3 direction (and accordingly for the two other directions). At the end, the
three corrector-step contributions are added. That means, that two hydrodynamics steps have to
be performed in each direction with some overhead for copying and adding the contributions. Still,
together with e.g., reconstruction=FRweno, there is a significant improvement for convection at
small Mach numbers compared to 123, vanLeer.

This parameter is recognized by hdscheme=Roe and hdscheme=HLLMHD, although hdscheme=HLLMHD does
not know hdsplit=CTU.

7.1.8.4 character reconstruction

This parameter determines the order and “aggressiveness” of the reconstruction scheme with e.g.

character reconstruction f=A80 b=80 n=’Reconstruction method’ &

c0=Constant c1=Minmod/VanLeer/Superbee c2=PP/PPmimo &

c3=FRmimo,FRmono(2),FRweno(2),FRcont

FRweno2

Possible values are

• Constant: The run of the partial waves inside the cells is assumed to be constant. A highly
dissipative first order scheme results. This values will usually only be used for test (or comparison)
purposes.

• Minmod: Chooses the smallest slope which still results in a second-order scheme. It is the most
diffusive (and most stable) one in this class.

• VanLeer: (default) The first-order reconstruction method. It was recommended and used in various
simulations but is now replaced by a second-order reconstruction.

• Superbee: The “most aggressive” first-order reconstruction method. It results in the steepest
shocks, which works well in some test cases but tends to turn smooth gradients into steps and
might be to difficult for the radiation transport module to handle.

• PPmimo: MinMod reconstruction based on boundary values from PP.

• PP: Chooses the piecewise parabolic reconstruction of the PPM scheme (“Piecewise Parabolic
Method”, see Colella & Woodward, 1984). Results in 3rd order accuracy for the advection.

• FRmimo: MinMod reconstruction based on boundary values from FRmono.

• FRmono: 2nd-order monotonic reconstruction derived from PP, WENO, and MinMod: “Franken-
stein’s Method”.

• FRmono2: 2nd-order monotonic reconstruction derived from PP, WENO, and MinMod. It is identi-
cal to FRmono if c_slopered=0.0 (the usually adopted default choice, see Section. 7.1.9.7). However,
for c_slopered$>$0.0, it uses Constant reconstruction as fallback, instead of Minmod as FRmono

does. This is the recommended fallback version for red-supergiant models.

• FRweno: 2nd-order non-monotonic version of FR. This (or FRweno2) is now the recommended value.

• FRweno2: 2nd-order non-monotonic version of FR. It is identical to FRweno if c_slopered=0.0

(the usually adopted default choice, see Section. 7.1.9.7). However, for c_slopered$>$0.0, it uses
Constant reconstruction as fallback, instead of Minmod as FRweno does. This is the recommended
version for red-supergiant models.

• FRcont: 2nd-order continuous version of FR, unstable except for low Mach numbers.

7.1. PARAMETER FILE: RHD.PAR 119

• HBweno: Common WENO scheme based on three parabolas in a stencil, with an additional “hand-
brake” to fall back to a more stable (monotonic) scheme if the smoothness of all parabolas is bad.
This scheme is (depending on the parameters) even less diffusive than FRweno. It is not strictly
monotonic, neither.

• VAweno: Common (“vanilla”) WENO scheme based on three parabolas in a stencil. This scheme
achieves very high resolution if the lack of monotonicity and general diffusivity can be accepted. It
is identical to HBweno, but without the “handbrake” and therefore even a bit faster.

Usually, the VanLeer reconstruction has been a good choice. If a more stable (and diffusive) scheme
was needed, Minmod could have been used. However, now the variants of the more recent 2nd-order
“Frankenstein’s Method” are better choices, if the additional computational cost is acceptable. Even if
it is not strictly monotonic, the FRweno2 scheme seems to be a good general default for pure-HD models
computed with the Roe solver. The PP reconstruction gives the highest accuracy. However, there is the
possibility that it produces somewhat “noisy” models with small wiggles e.g. in the velocity for extreme
cases – solar models look fine with PP. The newest options are HBweno and VAweno, which are closer to
standard WENO schemes.
The options Constant, SuperBee, and FRcont are just for testing purposes: they have either too much,
sometimes the wrong sign of, or too little diffusion, respectively.
The order of decreasing diffusivity and increasing accuracy is roughly (schemes on a line are similar;
schemes in brackets are for testing only):
(Constant)
MinMod

FRmimo, PPmimo, vanLeer
FRmono

FRweno, HBweno, (Superbee)
PP, VAweno
(FRcont).
However, there are differences how the increase in accuracy is achieved: vanLeer uses (potentially danger-
ous) anti-diffusion (in contrast to MinMod) but needs only a 3-point stencil, whereas PPmimo and FRmimo

don’t have anti-diffusion but need a (more expensive) 5-point stencil. FRweno achieves actually a 2nd-
order-accurate reconstruction also near extrema for reasonably resolved structures (e.g., sufficiently long
wavelengths of sine waves). I.e., it gives up strict monotonicity, whereas PP is strictly monotonic and
achieves low dissipation from avoiding jumps at cell boundaries wherever possible. However, it chops off
(flattens) extrema like all TVD schemes and it shows Gibbs wiggles near a jump that is not surrounded
by constant plateaus but lies in a slope. The 2nd-order scheme FRmono is designed to suppress these
wiggles, too. The highest-resolution schemes are PP (implemented in the MHD module, too) and VAweno

(HD module only).

7.1.8.5 real c gravmu

The time centering of the density that is used for the computation of the gravitational acceleration can
be selected e.g. with

real c_gravmu f=E15.8 b=4 n=’Gravity time centering’ u=1 &

c0=’-1.0: use defaults depending on time-integration scheme’ &

c1=’0.0: density at old time step; 0.5: centered; 1.0: new time step’

0.5

A value of 0.0 is the default for Runge-Kutta-type time integration. The others use 0.5. However,
a larger value (the maximum is 1.0) leads to damping of oscillations in a stratified atmosphere. This is
due to the fact that in a “normally stratified” atmosphere – where the density increases with depth –
the density in any given grid cell usually increases with time during an upward motion (of course, the
divergence of the flow field plays a role, too). Using the density for the computation of the downward -
directed gravitational acceleration at a slightly later time increases this value leading to a stronger
decceleration of the upward motion. This works analogously for downward motions. The parameter is
recognized by the HD and the MHD module.

120 CHAPTER 7. INPUT AND CONTROL FILES

7.1.8.6 integer n hyditer

After each complete hydrodynamic time step the recommendation for the next time step will be chosen
so that n_hyditer iterations will (probably) needed. The parameter can be set e.g. with

integer n_hyditer f=I4 b=4 &

n=’Number of hydrodynamics iterations’ c0=10

8

For a simulation of a solar-type star it will typically be set to 1. E.g. for brown dwarfs with shorter
hydrodynamical time scales values around 10 may be considered. Note, that the hydrodynamics iteration
works somewhat differently than the radiation transport iteration: in the latter case the size of the actual
time step can be determined after computing the fluxes, whereas the hydrodynamics step is (possibly) of
at least second order in time and the time step has to be known in advance.

In the case of the MHD module, this can reduce the computation time significantly because the
MHD time step is often much smaller than the other timestep limits. However, this parameter does not
determine the nuber of substeps directly. Instead, the number of substeps is determined by the requested
timestep and the timestep of each MHD substep which is determined by the standart Courant condition.
So, the number of MHD substeps varies during the simulation. So, the exact value of this parameter has
no direct influence on the number of substeps. If this parameter is set to zero, this features is turned of.
(See also parameter va_max for speeding up MHD simulations.)

7.1.8.7 integer n hydmaxiter

The absolute maximum number of hydro iterations can be specified e.g. with

integer n_hydmaxiter f=I4 b=4 &

n=’Maximum number of hydro iterations’ c0=14

0

If more iterations are needed the computation for the current time step is stopped and resumed with a
smaller one. Usually, n_hydmaxiter will either be set to a value somewhat larger than the recommended
number of iterations (n_hyditer) or to 0 which disables the check for too many iterations completely.
This can be safely allowed in many cases. To disable the iteration of the hydrodynamics sub-step set
n_hyditer=0.

In case of the MHD module, this parameter sets the maximum number of MHD-substeps. If this
parameter is set to zero, the number of MHD substeps is not limited.

7.1.8.8 character hdtmpstructkeepmode

With this parameter, one can control if some temporary large 3D-array structures are kept during the run
of the program or are only allocated when needed (and deleted immediately afterwards). The structures
are used in the HYD, the MHD, and the VIS module. The parameter can be set e.g. with:

character hdtmpstructkeepmode f=A80 b=80 &

n=’Retaining mode for large temporary structures’ &

c0=’Keep(new,default)/Delete(old)’

Keep

The choices are

• Keep: Keep the large temporary structures until the end of the program. This requires some-
what more memory (which during normal CO5BOLD runs is of no concern) but can improve the
performance slightly, because particulary the deallocation of large arrays costs time (new, default).

• Delete: Delete the large temporary structures immediately after they have been used. This mode
can be chosen if memory is a problem (old).

7.1. PARAMETER FILE: RHD.PAR 121

7.1.8.9 integer n hydcellsperchunk

In every directional sub-step neighboring 1D columns are independent from each other. They can be
grouped and computed in chunks of arbitrary size. The approximate number of grid cells per chunk can
be specified e.g. with

integer n_hydcellsperchunk f=I9 b=4 &

n=’Number of cells per hydro chunk’ &

c0=’0 => one 2D slice at a time’ &

c1=’1 => minimum chunk size (inefficient)’ &

c2=’1200: reasonable value’ &

c3=’1000000000: maximum chunk size (inefficient and memory intensive)’

1600

The exact number is determined at run time to get (approximately) equal sizes of the individual
chunks. The choice of this parameter does not affect the result of the computation but the memory
usage and performance: smaller (and more) chunks may result in an optimum cache usage and need the
smallest amount of memory, but result in additional overhead due to frequent subroutine calls. Bigger
(and less) chunks are to be preferred for vector machines and processors with large caches. Very rough
guide values may be

• 1200: Intel Xeon processor

• 2500: Intel Pentium III or Core 2 Duo processor

• 20000: RISC processor

• 100000: Vector machine

Note: For simulations with activated OpenMP on a parallel machine the chunk size has to be made
small enough to allow at least as many chunks as processors (or threads) available. This is particularly
important for models with a small number of grid points (e.g. 2D models). An example is given for the
Hitachi SR8000 in Sect. 4.6.5.

7.1.9 Hydrodynamics control (HD only)

7.1.9.1 integer n hydcellsperchunk2

Only for the HD solver and hdsplit=CTU, the chunk size in i2 direction can be specified independently.
The default is to used integer n_hydcellsperchunk. The approximate number of grid cells per chunk
can be specified e.g. with

integer n_hydcellsperchunk2 f=I9 b=4 &

n=’Number of cells per hydro chunk 2’ &

c0=’around 2400 or 1; 0: (default) use n_hydcellsperchunk’

1

The exact number is determined at run time to get (approximately) equal sizes of the individ-
ual chunks. The choice of this parameter does not affect the result of the computation but the
memory usage and performance, similar to integer n_hydcellsperchunk. However, as accesses to
chunks in i2 direction span many memory pages, the access time is longer than for properly aligned
chunks in i1 direction and somewhat larger (twice...) values might be optimal. Alternatively, a
value of n_hydcellsperchunk2=1 causes a two-stage access where first an entire 2D slice is trans-
posed and copied to achieve properly alignment and then the normal chunk size (specified with
integer n_hydcellsperchunk) is used in a consecutive step.

7.1.9.2 integer n hydcellsperchunk3

Only for the HD solver, the chunk size in i3 direction can be specified independently. The default is to
used integer n_hydcellsperchunk. The approximate number of grid cells per chunk can be specified
e.g. with

122 CHAPTER 7. INPUT AND CONTROL FILES

integer n_hydcellsperchunk3 f=I9 b=4 &

n=’Number of cells per hydro chunk 3’ &

c0=’around 2400 or 1; 0: (default) use n_hydcellsperchunk’

1

The exact number is determined at run time to get (approximately) equal sizes of the individ-
ual chunks. The choice of this parameter does not affect the result of the computation but the
memory usage and performance, similar to integer n_hydcellsperchunk. However, as accesses to
chunks in i2 direction span many memory pages, the access time is longer than for properly aligned
chunks in i1 direction and somewhat larger (twice...) values might be optimal. Alternatively, a
value of n_hydcellsperchunk3=1 causes a two-stage access where first an entire 2D slice is trans-
posed and copied to achieve properly alignment and then the normal chunk size (specified with
integer n_hydcellsperchunk) is used in a consecutive step.

7.1.9.3 integer n hydrkiter

In the case of hdscheme = Roe and hdtimeintegrationscheme = RungeKutta2 (and only there), the
default number of Runge-Kutta sub steps can be increased relative to the default value 2 to improve the
performance in the case of a large ratio of radiative to hydrodynamical time scales. The parameter can
be set e.g. with

integer n_hydrkiter f=I9 b=4 &

n=’Number of Runge-Kutta sub steps’ &

c0=’2: default; 3: some acceleration’

3

Reasonable values are

• 2: (default) The standard predictor-corrector 2nd-order Runge-Kutta step number.
Cost: 2; advance 1; C_hydSoundCourantMax=1/3 =0.333

• 3: Typical recommended value.
Cost: 3; advance 2; C_hydSoundCourantMax=1/3*(3/2)^(1/3)=0.381

• 5: Rather large, still sensible value.
Cost: 5; advance 4; C_hydSoundCourantMax=1/3*(5/4)^(1/3)=0.358

7.1.9.4 real c hydlowmachcsfactor

For very low Mach numbers the over-sensitive sound-wave detection of the Roe solver (for 2D and
3D cases) can be suppressed by choosing a non-zero value for real c_hydlowmachcsfactor. This
is in fact a tiny modification of the Roe solver but changes its behavior significantly and requires
(for C_hydLowMachcsFactor>0.0) hdsplit=unsplit and hdtimeintegrationscheme=RungeKutta2 or
hdtimeintegrationscheme=RungeKutta3. The value can be set e.g. with

real c_hydlowmachcsfactor f=E15.8 b=4 &

n=’Low-Mach-Number sound-speed reduction parameter’ &

c0=’<=0.0: off (old settings, recommended default)’ &

c1=’1.0: small value; 2.0: reasonable value; 5.0: large value’

2.0

Typical choices are

• 0.0: The extra reduction factor is not applied. This is the standard Roe scheme. It is still the
recommended default, excepd for very-low-Mach-number flows.

• 1.0: Smallest meaningful value to switch on the reduction.

• 2.0: Reasonable value

• 5.0: Rather large value

The default is not to use this reduction and leave the parameter at 0.0. However, the improvement for
low-Mach-number flows is significant. This parameter is not recognized by the MHD module.

7.1. PARAMETER FILE: RHD.PAR 123

7.1.9.5 real c hydlowmachcsbase

For very low Mach numbers the over-sensitive sound-wave detection of the Roe solver (for 2D and
3D cases) can be suppressed by choosing a non-zero value for real c_hydlowmachcsfactor. With
real c_hydlowmachcsbase, a minimum value can be chosen as, e.g., in

real c_hydlowmachcsbase f=E15.8 b=4 &

n=’Low-Mach-Number sound-speed reduction base value’ &

c0=’<=0.0: off (old settings); 0.001-0.02: reasonable values’

0.001

Typical choices are

• 0.0: The extra reduction factor is not applied. This is the standard Roe scheme. It is still the
recommended default, excepd for very-low-Mach-number flows.

• <1.0E-06: Dangerously small values

• 1.0E-06: Default

• 0.001 to 0.02: Reasonable values

• 1.0: Switch off the low-Mach-number sound-speed reduction

7.1.9.6 real c hydsmallfluctfactor

In various equations in the Roe solver, an estimate of the relative size of fluctuations is made. With
real c_hydsmallfluctfactor, a scaling factor can be chosen to fine tune the regime of the small-
fluctation treatment, as, e.g., in

real c_hydsmallfluctfactor f=E15.8 b=4 &

n=’Small/large-fluctuation estimate parameter’ &

c0=’<1.0: smaller relative fluctuations ; 1.0: default; >1.0: larger fluctuations’

1.0

Typical choices are

• <1.0: Extend the small-fluctuation treatment towards larger fluctuations. This can can result in a
nicer entropy profile but might be unstable.

• 1.0: Default

• 0.5, 1.0, 2.0, 5.0: Reasonable values

• >1.0: Extend the large-fluctuation treatment towards smaller fluctuations. This improves stability
but leads to artefacts in the entropy stratification under near-adiabatic conditions.

7.1.9.7 real c slopered

A new extra stabilization mechanism can be activated that reduces the slope and flattens the reconstruc-
tion function in case of a strong density contrast (ρoneside/ρotherside > 2 between neighboring cells). This
value can be set e.g. with

real c_slopered f=E15.8 b=4 &

n=’Slope reduction parameter in case of strong density contrast’ u=1 &

c0=’0.00: off (default), 0.02: reasonable value, 0.10: large value’

0.02

Typical choices are

• 0.0: Slope reduction switched off. Original reconstruction is used.

• 0.02: Moderate slope reduction in case of large density jumps.

• 0.10: More pronounced slope reduction in case of strong density contrast.

124 CHAPTER 7. INPUT AND CONTROL FILES

The default is not to use this trick and leave the parameter at 0.0. However, if numerical problems
occur close to strong density jumps one can try to cure them by setting it e.g., to 0.02 or so. One could
even think off other criteria (e.g., low temperatures, very high Mach numbers,...) to activate this slope
reduction. That could be implemented if it would deem beneficial. This parameter is not recognized by
the MHD module.

7.1.9.8 real c reccontshift

The second-order reconstruction schemes except FRcont have the option to make the reconstruction
even more continuous in the case of very low Mach numbers, controlled with C_RecContShift and
C_RecContSteep. The value can be set e.g. with

real c_reccontshift f=E15.8 b=4 &

n=’Enhanced reconstruction continuation parameter 1 for shifting’ &

c0=’0.0: off; 1.0: reasonable value’

0.2

Typical choices are

• 0.0: No attempt is made to make the reconstruction more continuous. The original reconstruction
is used.

• 0.1: Make the transition to a smoother reconstruction at lower Mach numbers.

• 1.0: Reasonable value.

• 10.0: Make the transition to a smoother reconstruction at higher Mach numbers.

While the resulting scheme works for solar simulations, the parameters are really of benefit only in the
case of brown dwarfs or exoplanets or the deep layers of M dwarfs. This parameter is not recognized by
the MHD module.

7.1.9.9 real c reccontsteep

The second-order reconstruction schemes except FRcont have the option to make the reconstruction
even more continuous in the case of very low Mach numbers, controlled with C_RecContShift and
C_RecContSteep. The value can be set e.g. with

real c_reccontsteep f=E15.8 b=4 &

n=’Enhanced reconstruction continuation parameter 2 for steepening’ &

c0=’0.0: off; 0.1: reasonable value’

0.5

Typical choices are

• 0.0: No attempt is made to make the reconstruction more continuous. The original reconstruction
is used.

• 0.01: Make the transition to a smoother reconstruction steeper (at even lower Mach numbers)

• 0.1: Reasonable value.

• 1.0: Make the transition to a smoother reconstruction smoother

While the resulting scheme works for solar simulations, the parameters are really of benefit only in the
case of brown dwarfs or exoplanets or the deep layers of M dwarfs. This parameter is not recognized by
the MHD module.

7.1. PARAMETER FILE: RHD.PAR 125

7.1.9.10 real c recwenoweightcenter

The WENO-style reconstruction schemes VAweno and HBweno (but not the “Frankenstein” versions like
FRweno) allow to set the basic weights for the stencil of each of the three polynomials. This possibility is
given mainly for development purposes. Users will likely not change the default values.

The specifiers “central” and “right” refer to the central and right stencil for finding the value at the
right side of a cell. The “central” stencil includes the left and right neighbor cells. The “right” stencil
is shifted on point to the right. The “left” stencil is shifted on point to the left, furthest away from the
(right) cell boundary under consideration. The value for the central stencil can be set e.g. with

real c_recwenoweightcenter f=E15.8 b=4 &

n=’Weight of central polynomial’ &

c0=’Reasonable values: 0.5..0.8; recommended: 0.6’

0.6

Typical choices are

• 0.3333333: Give the central polynomial 1/3 of the total weight. Together with
c_recwenoweightright=0.5 (Sect. 7.1.9.11), this attributes equal weights to all three stencils.

• 0.5: Low, but reasonable value.

• 0.6: Recommended value. Found by a number of empirical tests to be a good choice together with
c_recwenoweightright=0.6666666 (Sect. 7.1.9.11).

• 1.0: Give all weight to the central polynomial. This essentially kills the central idea of the WENO
scheme and only makes sense for test purposes.

7.1.9.11 real c recwenoweightright

The WENO-style reconstruction schemes VAweno and HBweno (but not the “Frankenstein” versions like
FRweno) allow to set the basic weights for the stencil of each of the three polynomials. The value for the
“right” stencil can be set e.g. with

real c_recwenoweightright f=E15.8 b=4 &

n=’Weight of right polynomial’ &

c0=’Reasonable values: 0.5..0.8; recommended: 0.6666666’

0.6666666

Typical choices are

• 0.0: Give all weight (that does not go to the central polynomial) to the left polynomial. For test
purposes.

• 0.5: Give left and right polynomial equal weight.

• 0.6666666: Recommended value. Found by a number of empirical tests to be a good choice together
with c_recwenoweightcenter=0.6 (Sect. 7.1.9.10).

• 1.0: Give all weight (that does not go to the central polynomial) to the right polynomial. For test
purposes.

7.1.9.12 real c recwenopsifactor

This parameter represents a factor to the “Pairwise Smoothness Indicator” controlling the “handbrake”
that further stabilizes HBweno compared to the standard “Vanilla” WENO scheme VAweno. The value of
the parameter can be set e.g. with

real c_recwenopsifactor f=E15.8 b=4 &

n=’Smoothing factor in case of bad pairwise smoothness match’ &

c0=’Reasonable values: 0.0..30.0; works only with HBweno’

10.0

126 CHAPTER 7. INPUT AND CONTROL FILES

Typical choices are

• 0.0: No additional smoothing. This reduces HBweno to the (faster) VAweno. For test purposes only.

• 1.0: Weak smoothing

• 4.0: Reasonable value.

• 16.0: Strong smoothing.

Those values might have to be increased if c_reccontshift (Sect. 7.1.9.8) is used. Typically,
c_recwenopsifactor → c_recwenopsifactor/c_reccontshift.

7.1.9.13 character hdtransvelomode

This parameter controls the treatment of advection of transverse velocities. It can be set e.g. with:

character hdtransvelomode f=A80 b=80 &

n=’Mode for transverse velocity advection’ &

c0=’Normal(default)/CA1/CA2/CA3/CA4(recommended)’

CA4

The choices are

• Normal, ’ ’: Compute flux of transversal momentum with standard Roe treatment (old, default)

• CA1: Compute flux of transversal momentum with consistent advection, version 1. Use mass flux
and upwind density to determine flow speed. Actually recompute transversal velocities.

• CA2: Compute flux of transversal momentum with consistent advection, version 2. Use mass flux
and Roe-mean density (ρ̃) to determine flow speed. Actually recompute transversal velocities.

• CA3: Compute flux of transversal momentum with consistent advection, version 3. Use mass flux
and upwind density to determine flow speed. Compute transversal momentum fluxes from mass
flux and diffusive momentum flux.

• CA4: Compute flux of transversal momentum with consistent advection, version 4. Use mass flux
and Roe-mean density (ρ̃) to determine flow speed. Compute transversal momentum fluxes from
mass flux and diffusive momentum flux (recommended).

For instance for a 2D Sedov blast wave problem, the new modes give less artifacts close to the axes than
the old mode Normal. The four new advection types are made of to choices for the way to compute the
effective flow speed across a cell boundary (different density values can be used) and two ways to compose
the final transversal momentum fluxes. Version CA4 is recommeded. This parameter is not recognized by
the MHD module.

7.1.9.14 character hdentropywavemode

This parameter controls the computation of the Roe correction flux for the entropy wave. It can be set
e.g. with:

character hdentropywavemode f=A80 b=80 &

n=’Mode for entropy wave type’ &

c0=’Normal/Entropy1/Entropy2/Entropy3M/Entropy3Ms/Entropy3gMps(recommended)’

Entropy3gMps

The choices are

• Normal, ’ ’: Compute entropy-wave flux with standard Roe treatment from pressure and density,
(old, default).

• Entropy1: Compute entropy-wave flux from entropy. This only works well for small Mach numbers.

7.1. PARAMETER FILE: RHD.PAR 127

• Entropy2: Compute entropy-wave flux from entropy and pressure.

• Entropy3M: Compute entropy-wave flux from entropy, pressure, and density. In fact, an cases
Normal and Entropy1 are interpolated according to the Mach number.

• Entropy3Ms: Compute entropy-wave flux from entropy, pressure, and density. In fact, an cases
Normal and Entropy1 are interpolated according to the Mach number and entropy fluctuations.

• Entropy3gMps: Compute entropy-wave flux from entropy, pressure, and density. In fact, an cases
Normal and Entropy1 are interpolated according to the Mach number and fluctuations in pres-
sure (directly and after subtracting the hydrostatic pressure correction) and entropy. This case is
recommended.

The Normal computation with the standard Roe procedure is optimized for shocks and works also for
small fluctuations in density and pressure. However, in the case of a nearly adiabatic stratification, the
density and pressure fluctuations between adjacent depth points induce some spurious fluxes. These
are avoided by reconstructing the entropy directly (Entropy1). However, that does not work well for
shocks. Therefore, an interpolation between the standard reconstruction based on pressure and density
and another one based on entropy is recommended (Entropy3gMps). This parameter is not recognized
by the MHD module.

7.1.9.15 character hdenthalpyavgmode

This parameter controls the type of averaging used to get from the cell-centered enthalphy (flux) the
boundary-centered enthalphy (flux). To this flux, the Roe corrections are added. It can be set e.g. with:

character hdenthalpyavgmode f=A80 b=80 &

n=’Mode for enthalpy averaging’ &

c0=’Normal(old default)/CA1/CA1g/CA1gMps(recommeded)/CA1M/CA1Ms/CA1p/CA1s’ &

c1=’CA2/CA2g/CA2M/CA2p/CA2s/CA3/CA4’

CA1gMps

The choices are

• Normal, ’ ’: Use the standard Roe-averaging of the enthalpy + kinetic-energy fluxes, (old, default).

• CA1: Average the enthalpy and multiply with the average mass flux. Average the kinetic energy
fluxes as in the standard Roe case.

• CA1g: Use the consistent-advection centering for the average enthalpy flux as in CA1 for small
fluctuations. Switch smoothly to the Normal Roe averaging for large non-hydrostatic pressure
fluctuations.

• CA1gMps: Use the consistent-advection centering for the average enthalpy flux as in CA1 for small
Mach numbers. Switch smoothly to the Normal Roe averaging for large Mach numbers or large fluc-
tuations fluctuations in pressure (directly and after subtracting the hydrostatic pressure correction)
and entropy. This case is recommended.

• CA1M: Use the consistent-advection centering for the average enthalpy flux as in CA1 for small Mach
numbers. Switch smoothly to the Normal Roe averaging for large Mach numbers.

• CA1Ms: Use the consistent-advection centering for the average enthalpy flux as in CA1 for small
Mach numbers. Switch smoothly to the Normal Roe averaging for large Mach numbers or large
entropy fluctuations.

• CA1p: Use the consistent-advection centering for the average enthalpy flux as in CA1 for small
pressure fluctuations. Switch smoothly to the Normal Roe averaging for large pressure fluctuations.

• CA1s: Use the consistent-advection centering for the average enthalpy flux as in CA1 for small
entropy fluctuations. Switch smoothly to the Normal Roe averaging for large entropy fluctuations.

128 CHAPTER 7. INPUT AND CONTROL FILES

• CA2: Average the enthalpy plus kinetic energy and multiply with the average mass flux.

• CA2g: Use the consistent-advection centering for the average enthalpy plus kinetic energy flux as in
CA2 for small fluctuations. Switch smoothly to the Normal Roe averaging for large non-hydrostatic
pressure fluctuations.

• CA2M: Use the consistent-advection centering for the average enthalpy plus kinetic energy flux as in
CA2 for Mach numbers. Switch smoothly to the Normal Roe averaging for large Mach numbers.

• CA2p: Use the consistent-advection centering for the average enthalpy plus kinetic energy flux as in
CA2 for small pressure fluctuations. Switch smoothly to the Normal Roe averaging for large pressure
fluctuations.

• CA2s: Use the consistent-advection centering for the average enthalpy plus kinetic energy flux as in
CA2 for small entropy fluctuations. Switch smoothly to the Normal Roe averaging for large entropy
fluctuations.

• CA3: Take the Roe tilde average enthalpy plus kinetic energy and multiply with the computed mass
flux. This is a more experimental version and not generally recommended.

• CA4: Averaging the enthalpy and multiply with the computed mass flux. This is a more experimental
version and not generally recommended.

Here, ’CA1’ and ’CA2’ behave in a similar way, whereas’CA3’ and ’CA4’ are essentially just for tests. I
prefer the CA1 variant for the time being. However, both CA1 and CA2 work only well for small fluctuations
and Mach numbers. Therefore, one of the modified schemes should be used. Again, they are rather similar
even if the implemented creteria are rather different. While most of the versions work for “ordinary”
main-sequence models, the comparably pooly resolved red-supergiant models (with large entropy step
and Mach numbers) require a combination of the criteria above. Therefore, CA1gMps is recommended
(for all type of models in general). This parameter is not recognized by the MHD module.

7.1.9.16 real c hydpredfactor

The ”hydrostatic pressure correction” terms in the two acoustic waves are always present. However, for
the entropy wave and the ”ionization wave” it is not quite clear if the terms should be there (the classical
default) or if they should be set to zero. The value of a factor in front of these terms can be set e.g. with

real c_hydpredfactor f=E15.8 b=4 &

n=’hydrostatic pressure reduction in waves 3 and 6’ u=1 &

c0=’0.0: Deactivation of pressure reduction terms’ &

c1=’1.0: Activation of pressure reduction terms (default)’

0.0

Possible choices are

• 0.0: Deactivation of pressure reduction terms in waves 3 and ”6” in Roe solver

• 1.0: Activation of pressure reduction terms in waves 3 and ”6” in Roe solver (default)

This parameter is only recognized for hdEntropyWaveMode=’Normal’ which is not recommended, any-
more. This parameter is not recognized by the MHD module.

7.1.9.17 real c hydsdiffvelo

With this parameter an extra energy diffusion down an entropy step (after reconstructing the entropy)
can be activated. For the diffusion velocity all three velocity components are used, i.e., there is a diffusion
even transversal to the flow speed. This makes the diffusion more isotropic and lets numerical solutions
to the Sedov-blast-wave problem look smoother. The value can be set e.g. with

7.1. PARAMETER FILE: RHD.PAR 129

real c_hydsdiffvelo f=E15.8 b=4 &

n=’Parameter for energy diffusion down an entropy step’ u=1 &

c0=’typically 1.0’

1.0

Possible choices are for example

• 0.0: No extra energy diffusion down an entropy gradient (default).

• 0.2: Small value

• 1.0: Reasonable value

• 3.0: Large value

It acts on the entropy but only on the fraction of the jump that is still there after the reconstruction
– unlike C_hydTdiffLin and C_hydTdiffMach that act on local temperature minima (see below). This
parameter is not recognized by the MHD module.

7.1.9.18 real c hydvdiffvelo

With this parameter an extra diffusion of the transversal velocities (after reconstructing them) can be
activated. For the diffusion velocity all three velocity components are used, i.e., there is a diffusion even
transversal to the flow speed. This makes the diffusion more isotropic and lets numerical solutions to the
Sedov-blast-wave problem look smoother. The value can be set e.g. with

real c_hydvdiffvelo f=E15.8 b=4 &

n=’Parameter for transversal momentum diffusion down a velocity step’ u=1 &

c0=’typically 1.0’

1.0

Possible choices are for example

• 0.0: No extra energy diffusion down an entropy gradient (default).

• 0.2: Small value

• 0.5: Reasonable value

• 1.0: Reasonable value

• 3.0: Large value

The type of dissipation that can be added with this option is similar to that provided by the tensor
viscosity (Sect. 7.1.11). Therefore, I recommend to use only small values (0.5 to 1.0) to reduce the
directional dependence of the dissipation applied by the Roe solver and to use an explicite tensor viscosity
(Sect. 7.1.11) in case of emergencies. This parameter is not recognized by the MHD module (but in fact,
the HLLE solver applies a somewhat similar – but stronger – dissipation by construction).

7.1.9.19 real c hydtdifflin

The Roe-solver correction does not have any dissipation for standing waves and very little for slowly
moving ones – unlike the MHD-HLLE solver that always has quite some minimum dissipation (depending
on the reconstruction, though). The small amount of dissipation is a positive feature when it comes e.g.,
to convection with smaller Mach numbers in the deeper layers of a solar model, or (the absence) of
vertical net mass fluxes in a hydrostatic atmosphere. However, it can be a drawback, e.g., in the case of a
transsonic rarefaction wave, where an entropy fix is applied (since the beginning, see Leveque “Numerical
Methods for Conservation Laws”), or in the (rather quiet) center of a Sedov blast wave where a cross-
like structure with comparably low temperature is visible. This artefact can be removed by applying
the standard tensor viscosity including the energy dissipation down an entropy gradient (controlled with
C_visPrturb) of by the new, rather simple option to the Roe solver to apply additional energy dissipation
down a temperature gradient but only in cells adjacent to a local temperature minimum (in 1D). It works
nicely for the Sedov blast wave and does not have any visible adverse impact in any other cases, so far.

130 CHAPTER 7. INPUT AND CONTROL FILES

I don’t expect it to do any harm for convection simulations and recommend to activate it per default.
Cautious people might not like it and see how well it works without, though. Still, unlike the tensor
viscosity with turbulent Prandtl number there is no viscous flux down the subphotospheric temperature
or entropy gradient (unless there is a local minimum at the bottom). The linear diffusion can be set e.g.
with

real c_hydtdifflin f=E15.8 b=4 &

n=’Parameter 1 for energy diffusion near local temperature minimum’ u=1 &

c0=’typically 0.2, if activated; usually 0.0’

0.0

It just acts on the temperature gradient (in the neighborhood of a local minimum), whereas
C_hydTdiffMach (see below) has an additional factor, that takes velocity gradients into account, which
prevent this type of diffusion from acting in deeper convective layers. I recommend as a default
C_hydTdiffLin=0.0 and non-zero values only in case of an emergency and C_hydTdiffMach=1.0 or
2.0 as a default. These parameters are not recognized by the MHD module.

7.1.9.20 real c hydtdiffmach

Analogously to c_hydtdifflin, an additional energy dissipation down a temperature gradient but only
in cells adjacent to a local temperature minimum (in 1D) can be applied, that has a scaling factor derived
from the Mach number. This Mach-number-dependent diffusion can be set e.g. with

real c_hydtdiffmach f=E15.8 b=4 &

n=’Parameter 1 for energy diffusion near local temperature minimum’ u=1 &

c0=’typically 0.2, if activated; usually 0.0’

1.0

I recommend as a default C_hydTdiffLin=0.0 and non-zero values only in case of an emergency and
C_hydTdiffMach=1.0 or 2.0 as a default. These parameters are not recognized by the MHD module.

7.1.10 Hydrodynamics control (MHD only)

The following parameters apply only to the MHD module (see also Sect. 2.2 for details).

7.1.10.1 character hdcheckflux

With this parameter the CheckFlux routine of the HLLMHD solver can be (des)activated, as e.g. in

character hdcheckflux f=A80 b=80 n=’Switch to activate checking of MHD fluxes’ &

c0=’on/off’

off

This parameter is only recognized by the HLLMHD scheme. Leaving it on might be safer but is definitely
(slightly) slower.

7.1.10.2 integer n orderconstrainedtransport

Order of reconstruction of the electric field in the constrained-transport step. The parameter can be set
e.g. with

integer n_orderconstrainedtransport f=I4 b=4 &

n=’Number of hydrodynamics iterations’ &

c0=’order of reconstruction of electric field in constrained-transport step’ &

c1=’1: Simple arithmetic average (default), 2: Quadratic interpolation’

2

Possible values:

• 1: Simple arithmetic average of fluxes (default).

• 2: Quadratic interpolation of fluxes to the cell edges

This parameter is only recognized by the hdscheme=HLLMHD.

7.1. PARAMETER FILE: RHD.PAR 131

7.1.10.3 integer n rescellsperchunk

The approximate number of grid cells per chunk in the 3D resistivity scheme can be specified e.g. with

integer n_rescellsperchunk f=I9 b=4 &

n=’Number of cells per chunk in resistivity routine’ &

c0=’0 => one 2D slice at a time’ &

c1=’1 => minimum chunk size (inefficient)’ &

c2=’10000: typical value’

20000

The exact number is determined at run time to get (approximately) equal sizes of the individual
chunks. The choice of this parameter does not affect the result of the computation but the memory
usage and performance: Smaller (and more) chunks may result in an optimum cache usage and need the
smallest amount of memory, but result in additional overhead due to frequent subroutine calls. Bigger
(and less) chunks are to be preferred for vector machines and processors with large caches.

7.1.10.4 real c rescourant

The tensor resistivity routines have their own time-step restriction. The recommended typical time step
can be set e.g. with

real c_rescourant f=E15.8 b=4 n=’resistivity Courant factor’ u=1 &

c0=’range: 0.0 < C_resCourant, typically: 0.5’

0.5

7.1.10.5 real c rescourantmax

The absolute upper limit for the resistivity time scale can be set with

real c_rescourantmax f=E15.8 b=4 n=’maximum resistivity Courant factor’ u=1 &

c0=’range: C_resCourant <= C_resCourantmax, typically 1.0’

0.95

Its value should be slightly above c_rescourant.

7.1.10.6 real c resb

This parameter specifies the electric resistivity. Values between 0.0 and 1.0 may be reasonable. Higher
values are possible but drastically reduce the time step. The default value is 0.0. Example:

real c_resb f=E15.8 b=4 &

n=’Parameter for numerical resistivity’ u=1

0.0

The artificial electric resistivity of Stone & Pringle (2001) is used. It is given by ηB = c_resB · |j| ·
(∆x)2/

√
ρ, where ηB is the magnetic diffusivity, j the current density, ∆x a mean width of the grid cell,

and ρ is the density. Values ≤ 0 disactivate this feature.

7.1.10.7 real c resbconst

This parameter specifies a constant magnetic diffusivity ηm. The default value is 0.0. Example:

real c_resbconstant f=E15.8 b=4 &

n=’Parameter for constant magnetic diffusivity’ u=cm^2/s

0.1

A reasonable value can be found by choosing a reasonable value for the magnetic Reynolds number
Remag = (`0v0)/ηm. Values ≤ 0 disactivate this feature.

132 CHAPTER 7. INPUT AND CONTROL FILES

7.1.10.8 real c resepsilon

This parameter controls an additional numerical energy diffusion. Typical values are between 0.0 and
1.0. The default value is 0.0. Example:

real c_resepsilon f=E15.8 b=4 &

n=’Parameter for additional energy diffusion’ u=1

0.5

The diffusion coefficient of the additional energy diffusion is given by ηE = c_resepsilon · |j| ·
(∆x)2/

√
ρ, analog to the magnetic diffusivity c_resB. Values ≤ 0 disactivate this feature.

7.1.10.9 real beta inv

This parameter is used for the dual energy method. It determines which cells are updated with the
thermal energy equation. Example:

real beta_inv f=E15.8 b=4 &

n=’1/beta dual energy parameter’ u=1

-1.0

The criterion is as follows:
if β < 1/beta_inv the equation for the thermal energy is used.
if β > 1/beta_inv the equation for the total energy is used.
β is the plasma β, i.e., the ratio of the gas pressure to the magnetic pressure. If beta_inv is set to
zero, the thermal energy equation is used for all cells. A reasonable value may be 100.0. To deactivate
this feature, set beta_inv to a negative value. If not specified, this parameter is set to -1.0. This
parameter works only with hdscheme=HLLMHD. When va_max > 0 then a reasonable value is given by
beta_inv / vAmax2/cs2, where cs is the speed of sound in the region where β < 1/beta_inv.

7.1.10.10 real va max

This parameter limits the Alfvén speed to va_max by an arbitrary reduction of the Lorentz force. Example:

real va_max f=E15.8 b=4 &

n=’maximum Alfven speed’ u=cm/s &

-1.0

This parameter is only recognized in conjunction with hdscheme=HLLMHD. va_max=5.0E+06 might be
a reasonable value for some specific applications to the solar photosphere. If not specified this parameter
is set -1.0. Values ≤ 0 disactivate this feature. See also Eq. (2.19).

7.1.10.11 integer n magdiffside

Increases the diffusivity of the scheme near the side boundaries within a thickness of the diffusion layer
of N_magDiffSide computational cells. Example:

integer n_magdiffside f=I9 b=4 &

n=’Number of cells of diffusive side boundary layer’ &

c0=’0 => deactivates this feature’ &

c1=’10: reasonable value’

0

7.1.10.12 integer n magdifftop

Increases the diffusivity of the scheme near the top boundary within a thickness of the diffusion layer of
N_magDiffTop computational cells. Example:

integer n_magdifftop f=I9 b=4 &

n=’Number of cells of diffusive top boundary layer’ &

c0=’0 => deactivates this feature’ &

c1=’10: reasonable value’

0

7.1. PARAMETER FILE: RHD.PAR 133

7.1.10.13 integer n magdiffbottom

Increases the diffusivity of the scheme near the bottom boundary within a thickness of the diffusion layer
of N_magDiffBottom computational cells. Example:

integer n_magdiffbottom f=I9 b=4 &

n=’Number of cells of diffusive bottom boundary layer’ &

c0=’0 => deactivates this feature’ &

c1=’10: reasonable value’

0

7.1.11 Tensor-viscosity control

In most test problems it is not necessary to activate the 2D/3D tensor viscosity anymore. Even when
strong slow shock fronts are aligned with the grid the Roe solver does not run into problems anymore, even
without any additional 2D or 3D viscosity. However, even if the Roe solver can handle sharp shocks by its
own, the radiation transport algorithm might cause trouble because of the enormous opacity variations
across a shock front. Here the tensor viscosity might become useful. In fact, there are two separate
tensor-viscosity routines by now:

The classical one is controlled by c_visSmagorinsky, c_visArfificial, etc. Its use was recommeded
for the old version of the Roe solver. Nowadays, it is only kept for compatability reasons.

The new “point-to-point” tensor viscosity is controlled by c_visP2Pcoeff, etc. (see Sect. 7.1.11.10
below). It has better stability properties than the old version. However, due to the improved stability of
the Roe solver itself the use of this new tensor viscosity formulation is actually less often necessary than
the old one.

7.1.11.1 integer n visiter

While this parameter is named analogously to n_hyditer, it controls a somewhat different behavior of
the viscosity step. While positive values of n_visiter have no meaning, so far, a negative value specifies
the number of hydrodynamics substeps per viscosity step (or rather: how often the viscosity step is called
during the hydrodynamics iteration). The parameter can be set e.g. with

integer n_visiter f=I4 b=4 n=’Number of tensor-viscosity iterations’ &

c0=’<0: Number of hydro substeps per viscosity substep’ &

c1=’ 0: One tensor-viscosity substep per global time step (old, default)’ &

c2=’>0: Not implemented, yet’

-1

Possible values are:

• 0: Do exactly one viscosity step per global time step, independent of the number of hydrodynamics
sub steps. This is the classical behavior (and default).

• -1: Do one viscosity step per hydrodynamics sub step (and vice versa).

• <0: Do -n_visiter hydrodynamics sub steps between viscosity sub steps.

• >0: Not implemented yet. Gives the same result as 0.

For models with long radiative relaxation time scales, a large value of n_hyditer can lead to a significant
speed up. Choosing a small negative value for n_visiter means that the tensor-viscosity sub step is
called sufficiently often. Note, there is not parameter n_vismaxiter. So far, this parameter is only
recognized by the HYD module.

7.1.11.2 real c vissmagorinsky

A turbulent viscosity of Smagorinsky type can be activated e.g. with

real c_vissmagorinsky f=E15.8 b=4 &

n=’Turbulent eddy viscosity parameter (Smagorinsky type)’ u=1

0.5

134 CHAPTER 7. INPUT AND CONTROL FILES

In many cases values around 0.5 are sufficient to stabilize the code. Larger values are only neces-
sary for some nasty under-resolved supergiant models. Setting c_vissmagorinsky = c_visartificial

= c_visexpansion = c_vislinear = c_visp2pcoeff = 0.0 skips the classical tensor-viscosity step
entirely.

7.1.11.3 real c visartificial

A standard artificial viscosity can be activated e.g. with

real c_visartificial f=E15.8 b=4 &

n=’Artificial viscosity tensor parameter’ u=1

0.5

In many cases values around 0.5 are sufficient to stabilize the code. Larger values are only necessary
for some nasty under-resolved supergiant models.

7.1.11.4 real c visexpansion

An additional viscosity can be activated e.g. with

real c_visexpansion f=E15.8 b=4 &

n=’Expansion viscosity tensor parameter’ u=1

1.2

While the standard artificial viscosity acts on compressed regions, this viscosity acts in expansion
areas. Ususally, it is not activated (c_visexpansion = 0.0). However, it might be useful in cases were
strong localized expansions cause problems.

7.1.11.5 real c vislinear

Another viscosity can be activated e.g. with

real c_vislinear f=E15.8 b=4 &

n=’Linear viscosity tensor parameter’ u=1

1.2

In the formulae for the standard (artificial, compression, Smagorinsky) viscosity velocity gradients
appear. That means that in regions with smooth small-amplitude flows these types of viscosity essentially
vanish. Here, the linear viscosity comes in. It uses

√
RgasT as approximation for the sound speed that

is used in the formula for the kinematic viscosity. Ususally, it is not activated (c_vislinear = 0.0). It
might be useful to damp small-amplitude almost linear waves.

7.1.11.6 real c visprturb

The Prandtl number for turbulent mixing can be specified e.g. with

real c_visprturb f=E15.8 b=4 &

n=’Turbulent Prandtl number’ u=1

8.0

Values between 1.0 and 10.0 appear reasonable. Note that larger values lead to smaller amounts
of turbulent mixing! A value of 0.0 switches off the turbulent mixing terms (but not the entire tensor
viscosity).

7.1.11.7 real c vistensordiag

The factor in the stress tensor in front of of the diagonal terms can be set with

real c_vistensordiag f=E15.8 b=4 &

n=’Diagonal factor for viscous stress tensor’ u=1 &

c0=’typically 1.0

1.0

7.1. PARAMETER FILE: RHD.PAR 135

This is not really parameter one would try to adjust. The total amount of viscosity should be con-
trolled with parameters like real c_vissmagorinsky and real c_visartificial. But the parameter
can be used to tentatively switch off the diagonal terms completely or to change its importance compared
to the other terms.

7.1.11.8 real c vistensoroff

The factor in the stress tensor in front of of the off-diagonal terms can be set with e.g.

real c_vistensoroff f=E15.8 b=4 &

n=’Off-diagonal factor for viscous stress tensor’ u=1 &

c0=’typically 0.5

0.5

This is not really parameter one would try to adjust. The total amount of viscosity should be con-
trolled with parameters like real c_vissmagorinsky and real c_visartificial. But the parameter
can be used to tentatively switch off the off-diagonal terms completely or to change its importance
compared to the other terms.

7.1.11.9 real c vistensordiv

The factor in the stress tensor in front of of the divergence terms (also on the diagonal) can be set with
e.g.

real c_vistensordiv f=E15.8 b=4 &

n=’Divergence factor for viscous stress tensor’ u=1 &

c0=’typically -1./3.

0.0

This is not really parameter one would try to adjust. The total amount of viscosity should be con-
trolled with parameters like real c_vissmagorinsky and real c_visartificial. But the parameter
can be used to switch off the divergence terms completely or to change its importance compared to the
other terms. These divergence terms can be used to reduce the effect of the tensor viscosity in the case
of isotropic compression. But this reduction (c_vistensordiv = -0.333333 in 3D, c_vistensordiv =
-0.5 in 2D) is usually switched off.

In addition to the standard tensor viscosity described above, there is a ”point-to-point” viscosity.
It relies on a completely different discretization. It should conserve angular momentum exactly and
guarantee positivity of dissipated energy (for sufficiently small time steps). The ”point-to-point” viscosity
can be used in addition to the standard one – or without.

7.1.11.10 real c visp2pcoeff

The strength of the viscosity can be controlled with e.g.

real c_visp2pcoeff f=E15.8 b=4 &

n=’Point to point viscosity coefficient’ u=1

0.20

This parameter is somewhat analogous to real c_visartificial, see 7.1.11.3. But it acts on com-
pression, expansion, and shear flows. A value of 0.0 switches it off.

7.1.11.11 real c visp2phypsmagorinsky

This parameter can be set with e.g.

real c_visp2phypsmagorinsky f=E15.8 b=4 &

n=’Smagorinsky parameter for point-to-point viscosity’ u=1

0.3

This parameter is equivalent to real c_vissmagorinsky (see 7.1.11.2) with the classical implemen-
tation of the viscosity tensor. A value of 0.0 switches it off. Values of 0.3 or 0.5 are reasonable.
Although the underlying formula (and theory) is more complex, the effects are rather similar to that of
real c_visp2pcoeff. If additional smoothing is required, either of these parameters (or both) can be
set to non-zero values.

136 CHAPTER 7. INPUT AND CONTROL FILES

7.1.11.12 real c visp2phypartificial

This parameter can be set with e.g.

real c_visp2phypartificial f=E15.8 b=4 &

n=’Artificial point-to-point tensor-viscosity parameter’ u=1

0.0

This parameter is equivalent to real c_visartificial (see 7.1.11.3) with the classical implemen-
tation of the viscosity tensor. A value of 0.0 switches it off. Values of 0.3 to 1.0 are reasonable. The
viscosity controlled with this parameter is meant to act mostly on shocks.

7.1.11.13 real c visp2phypexpansion

This parameter can be set with e.g.

real c_visp2phypexpansion f=E15.8 b=4 &

n=’Parameter for point-to-point expansion tensor viscosity’ u=1

0.0

This parameter is equivalent to real c_visexpansion (see 7.1.11.4) with the classical implementation
of the viscosity tensor. A value of 0.0 switches it off. The viscosity controlled with this parameter is
meant to limit or smooth strong expansion events where density, pressure, temperature, and/or entropy
can drop significantly. This parameter is not frequently set to non-zero values.

7.1.11.14 real c visp2pdivrhov

This parameter can be set with e.g.

real c_visp2pdivrhov f=E15.8 b=4 &

n=’Point-to-point mass-flux-divergence viscosity coefficient’ u=1

0.0

A value of 0.0 switches it off. Values of 0.5 or even 2.0 are reasonable. The viscosity controlled
with this parameter acts only on compressible flow configurations, i.e., in near-incompressible low-Mach-
number flows it should have hardly any effect. Still, it can be used in exacly such a case to dampen
spurious sound waves for example at the very top of the computational box.

7.1.11.15 real c visp2pincl1

The interaction with the edge neighbor cells with indices (±1± 1 + 0) can be specified with e.g.

real c_visp2pincl1 f=E15.8 b=4 &

n=’Point to point viscosity inclined cell factor 1’ u=1

1.0

Common values are 1.0 (interaction is considered) and 0.0 (no interaction with these cells). The
usual value is 1.0.

7.1.11.16 real c visp2pincl2

The interaction with the corner neighbor cells with indices (±1± 1± 1) can be specified with e.g.

real c_visp2pincl2 f=E15.8 b=4 &

n=’Point to point viscosity inclined cell factor 2’ u=1

0.0

Common values are 1.0 (interaction is considered) and 0.0 (no interaction with these cells). The
usual value is 0.0 to save some computation time.

7.1. PARAMETER FILE: RHD.PAR 137

7.1.11.17 integer n viscellsperchunk

The number of cells per box (or “chunk”) treated by the tensor-viscosity scheme at one call (and by one
thread) can be set e.g. for an Intel Macintosh with

integer n_viscellsperchunk f=I9 b=4 &

n=’Number of cells per viscosity chunk’ &

c0=’0 => old chopping’ &

c1=’50000: reasonable value’

100000

It can be adjusted to improve cache efficiency and to modify the work load distribution onto the
threads (in case of parallel runs with OpenMP). Due to the special handling of boundary cells the
overhead per call increases significantly for small chunks. Typically, larger chunk sizes (compared the
the hydrodynamics chunk sizes set with integer n_hydcellsperchunk, see Sect. 7.1.8.9) are adequate.
On the other hand they should not be too large to limit the usage of temporary memory and to allow
parallelization (the distribution of chunks to threads): For simulations with activated OpenMP on a
parallel machine the chunk size has to be made small enough to allow at least as many chunks as
processors available. This is particularly important for models with a small number of grid points (e.g.
2D models). An example is given for the Hitachi SR8000 in Sect. 4.6.5.

7.1.12 Dust/molecules/hydrogen ionization: General

CO5BOLD can handle a number of additional density arrays. They can be used to describe e.g. the
mass density of dust distribution moments or number densities of molecules. These species are properly
advected with the gas density. There is also already a small number of dust/molecule formation models
available. These models have to be improved in the future and the influence on the radiation field
(opacities, radiation pressure on dust) has to be taken into account.

7.1.12.1 character dustscheme

A scheme for dust or molecule formation and transport can be selected e.g. with

character dustscheme f=A80 b=80 n=’Dust model’ &

c0=’none (default), nosource, dust_simple_01, co_component01_01’ &

c1=’dust_k3mon_01, dust_k3mon_02’

dust_k3mon_01

The following values are currently possible:

• none, None: No handling of any dust/molecule density at all.

• nosource: Skip source term step for dust/molecules entirely, but do the transport.

• dust_simple_01: Simple and unrealistic ’dust’ formation model (only for testing of the numerics).

• co_component01_01: Simple CO formation (from Matthias Steffen) with one component only but
realistic time scales.

• dust_k3mon_01: Simple C-rich dust formation (routines from Susanne Höfner) with one component
only but realistic time scales.

• dust_k3mon_02: Simple C-rich dust formation (routines from Susanne Höfner) with two compo-
nents for dust density and free carbon density.

• dust_k3mon_03: Simple forsterite dust formation (based on routines from Susanne Höfner) with
two components for dust density and free ”forsterite monomer” density.

• dust_bins_01: Multi-size-bin forsterite dust formation (based on Rossow’s equations, see Rossow,
1978) with one bin for the monomers and several bins for the different grain sizes.

• dust_moment04_c2: C-rich dust chemistry, 4 moments (routines from Susanne Höfner).

138 CHAPTER 7. INPUT AND CONTROL FILES

• chemreacnet: chemical reaction networks (routines from Sven Wedemeyer-Böhm and Inga Kamp).

• hiontd: time-dependent hydrogen ionization (routines from Jorrit Leenaarts and Sven Wedemeyer-
Böhm).

7.1.12.2 character dustreconstruction

While usually (i.e., when this parameter is not set) the reconstruction scheme for the additional density
fields is the same as for the normal hydrodynamics quantities (see 7.1.8.4), it can make sense to choose
a strictly monotonic scheme for these additional fields. This scheme can be more (e.g. PP) or less (e.g.
PPmimo) aggressive. It can be chosen e.g. with

character dustreconstruction f=A80 b=80 n=’Reconstruction method for qucs’ &

c0=Constant c1=Minmod/VanLeer/Superbee c2=PP/PPmimo &

c3=FRmimo,FRmono

FRmono

Useful combinations are

• reconstruction=vanLeer, dustreconstruction=Superbee.

• reconstruction=FRweno, dustreconstruction=FRmono.

• reconstruction=FRweno, dustreconstruction=PP.

• reconstruction=HBweno, dustreconstruction=PP.

• reconstruction=HBweno, dustreconstruction=PPmimo.

7.1.12.3 real c dust0X

There are ten parameters (real c_dust01 to c_dust10) to control each dust formation scheme in detail.
A parameter can be given as in

real c_dust01 f=E15.8 b=4 n=’Dust parameter 1’

0.0

The meaning (and unit) can vary from scheme to scheme. The default value is 0.0 in each case.
Important: The parameter real c_dust01 must be set to 1.0 in order to activate advection of particle
densities for the CHEM (chemreacnet) and the HION (hiontd) module. The default value is 0.0, i.e.
advection is switched off.

7.1.12.4 character chem reacfile

The name of the input file containing the chemical reaction network.

character chem_reacfile f=A80 b=80 n=’file name of reaction table’

chem.dat

7.1.12.5 character chem reacpath

The path of the input file containing the chemical reaction network.

character chem_reacpath f=A80 b=80 n=’path of reaction table’

/data/sven/cobold/dat/chem/

7.1.12.6 real chem abumetal

Abundance of the representative metal (’M’, if present) relative to hydrogen (εM = [M]/[H]). A value of
1.0E-04 means there are 104 hydrogen atoms for every metal atom. The metal number density for each
grid cell is then derived via nH = εM ρ/mH (assuming a pure hydrogen gas). This parameter is ignored
when a quc array for the metal is found in the input model.

real chem_abumetal f=E15.8 b=4 n=’Chemical abundance of repres. metal’

1.0E-04

7.1. PARAMETER FILE: RHD.PAR 139

7.1.12.7 character hion datapath

The path of all input files for HION.

character hion_datapath f=A80 b=80 n=’HION data path’

/data/sven/cobold/dat/hion/

7.1.12.8 character hion atomfile

The file name of the model atom for HION.

character hion_atomfile f=A80 b=80 n=’HION atom file name’

H_6.atom

7.1.12.9 character hion abufile

The name of the HION input file containing the chemical abundances.

character hion_abufile f=A80 b=80 n=’HION abundance file name’

abundance.input

7.1.12.10 character hion edensfile

The name of the HION input file containing the electron density table.

character hion_edensfile f=A80 b=80 n=’HION electron density file name’

edens.dat

7.1.12.11 character hion pffile

The name of the HION input file containing the partition functions.

character hion_pffile f=A80 b=80 n=’HION partition function file name’

pf_kurucz.dat

7.1.12.12 real dtime out hion

Time increment for additional HION output. Positive values specify the time increment in seconds,
negative values the increment in computational time steps. Setting the parameter to zero, suppresses the
output.

real dtime_out_hion f=E15.8 b=4 n=’Output file time step (HION)’

-10.0

7.1.12.13 integer hion chunks

Number of chunks to use for HION in order to limit the required memory. Do not make it bigger than
the number of points in the x2 direction.

integer hion_chunks f=I9 b=4 n=’Number of HION chunks’

1

7.1.13 Dust: dustscheme=dust moment04 c2

In this section the parameters for dustscheme=dust_moment04_c2 (4-bin (4 moments) dust scheme for
carbon-rich dust) are described:

140 CHAPTER 7. INPUT AND CONTROL FILES

7.1.13.1 real c dust01

The carbon to oxygen ratio is specified with e.g.

real c_dust01 f=E15.8 b=4 n=’C to O ratio’ u=1

1.4

Larger values mean more dust. Values below 1 make no sense for the current dust model.

7.1.13.2 real c dust02

The oxygen abundance is specified with e.g.

real c_dust02 f=E15.8 b=4 n=’Oxygen abundance’ u=1

6.606934E-04

7.1.13.3 real c dust03

The cutoff for the integration of the degree of condensation is specified with e.g.

real c_dust03 f=E15.8 b=4 n=’cutoff for integration of degree of condensation’ &

u=1

1.0E-05

7.1.13.4 real c dust04

The relative dust opacity factor is specified with e.g.

real c_dust04 f=E15.8 b=4 n=’Relative dust opacity factor’ u=1

1.0

7.1.14 Dust: dustscheme=dust k3mon 03

In this section the parameters for dustscheme=dust_k3mon_03 (simple 2-bin dust scheme for forsterite
dust) are described:

7.1.14.1 integer n dustgrainradius

The number of dust grain radius bins (including one for the monomers) is specified with

integer n_dustgrainradius f=I8 b=4 n=’Number of dust grain radius bins’ &

c1=’Includes: bin for monomers’

2

The default value is 1 (to avoid an empty array). The value should be the same as the upper dimension
in real ar_dustgrainradius. For the current dust scheme, there should always be exactly two bins.

7.1.14.2 real ar dustgrainradius

The radii of the dust grains are specified with e.g.

real ar_dustgrainradius f=E10.4 b=4 p=1 d=(1:2) n=’Dust grain radii’ u=cm

0.0

1.0E-04

The default value is 0.0.

7.1.14.3 real c dust01

The density of the grain material is specified with e.g.

real c_dust01 f=E15.8 b=4 n=’Density of grain material’ u=g/cm^3

3.3E+00

7.1. PARAMETER FILE: RHD.PAR 141

7.1.14.4 real c dust02

The atomic weight of the ”dust monomer” is specified with e.g.

real c_dust02 f=E15.8 b=4 n=’Atomic weight of dust monomer’ u=u

140.71

The value 140.71 should be appropriate for forsterite (Mg2SiO4). The unit is the atomic mass unit.
The default value is 0.0.

7.1.14.5 real c dust03

The number fraction of the rarest component is specified with e.g.

real c_dust03 f=E15.8 b=4 n=’Number fraction of rarest component’ u=1 &

c0=’For Mg2SiO4, Mg is the rarest, its fraction is 3.1187E-05’ &

c1=’Mg2SiO4 contains 2 Mg -> * 1/2 -> 1.55935e-05’

1.55935e-05

For Mg2SiO4 the rarest component is (usually) Mg2. So, half the magnesium abundance is required
as value. The default value is 0.0.

7.1.14.6 real c dust04

The lower dust limit fraction is specified with e.g.

real c_dust04 f=E15.8 b=4 n=’Lower dust limit fraction’ u=1

1.0E-10

It is used in the calculation of the settling velocity where a division by the total density of monomers
and dust is required. To prevent this denominator to become zero a term cdust04 ρ is added. The default
value is 0.0.

7.1.14.7 real c dust05

The minimum number of monomers during condensation is specified with e.g.

real c_dust05 f=E15.8 b=4 n=’Minimum number of monomers during condensation’ u=1

10.0

For very small grains (just one or very few monomers) the condensation rates can be very small in this
dust model: nucleation that would form already small clumps of monomers is not considered. Therefore,
to speed things up a minimum number of monomers can be given that is considered for the condensation
rate. With 1.0 or smaller values the enhancement is switched off. The default value is 0.0.

7.1.14.8 real c dust06

The sticking coefficient for the condensation rate is specified with e.g.

real c_dust06 f=E15.8 b=4 n=’Sticking coefficient’ u=1 &

c0=’For C-rich dust: 0.37; can be between 0 and 1’

1.0

The default value is 0.0.

7.1.15 Dust: dustscheme=dust bins 01

In this section the parameters for dustscheme=dust_bins_01 (multi-size-bin dust scheme for forsterite
dust) are described:

142 CHAPTER 7. INPUT AND CONTROL FILES

7.1.15.1 integer n dustgrainradius

The number of dust grain radius bins (including one for the monomers) is specified with

integer n_dustgrainradius f=I8 b=4 n=’Number of dust grain radius bins’ &

c1=’Includes: bin for monomers’

8

The default value is 1 (to avoid an empty array). The value should be the same as the upper dimension
in real ar_dustgrainradius.

7.1.15.2 real ar dustgrainradius

The radii of the dust grains are specified with e.g.

real ar_dustgrainradius f=E15.8 b=4 p=1 d=(1:8) n=’Dust grain radii’ u=’cm’

0.0

0.00390625E-04

0.0156250E-04

0.06250E-04

0.25000E-04

1.00000E-04

4.00000E-04

16.0000E-04

The default value is 0.0.

7.1.15.3 real c dust01

The density of the grain material is specified with e.g.

real c_dust01 f=E15.8 b=4 n=’Density of grain material’ u=g/cm^3

3.3E+00

7.1.15.4 real c dust02

The atomic weight of the ”dust monomer” is specified with e.g.

real c_dust02 f=E15.8 b=4 n=’Atomic weight of dust monomer’ u=u

140.71

The value 140.71 should be appropriate for forsterite (Mg2SiO4). The unit is the atomic mass unit.
The default value is 0.0.

7.1.15.5 real c dust03

The number fraction of the rarest component is specified with e.g.

real c_dust03 f=E15.8 b=4 n=’Number fraction of rarest component’ u=1 &

c0=’For Mg2SiO4, Mg is the rarest, its fraction is 3.1187E-05’ &

c1=’Mg2SiO4 contains 2 Mg -> * 1/2 -> 1.55935e-05’

1.55935e-05

For Mg2SiO4 the rarest component is (usually) Mg2. So, half the magnesium abundance is required
as value. The default value is 0.0.

7.1.15.6 real c dust04

The lower dust limit fraction is specified with e.g.

real c_dust04 f=E15.8 b=4 n=’Lower dust limit fraction’ u=1

1.0E-10

If the density in a bin relative to the gas density falls below this value, the bin is completely emptied
and the material is added to the bin with the largest dust or monomer density. Typical values are
1.0E-09 or so. The default value is 0.0.

7.1. PARAMETER FILE: RHD.PAR 143

7.1.15.7 real c dust06

The sticking coefficient for the condensation rate is specified with e.g.

real c_dust06 f=E15.8 b=4 n=’Sticking coefficient’ u=1 &

c0=’For C-rich dust: 0.37; can be between 0 and 1’

1.0

Typical values are between 0.0 (deactivating this process) and 1.0. The default value is 0.0. The
standard choice is 1.0.

7.1.15.8 real c dust07

The sticking coefficient for the coagulation rate is specified with e.g.

real c_dust07 f=E15.8 b=4 n=’Sticking coefficient for coagulation’ u=1 &

c0=’Typically between 0 and 1’

1.0

Typical values are between 0.0 (deactivating this process) and 1.0. The default value is 0.0.

7.1.15.9 real c dust08

The sticking coefficient for the coalescence rate is specified with e.g.

real c_dust08 f=E15.8 b=4 n=’Sticking coefficient for coalescence’ u=1 &

c0=’Typically between 0 and 1’

1.0

Typical values are between 0.0 (deactivating this process) and 1.0. The default value is 0.0.

7.1.15.10 real c dust09

The sticking coefficient for the nucleation rate is specified with e.g.

real c_dust09 f=E15.8 b=4 n=’Sticking coefficient for nucleation’ u=1 &

c0=’Typically between 0 and 1’

1.0

Typical values are between 0.0 (deactivating this process) and 1.0. The default value is 0.0. The
standard choice is 1.0.

7.1.16 Radiation-transport control (general)

In this part of the parameter file the radiation transport module has to be selected. Depending on this
selection a couple of additional parameters have to be specified. Table 7.2 gives a list of the parameters
and the modules they apply to. The standard routines are now in the MSrad module for local models
and the SHORTrad module for global “star-in-a-box” models. The LHDrad module is not maintained
very much anymore.

7.1.16.1 character radscheme

So far, there exist three different radiation transport modules. The active on can be selected e.g. with

character radscheme f=A80 b=80 n=’Radiation transport scheme’ &

c0=’LHDrad/MSrad/SHORTrad’ &

c1=’None (skip radiation transport step entirely)’

SHORTrad

Possible values are

• None: Skip radiation transport entirely.

144 CHAPTER 7. INPUT AND CONTROL FILES

Parameter Section LHDrad MSrad SHORTrad

radscheme 7.1.16.1 * * *
opafile 7.1.7.1 * * *
opapath 7.1.7.2 * * *
n_radband 7.1.16.2 * *
n_radminiter 7.1.16.3 * * *
n_raditer 7.1.16.4 * * *
n_radmaxiter 7.1.16.5 * * *
radraybase 7.1.16.6 * * *
radraystar 7.1.16.7 * *
c_tminlimit 7.1.16.8 * *
c_radimplicitmu 7.1.16.9 * *
c_raditereps 7.1.16.10 * *
c_raditerstep 7.1.16.11 * *
n_radtheta 7.1.17.1 *
n_radphi 7.1.17.2 *
n_radsubray 7.1.17.3 *
n_radthickpoint 7.1.17.4 * *
n_radtaurefine 7.1.17.5 * *
n_radrsyslevel 7.1.17.6 *
n_radoutput 7.1.17.7 *
c_radtcool 7.1.17.8 *
c_raddcool 7.1.17.9 *
c_radscool 7.1.17.10 *
c_radtinci 7.1.17.11 *
c_raddinci 7.1.17.12 *
c_radtvisdtau 7.1.18.1 *
c_radtvis 7.1.18.2 *
c_radhtautop 7.1.4.19 * *
c_radcourant 7.1.20.13 * * *
c_radcourantmax 7.1.20.14 * * *
c_radmaxeichange 7.1.20.15 * * *

Table 7.2: List of radiation transport control parameters and the modules they are relevant for.

• LHDrad: (old “supergiant module”) It uses long characteristics and is restricted to an equidistant
grid and open boundaries at all surfaces. Note that the switch -Drhd_r01=1 has to be set during
compilation (see Sect. 4.4.7.1), usually by setting export F90_LHDRAD=1 before calling the configure
script (see Sect. 4.3.1.8).

• MSrad: (“solar module”, local models, “box-in-a-star” models) It uses long characteristics. The
lateral boundaries have to be periodic. Top and bottom can be closed or open. Note that
the switch -Drhd_r02=1 has to be set during compilation (see Sect. 4.4.7.2), usually by setting
export F90_MSRAD=1 before calling the configure script (see Sect. 4.3.1.9).

• SHORTrad: (new “supergiant module”, global models, “star-in-a-box” models) It uses short char-
acteristics and is restricted to an equidistant grid and open boundaries at all surfaces. Note that
the switch -Drhd_r03=1 has to be set during compilation (see Sect. 4.4.7.3), usually by setting
export F90_SHORTRAD=1 before calling the configure script (see Sect. 4.3.1.10).

7.1.16.2 integer n radband

It can be specified whether the grey opacity table or the binned frequency-dependent part of the opacity
table is used during the computation. The grey part contains only one bin. The other (possibly non-grey)
contains one or more bins depending on the table chosen. The parameter is specified with e.g.

7.1. PARAMETER FILE: RHD.PAR 145

integer n_radband f=I4 b=4 n=’Number of frequency bins’ &

c0=’1: grey opacities’ &

c1=’2: non-grey opacities (if available from table)’ &

c2=’3: two bands: 1.grey, 2.CO (density via XCO)’ &

c3=’4: two bands: 1.grey, 2.CO (density from chemistry)’

1

Allowed values are

• 1: Use the grey part of the table

• 2: Use the other (possibly non-grey, frequency-dependent) part of the table

• 3: Use a continuum band plus an infrared band with CO opacity, calculated with CO equilibrium
density

• 4: Use a continuum band plus an infrared band with CO opacity, calculated with CO density
resulting from time-dependent chemistry

7.1.16.3 integer n radminiter

Usually the stability considerations dictate a radiative time step smaller than the hydrodynamics or
tensor-viscosity time step. To remedy this situation it is possible to allow several radiation transport
steps per global time step. Hitherto, all three radiation transport modules support this iteration. The
minimum number of iterations (radiative sub-steps) can be specified e.g. with

integer n_radminiter f=I4 b=4 &

n=’Minimum number of radiation transport iterations’ c0=8

1

If less iterations are needed the time step limit for the next step is increased. This value will in
almost any case (for explicit radiation transport) be set to 1. In the implicit case it is set to a higher
value (typically 5).

7.1.16.4 integer n raditer

After each complete radiative time step the recommendation for the next time step will be chosen so that
n_raditer iterations will (probably) needed. The parameter can be set e.g. with

integer n_raditer f=I4 b=4 &

n=’Number of radiation transport iterations’ c0=10

8

For a simulation of a solar-type star (with comparatively long radiative time scales) it will typically
be set to 1. For stars with shorter radiative time scales values around 10 may be considered. All three
radiation transport modules understand this parameter.

7.1.16.5 integer n radmaxiter

The absolute maximum number of iterations can be specified e.g. with

integer n_radmaxiter f=I4 b=4 &

n=’Maximum number of rad. transport iterations’ c0=30

0

If more iterations are needed the computation for the current time step is stopped and resumed with
a smaller one (which means that the hydrodynamics and the tensor-viscosity step have to be done again).
Usually, n_radmaxiter will either be set to a value somewhat larger than the recommended number of
iterations (n_raditer) or to 0 which disables the check for too many iterations completely. This can
be safely allowed in many cases and has the advantage that there is no need to save the initial model
before calling the radiation transport module, which saves some memory. To disable the iteration of
the radiation transport sub-step set n_radminiter=n_raditer=n_radmaxiter=1. All three radiation
transport modules understand this parameter.

146 CHAPTER 7. INPUT AND CONTROL FILES

7.1.16.6 character radraybase

Using the modules LHDrad or SHORTrad, the orientation of the base axis system can be selected e.g. with

character radraybase f=A80 b=80 n=’Base axis system’ &

c0=’SHORTrad: unity/random/randomcube/randomgroup/alternate’ &

c1=’MSrad: lobatto/dblgaus’

random

Allowed values for radscheme=SHORTrad are:

• unity: (default) During all time steps and radiative sub-steps the direction of the rays stays the
same.

• random: At each time step (and radiative sub-step) a new base axis system is chosen at random

• randomcube: The distribution of the random angles is tuned to optimize the isotropy of the time-
averaged radiation field. Use together with radraystar=cube.

• randomgroup: At each new time step a new base axis system is chosen at random. It is kept for
all radiative sub-steps.

• alternate: Alternate between unity and random orientation matrix.

• drift01: Slow drift, algorithm 1.

• drift02: Slow drift, algorithm 2.

Because typically only a relatively small number of rays is chosen per time step (with radraystar) it is
advisable to vary the directions of the rays (by choosing radraybase=random or randomgroup) to cover
the entire sphere at least over a longer time.
Allowed values for radscheme=MSrad are:

• lobatto:

• dblgaus:

7.1.16.7 character radraystar

Using the modules LHDrad or SHORTrad, the list of ray directions (i.e. the number of rays and their
coordinates) relative to the base axis system can be specified with e.g.

character radraystar f=A80 b=80 n=’List of relative ray directions’ &

c0=’x1(1)/x2(1)/x3(1)/oktaeder(3)/tetraeder(4)/cube(4)’ &

c1=’ikosaeder(6)/dodekaeder(10)’

oktaeder

Examples for allowed values are

• x1: (N=1) one single ray along x1 axis (not enough to specify fluxes in all directions)

• x2: (N=1) one single ray along x2 axis (not enough to specify fluxes in all directions)

• x3: (N=1) one single ray along x3 axis (not enough to specify fluxes in all directions)

• oktaeder: (N=3, default) octahedron

• tetraeder: (N=4) tetrahedron

• cube: (N=4)

• ikosaeder: (N=6) icosahedron

• dodekaeder: (N=10) dodecahedron

7.1. PARAMETER FILE: RHD.PAR 147

• list-01, list-01(3): Choose ray systems from a list (oktahedrons, tetrahedrons). If
character radraybase is set to unity the rays will only be aligned to the axes or diagonals
and thus avoid the time-consuming interpolation step of the short-characteristics method.

Several other choices are possible, which are meant for test purposes only. Choosing one of the five
Platonic solids (Oops! “German-Greek” names only, so far) means that the 3 to 10 rays are equally
distributed over the solid angle (from the center to each corner of the respective solid). Check the
complete list of options in subroutine rhd_rad3d_RaySystem.

7.1.16.8 real c tminlimit

A minimum temperature can be set, that is enforced by the radiation transport modules MSrad3D and
SHORTrad by adding energy to the too cool cells, e.g. with

real c_tminlimit f=E15.8 b=4 &

n=’Enforced minimum temperature for radiation transport step’ u=K &

c0=’<=0.0: off (default); 500.0: reasonable value’

400.0

7.1.16.9 real c radimplicitmu

So far, only the LHDrad and the SHORTrad module support implicit radiation transport. It can be activated
with the parameter

real c_radimplicitmu f=E15.8 b=4 &

n=’Implicitness parameter for radiation transport’ u=1 &

c0=’0.0: explicit / 0.5: time centered / 1.0: fully implicit’

0.0

Allowed values are

• 0.0: Fully explicit radiation transport (possible with all modules)

• 0.0 < C < 1.0: Partly implicit radiation transport

• 0.5: Radiation transport time-centered

• 1.0: Fully implicit radiation transport

Values outside this range do not have much meaning. The implicit transport does not work efficiently
yet: It does not yield significantly larger time steps than possible with a sequence of purely explicit sub
time steps. Additionally, it turns out that the hydrodynamics runs into trouble if a too large time step
(still well within the Courant condition) is requested.

7.1.16.10 real c raditereps

With activated implicit radiation transport (LHDrad and SHORTrad modules only) the requested conver-
gence accuracy of the iteration can be set e.g. with

real c_raditereps f=E15.8 b=4 &

n=’Relative accuracy for radiation iteration’ u=1 &

c0=’Typical value: 1.0E-03’

2.0E-03

148 CHAPTER 7. INPUT AND CONTROL FILES

7.1.16.11 real c raditerstep

With activated implicit radiation transport (LHDrad and SHORTrad modules only) the step size of the
iteration can be restricted with e.g.

real c_raditerstep f=E15.8 b=4 &

n=’Step size of radiation iteration’ u=1 &

c0=’Typical values: 0.7,0.81’

1.0

Allowed values are

• 0.0 < 1.0: Restricted step size

• 1.0: No restriction, standard step size

• > 1.0: Extra large steps

This value has to be chosen carefully to get optimal performance. Is the step size too small the convergence
is safe but too slow. A too large step size inhibits convergence and leads to a decrease in the time step,
which results in a bad performance, too.

7.1.17 Radiation-transport control (MSrad only)

7.1.17.1 integer n radtheta

Using the MSrad module the ray directions have to specified in a different way: The number of ray sets
in theta direction can be chosen with e.g.

integer n_radtheta f=I4 b=4 &

n=’NTHETA: Number of ray sets in theta direction’ c0=2

2

7.1.17.2 integer n radphi

Using the MSrad module the number of ray sets in phi direction can be set e.g. with

integer n_radphi f=I4 b=4 &

n=’NPHI: Number of ray sets in phi direction’ c0=2

2

7.1.17.3 integer n radsubray

Using the MSrad module the number of rays per cell (with the same direction) can be specified e.g. with

integer n_radsubray f=I4 b=4 n=’KPHI: Number of rays per cell’ c0=2

2

7.1.17.4 integer n radthickpoint

With the MSrad module the lower part of the model can be computed in diffusion approximation. The
number of points in diffusion approximation can be set with e.g.

integer n_radthickpoint f=I4 b=4 &

n=’Number of grid points with optically thick (diff.) approximation’ &

c0=’0: no diffusion approximation’

0

The value should be choosen so that for all points in that region ∆τ > 1 is valid. Setting this value
to 0 means that the diffusion approximation is not used in any part of the model.

7.1. PARAMETER FILE: RHD.PAR 149

7.1.17.5 integer n radtaurefine

With the LHDrad and the MSrad module, the number of points on the rays can be finer than the number
of points in the basic numerical grid. The refinement can be set e.g. with

integer n_radtaurefine f=I4 b=4 &

n=’Refinement factor’

0

7.1.17.6 integer n radrsyslevel

This parameter specifies the ”zero” point of the ray system, default: 0 (MSrad only). The parameter is
specified with e.g.

integer n_radrsyslevel f=I4 b=4 n=’Zero index of ray system’ &

c0=’0: (default)’ &

0

7.1.17.7 integer n radoutput

This parameter controls additional output into the file ’rhd.qrad’, default: 0 (MSrad only). The parameter
is specified with e.g.

integer n_radoutput f=I4 b=4 n=’Output level of MSrad’ &

c0=’0: (default)’ &

1

7.1.17.8 real c radtcool

Parameter for surface cooling option (N_radband≤0) of MSrad. It can be activated with the parameter

real c_radtcool f=E15.8 b=4 &

n=’Surface cooling’ u=1 &

c0=’0.0: default’

0.0

7.1.17.9 real c raddcool

Parameter for surface cooling option (N_radband≤0) of MSrad. It can be activated with the parameter

real c_raddcool f=E15.8 b=4 &

n=’Surface cooling’ u=1 &

c0=’0.0: default’

0.0

7.1.17.10 real c radscool

Parameter for surface cooling option (N_radband≤0) of MSrad. It can be activated with the parameter

real c_radscool f=E15.8 b=4 &

n=’Surface cooling’ u=1 &

c0=’0.0: default’

0.0

7.1.17.11 real c radtinci

Temperature of black body that emits incident radiation, default: 0.0, (MSrad only). It can be used e.g.
with

real c_radtinci f=E15.8 b=4 &

n=’Temperature of black body that sends incident radiation’ u=K &

c0=’0.0: default’

0.0

150 CHAPTER 7. INPUT AND CONTROL FILES

7.1.17.12 real c raddinci

Dilution factor (R∗/d)2 of black body that emits incident radiation, default: 0.0, (MSrad only). It can
be used e.g. with

real c_raddinci f=E15.8 b=4 &

n=’Dilution factor of black body that sends incident radiation’ u=1 &

c0=’0.0: default’

0.0

7.1.18 Radiation-transport control (LHDrad only)

7.1.18.1 real c radtvisdtau

Using the LHDrad module the limit in delta optical depth (rho*kappa*dx) below which the “radiative
temperature viscosity” (=temperature smoothing) is to be applied can be set with e.g.

real c_radtvisdtau f=E15.8 b=4 &

n=’Optical depth limit for temperature viscosity’ u=1

0.1

The introduction of this “temperature diffusion” is a somewhat desperate and inelegant attempt to
improve the behavior of the Greens function (hot cells should be cooled, cool cells should be heated).
This diffusion is necessary for not well resolved models. It is switched off with c_radtvisdtau ≤ 0.0.

7.1.18.2 real c radtvis

Using the LHDrad module the amount of the “radiative temperature viscosity” (=temperature smoothing)
can be specified e.g. with

real c_radtvis f=E15.8 b=4 n=’Temperature viscosity’ u=1

1.6

For well resolved models it should be switched off (with c_radtvis ≤ 0.0).

7.1.18.3 real c radthintimefac

In the LHDrad module only the radiative time step restriction due to energy changes can be relaxed
further in the optically thin by specifying e.g.

real c_radthintimefac f=E15.8 b=4 &

n=’time scale reduction in optically thin’ u=1 &

c0=’range: 0.1 - 1.0, typically: 0.5’

0.60

A value ≤ 0.0 or real c_radtvisdtau ≤ 0.0 switches off this relaxation.

7.1.19 Process-time management

In this group several parameters can be set which control the start of the time counting during a simulation
and the total length of a job. If either one of the halt conditions below is met, CO5BOLD finishes the
current step, writes a final model (plus some final information to other files), and stops execution.

For example on a CRAY one typically wants to use most of the CPU time given for an individual
batch job. In this case one can set e.g. real cputime_remainlimit=2000.0 and the values for the other
halt conditions to -1.0 or -1.

7.1. PARAMETER FILE: RHD.PAR 151

7.1.19.1 real starttime

The start time of a simulation is usually taken from the start model file. But sometimes is simulation is
to be started with the final model of a previous run but should start at time=0.0. This can be achieved
by setting the start time with

real starttime f=E15.8 b=4 n=’Start time’ u=s

0.0

Allowed values are

• ≥ 0.0: Set the initial time of the simulation to this value and override value from start model.

• < 0.0: (default) Take the initial time from start model.

7.1.19.2 integer starttimestep

The start time step count of a simulation is usually taken from the start model file. But sometimes is
simulation is to be started with the final model of a previous run but should start at time step=0. This
can be achieved by setting the start time step count with

integer starttimestep f=I11 b=4 n=’Start time step number’ u=1

0

Allowed values are

• ≥ 0: Set the initial time step of the simulation to this value and override value from start model.

• < 0: (default) Take the initial time step count from start model.

7.1.19.3 real cputime

Because of the long simulation time usually CO5BOLD will run in some sort of batch mode which might
impose limits on the execution time per run. On a CRAY the CPU time that is left can be accessed
with a special subroutine (in call tremain in timing_module.F90). On other machines it is possible to
specify the allowed total time for the job e.g. with

real cputime f=E15.8 b=4 n=’CPU time’ u=s

1000000.0

During the run of CO5BOLD the leftover CPU time is computed by subtracting the used CPU time
(which is given by e_time=etime(tarray) in timing_module.F90) from the specified total CPU time
for the job.

7.1.19.4 real cputime remainlimit

Because CO5BOLD needs some time to finish the last time step it should start exiting well before all
CPU time is used up. This amount of buffer CPU time can be specified e.g. with

real cputime_remainlimit f=E15.8 b=4 n=’maximum remaining CPU time’ u=s

2000.0

Its value depends on the size of the model and the speed of the machine (more precisely the maximum
CPU time per time step).

7.1.19.5 real endtime

If the simulation should run up to a certain (stellar) time, its values can be specified e.g. with

real endtime f=E15.8 b=4 n=’total simulation time limit’ u=s

10000.0

A value < 0.0 deactivates this halt condition: it is not checked at all. If this parameter is set
to a non-negative value a follow-up simulation should not use the same parameter file: it would stop
immediately.

152 CHAPTER 7. INPUT AND CONTROL FILES

7.1.19.6 real plustime

If the initial model should be advanced by a certain (stellar) time span, this value can be set e.g. with

real plustime f=E15.8 b=4 n=’simulation advance time’ u=s

5.0E+07

A value < 0.0 cancels this halt condition: it is not checked at all. This condition assures (if it is the
only one) that all individual simulation runs cover (approximately) the same stellar time.

7.1.19.7 integer endtimestep

If the simulation should run up to a certain time step, its values can be specified e.g. with

integer endtimestep f=I11 b=4 n=’total simulation time step number’ u=1

1234

This might be useful to advance the simulation up to a point shortly before a previous simulation
crashed. A value < 0 cancels this halt condition: it is not checked at all.

7.1.19.8 integer plustimestep

If the initial model should be advanced by a certain number of time steps their number can be set e.g.
with

integer plustimestep f=I11 b=4 n=’simulation advance time step number’ u=1

2000

A value < 0 deactivates this halt condition: it is not checked at all.

7.1.20 Time-step control

In this group parameters to control the time step restrictions can be set.

They are important because decide about performance and stability of CO5BOLD. They should be
tested and adjusted for a simulation of a new type of object. But all the dimensionless parameters can
stay unchanged for a group of similar simulations. Only the parameters with an explicit time dimension
should be checked in all cases (they scale with characteristic timescales and depend particularly on
gravity).

7.1.20.1 real dtime start

The initial time step recommendation of a simulation is usually taken from the start model file. It can
be overwritten e.g. with

real dtime_start f=E15.8 b=4 n=’Start time step’ u=s

1.0E+03

A value ≤ 0.0 means that the original value from the start model is used.

7.1.20.2 real dtime min

In some rare cases it might be useful to specify explicitly the minimum time step with e.g.

real dtime_min f=E15.8 b=4 n=’Minimum time step’ u=s &

c0=’dtime_min=0.0 => no restriction’

1.0

This value is used even if restrictions from the Courant condition try to enforce a smaller value. A
fixed time step can be prescribed by setting dtime_min = dtime_max to some positive value. A value
dtime_min ≤ 0.0 means that this time step restriction is completely ignored, which is the case that should
usually be chosen.

7.1. PARAMETER FILE: RHD.PAR 153

7.1.20.3 real dtime max

It is possible to explicitly specify the maximum time step too, e.g. with

real dtime_max f=E15.8 b=4 n=’Maximum time step’ u=s &

c0=’dtime_max=0.0 => no restriction’

1.0E+05

A fixed time step can be prescribed by setting dtime_min = dtime_max to some positive value. A
value dtime_max ≤ 0.0 means that this time step restriction is completely ignored, which is the case that
should usually be chosen.

7.1.20.4 real dtime min stop

Sometimes a simulation can run into a pathological state where the time step decreases rapidly without
recovering. To prevent a simulation in such a case from running forever (or until some other process time
restriction applies) without actually advancing significantly in time, it is possible to specify an absolute
minimum time step, e.g. with

real dtime_min_stop f=E15.8 b=4 n=’Minimum time step’ u=s &

c0=’dtime_min_stop=0.0 => no restriction’ &

c1=’dtime < dtime_min_stop => program stop’

1.0

If the actual time step falls below this value, the simulation finishes gracefully. This values has to
specified as absolute time and has to be chosen carefully for each individual model (or each group of
models). This time step restriction can be switched off by setting real dtime_min_stop=0.0. But in
general, one should keep it activated and try to find a proper positive value.

7.1.20.5 real dtime incmax

Sometimes a time step restriction can lead to a sudden drastic drop in the time step. To prevent unwanted
oscillations in the size of the time step its increase can be restricted e.g. with

real dtime_incmax f=E15.8 b=4 n=’Maximum time step increment factor’ u=1 &

c0=’dtime_max<1.0 => no restriction’ c1=’typically 1.1’

1.2

This value specifies the maximum factor by which the time step can be increased from step to
step (even if the new Courant condition etc. would allow more). A value value < 0.0 deactivates this
restriction.

7.1.20.6 real c courant

A typical Courant factor for each 1D hydrodynamics step can be specified with e.g.

real c_courant f=E15.8 b=4 n=’HD Courant factor’ u=1 &

c0=’range: 0.0 < C_Courant <= 1.0, typically: 0.5’

0.5

From the minimum cell crossing time of a partial wave and this factor a recommendation for the next
time step is computed. A value of 1.0 is the very upper limit that guarantees stability for some simple
linear 1D test problems. Recommended upper limits for fully non-linear simulations can be found in
Tab. 7.1.

7.1.20.7 real c courantmax

A typical maximum Courant factor for each 1D hydrodynamics step can be specified with e.g.

real c_courantmax f=E15.8 b=4 n=’maximum HD Courant factor’ u=1 &

c0=’range: C_Courant < C_Courantmax <= 1.0, typically: 0.9’

0.8

154 CHAPTER 7. INPUT AND CONTROL FILES

From the minimum cell crossing time of a partial wave and this factor an upper limit for the current
time step is computed. If this limit is exceeded the computation is interrupted and resumed with a
smaller time step (based on c_courant). Usually this parameter should be restricted by c_courant <
c_courantmax ≤ 1.0. A value of 1.0 is the very upper limit that guarantees stability for some simple
linear 1D test problems. Recommended upper limits for fully non-linear simulations can be found in
Tab. 7.1.

7.1.20.8 real c maxeichange

The relative change in internal during a single 1D hydrodynamics step can be used to restrict the time
step by specifying

real c_maxeichange f=E15.8 b=4 n=’maximum hydro energy change’ u=1 &

c0=’range: 0.1 - 1.0, typically 0.5, off:0.0’

0.5

The default is 0.9. Nevertheless, since the Roe solver is constructed to handle shocks and rapid
changes in density and energy, this check is usually not needed. It can be switched off by setting
c_maxeichange=0.0.

7.1.20.9 real c hydsoundcourant

In addition to the normal Courant factor c_courant that gives a time-step restriction based on c+abs(v1),
another factor can be specified that is based only on the sound speed c, e.g. with

real c_hydsoundcourant f=E15.8 b=4 n=’HD sound-speed Courant factor’ u=1 &

c0=’range: 0.0 < c_hydsoundcourant <= 0.5, typically: 0.45’

0.48

The check for this condition should be activated (by giving c_hydsoundcourant a positive value > 0)
for 3D simulations with hdsplit=CTU, see Sect. 7.1.8.3 and Table 7.1. In this case, a value slightly smaller
than 0.5 is a reasonable choice.

7.1.20.10 real c hydsoundcourantmax

In addition to the normal maximum Courant factor c_courantmax that gives a time-step restriction
based on c+ abs(v1), another factor can be specified that is based only on the sound speed c, e.g. with

real c_hydsoundcourantmax f=E15.8 b=4 &

n=’maximum HD sound-speed Courant factor’ u=1 &

c0=’range: c_hydsoundcourant < c_hydsoundcourantmax <= 0.5, typically: 0.5’

0.5

The pair c_hydsoundcourant/c_hydsoundcourantmax works together in a the same way as described
above for c_courant/c_courantmax.

7.1.20.11 real c hydexpcourant

In addition to the usual Courant condition one could restrict the maximum expansion between two
adjacent grid cells with e.g.

real c_hydexpcourant f=E15.8 b=4 n=’HD expansion Courant factor’ u=1 &

c0=’range: 0.0 < C_hydExpCourant < C_hydExpCourantmax, typically: 0.3’

0.2

7.1.20.12 real c hydexpcourantmax

This parameter can be set e.g. with

real c_hydexpcourantmax f=E15.8 b=4 n=’HD max. expansion Courant factor’ u=1 &

c0=’range: 0.0 < C_hydExpCourant < C_hydExpCourantmax, typically: 0.5’

0.3

The pair c_hydexpcourant/c_hydexpcourantmax works analogously to the pair
c_courant/c_courantmax.

7.1. PARAMETER FILE: RHD.PAR 155

7.1.20.13 real c radcourant

The radiation transport routines are subject so time step restrictions, too. And in typical scenarios, its the
radiative timescale are the shortest one and poses the tightest restriction. Contrary to the hydrodynamics
routines the timescale relevant for the stability of the radiation transport scheme can only be estimated
using the characteristic timescale of a small sinusoidal temperature disturbance with a wavelength of the
grid size in a homogeneous background and grey radiative energy exchange. The “radiative Courant”
factor can be set e.g. with

real c_radcourant f=E15.8 b=4 n=’RAD Courant factor’ u=1 &

c0=’range: 0.0 < C_radCourant, typically: 1.0’

2.5

If the estimate of the timescale would be correct a value of 2.0 would cause the temperature fluctuation
on the shortest scale to flip its sign, setting the absolute stability limit. A value of 1.0 would lead to
a damping of theses fluctuations within one time step. But in practice, even higher values (for example
2.5) show a reasonable behavior. This might be due to the effect that the shortest radiative timescale
only occurs at single points (or in 2D layers) but that already the immediate neighbors have longer
timescales and can damp the “most sensitive points”. Based on real c_radcourant the recommended
typical radiative time step is computed.

7.1.20.14 real c radcourantmax

With this parameter the maximum allowed radiative time step is prescribed as e.g. in

real c_radcourantmax f=E15.8 b=4 n=’maximum RAD Courant factor’ u=1 &

c0=’range: C_radCourant <= C_radCourantmax, typically: 2.0’

3.0

This value will typically be somewhat larger than real c_radcourant.

7.1.20.15 real c radmaxeichange

The relative energy change per radiative sub step can be restricted e.g. with

real c_radmaxeichange f=E15.8 b=4 n=’maximum radiative energy change’ &

u=1 c0=’range: 0.01 - 1.0’

0.25

The default is 0.5. Values between 0.1 and 0.5 seem reasonable. A value ≤ 0.0 deactivates this
time step check. However, the check of the radiative energy change should usually be performed. A
way to maximize the radiative time step (and therefore the performance of the entire code) can be
to first set real c_radmaxeichange to a proper value (say 0.25). Then, real c_radcourant (and
real c_radcourantmax) are adjusted (by trial and error) in a way that the radiative time step is almost
always restricted by the “Courant” condition and only sometimes in extreme cases by the maximum
energy change restriction. The computed output intensity should be checked for the size of its fluctuations
due to a possibly too large value of c_radmaxeichange.

7.1.20.16 real c viscourant

The tensor-viscosity routines have their own time step restriction. The recommended typical viscous
time step can be set e.g. with

real c_viscourant f=E15.8 b=4 n=’viscous Courant factor’ u=1 &

c0=’range: 0.0 < C_visCourant, typically: 0.5-1.0, better 0.25’

0.5

As the corresponding viscous timescale is typically longer than the radiative one (and even the Courant
timescale from the Roe hydrodynamics routines) this factor is often irrelevant. The absolute upper
stability limit is located at c_viscourant=2.0. Values around 0.5 to 1.0 are more typical. In some
extreme cases in simulations of the solar chromosphere it has turned out that an even lower value (0.2)
is necessary to prevent some spikes in the neighborhood of strong colliding shocks.

156 CHAPTER 7. INPUT AND CONTROL FILES

7.1.20.17 real c viscourantmax

The absolute upper limit for the viscous time scale can be set with

real c_viscourantmax f=E15.8 b=4 n=’maximum viscous Courant factor’ u=1 &

c0=’range: C_visCourant <= C_visCourantmax, typically smaller than 2.0’

1.0

Its value should be slightly above c_viscourant and below 2.0.

7.1.21 Input/output control

With this group of parameters the start model and the type and amount of output can be specified.
Parameters with the suffix “_start” describe the initial model, these with suffix “_end” the corresponding
final model. Additional data can be written into the file described by the parameters with suffix “_full”
(full 2D/3D model dumps, huge, see Sect. 8.1) or into the file described by the parameters with suffix
“_mean” (additional information, see Sect. 8.3).

7.1.21.1 real dtime out full

The interval between datasets in the full file can be set e.g. with

real dtime_out_full f=E15.8 b=4 n=’Output time step’ u=s &

c0=’dtime_out_full < 0.0 => no output’ &

c1=’dtime_out_full = 0.0 => output every time step’

2.0E+06

Allowed values are

• < 0.0: No output to this file

• = 0.0: Output at every time step. Attention: This can produce HUGE files in no time.

• > 0.0: Output to full file approximately every dtime_out_full seconds.

Some examples: The “classical” value for this output for simulations of solar granulation is 20 sec. To save
memory this can be increased to 30 sec. But in this case chromospheric shocks are very badly resolved.
To cover them properly, a sampling rate of 10 sec or below is needed. On the other hand, if no good time
resolution is needed a sampling rate of a few minutes might be sufficient.

7.1.21.2 real dtime out end

The interval between outputs into the end file can be set e.g. with

real dtime_out_end f=E15.8 b=4 n=’Output time step’ u=s &

c0=’dtime_out_end < 0.0 => output only at very end’ &

c1=’dtime_out_end = 0.0 => output every time step’ &

c2=’dtime_out_end > 0.0 => output every dtime_out_end seconds (and at end)’

1.0E+04

Allowed values are

• < 0.0: Output only at very end of run (classical behavior).

• = 0.0: Output at every time step. Attention: This can produce lots of I/O operations and can
take a long time. However, it will not produce a large file. Instead, the end file is written over and
over again.

• > 0.0: Output to end file approximately every dtime_out_end seconds (and at the very end of the
simulation).

The standard value is -1.0, not enabling any additional output into this file. A value a reasonable factor
smaller than real dtime_out_full seems appropriate.

7.1. PARAMETER FILE: RHD.PAR 157

7.1.21.3 real dtime out mean

The interval between datasets in the mean file can be set e.g. with

real dtime_out_mean f=E15.8 b=4 n=’Output time step’ u=s &

c0=’dtime_out_mean<0.0 => no output’

0.5E+06

Allowed values are

• < 0.0: No output to this file

• = 0.0: Output at every time step.

• > 0.0: Output to mean file approximately every dtime_out_mean seconds.

Because the size of one mean dataset is much smaller than one full dataset, it is possible to request a
higher sampling rate without using too much disk space.

7.1.21.4 integer n outslicedim mean

The index of the optional slice in the mean output file can be specified with e.g.

integer n_outslicedim_mean f=I4 b=4 n=’index of slice in mean output file’ u=1 &

c0=’0: no output of slice’ &

c1=’1, 2, 3: output of slice with plane perpendicular to this direction’

2

With a value of 0 the output is suppressed. A value of 1, 2, 3 indiciates the direction of the normal
to the output plane: for instance, in a local 3D ”box-in-a-star” model with gravity along direction 3 a
value of 3 gives a horizontal plane in the middel of the model (useful only in special cases) whereas a
value of 2 (or 1) gives a vertical slice with a horizontal and the vertical axis – useful for movies of 2D
slices. The grid index of the slice cannot be specified.

7.1.21.5 integer outdim chu1

The dimension of an additional output chunk (1) written into a separate file can be specified with this
parameter (a 2×3 integer array). The output of a horizontal slice at the 20th layer from the bottom can
be requested with:

integer outdim_chu1 d=(1:2,1:3) f=I5 b=4 p=6 n=’Chunk 1 dimension’ u=1 &

c0=’0: start from first, 9999: end with last’

0 9999 0 9999 20 20

The index ranges go from 1 to the number of elements in that dimension. Specifying a lower first or
a larger last dimension (as in the example), means that all elements will be taken. The output sampling
rate is the same a for mean files. Attention: a high sampling frequency of large chunks can produce large
files very quickly.

7.1.21.6 integer outdim chu2

The dimension of another output chunk 2 written into a separate file can be specified with this parameter,
analogously to integer outdim_chu1 as e.g., in

integer outdim_chu2 d=(1:2,1:3) f=I5 b=4 p=6 n=’Chunk 2 dimension’ u=1 &

c0=’0: start from first, 9999: end with last’

0 9999 100 100 0 9999

7.1.21.7 integer outdim chu3

The dimension of another output chunk 2 written into a separate file can be specified with this parameter,
analogously to integer outdim_chu1 as e.g., in

integer outdim_chu3 d=(1:2,1:3) f=I5 b=4 p=6 n=’Chunk 3 dimension’ u=1 &

c0=’0: start from first, 9999: end with last’

100 100 0 9999 0 9999

158 CHAPTER 7. INPUT AND CONTROL FILES

7.1.21.8 character infile start

The filename of the initial model is specified e.g. with

character infile_start f=A80 b=80 n=’File name of start model’

rhd.sta

Default is rhd.sta (for a parameter file used within a batch system). Typical filenames are
st35gm04n01_01.sta or gt57g44n20dz.end.

7.1.21.9 integer istep in start

The index number of the dataset in the start model file to be used can be specified, e.g. with

integer istep_in_start f=I4 b=4 n=’Number of dataset to read as start model’ &

u=1 c0=’1: first dataset (default), 2: second dataset, ...’

1

7.1.21.10 character outfile end

The file name for the final model can be specified with e.g.

character outfile_end f=A80 b=80 n=’Output file name’

rhd.end

The default is rhd.end. Leaving it empty means that no final model is written. This of course inhibits
follow-up simulations but can be useful to save time and disk space for some tests.

7.1.21.11 character outfile full

The name of the file for the output of additional full models at regular intervals (see Sect. 8.1) can be
given with e.g.

character outfile_full f=A80 b=80 n=’Output file name’

rhd.full

Leaving it empty means that no file of this type is written.

7.1.21.12 character outfile mean

The name of the file for the output of additional information (average stratification (1D), mean fluxes
(1D), surface intensities(2D)) at regular intervals (see Sect. 8.3) can be specified with e.g.

character outfile_mean f=A80 b=80 n=’Output file name’

rhd.mean

Leaving it empty means that no file of this type is written.

7.1.21.13 character outfile mcyl

The name of the file for the output of azimuthal averages (2D arrays for 3D models) at regular intervals
(see Sect. 8.3) can be specified with e.g.

character outfile_mcyl f=A80 b=80 n=’Output file name’

rhd.mcyl

Leaving it empty means that no file of this type is written. Only in the case of global models such
data is computed. It is particularly useful for rotating models.

7.1. PARAMETER FILE: RHD.PAR 159

7.1.21.14 character outfile chu1

The name of the file for the output of an additional data chunk at regular intervals (the same as for mean
file) can be specified with e.g.

character outfile_chu1 f=A80 b=80 n=’Output file name for chunks’

rhd.chu1

The UIO format is the same as specified for mean files. Leaving the name empty means that no file
of this type is written.

7.1.21.15 character outfile chu2

The name of the file for the output of an additional data chunk 2 can be specified with this parameter
analogously to character outfile_chu1.

7.1.21.16 character outfile chu3

The name of the file for the output of an additional data chunk 3 can be specified with this parameter
analogously to character outfile_chu1.

7.1.21.17 character outform end

The format (see Sect. 6.2.3.1) of the final model files can be chosen e.g. with

character outform_end f=A80 b=80 n=’Output file format’ &

c0=’formatted/unformatted’

unformatted

Allowed values are

• unformatted: (default) fast compact (possibly machine-dependent) output: strongly recommended

• formatted: slow (machine-independent) output, big files

7.1.21.18 character outconv end

The conversion type (see Sect. 6.2.3.1) of the final model files can be specified e.g. with

character outconv_end f=A80 b=80 n=’Output file conversion’ &

c0=’ieee_4/ieee_8/crayxmp_8/native’

ieee_4

The allowed values depend on the machine. Leaving this field empty means that the default is chosen
that is build into the local UIO module. If the type ieee_4 is supported (which is always the case, so
far) it should be chosen.

7.1.21.19 character outform full

The format (see Sect. 6.2.3.1) of the full model files can be chosen e.g. with

character outform_full f=A80 b=80 n=’Output file format’ &

c0=’formatted/unformatted’

unformatted

Allowed values are

• unformatted: (default) fast compact (possibly machine-dependent) output: strongly recommended

• formatted: slow (machine-independent) output, big files

160 CHAPTER 7. INPUT AND CONTROL FILES

7.1.21.20 character outconv full

The conversion type (see Sect. 6.2.3.1) of the full model files can be specified e.g. with

character outconv_full f=A80 b=80 n=’Output file conversion’ &

c0=’ieee_4/ieee_8/crayxmp_8/native’

ieee_4

The allowed values depend on the machine. Leaving this field empty means that the default is chosen
that is build into the local UIO module. If the type ieee_4 is supported (which is always the case, so
far) it should be chosen.

7.1.21.21 character outform mean

The format (see Sect. 6.2.3.1) of the additional data files can be chosen e.g. with

character outform_mean f=A80 b=80 n=’Output file format’ &

c0=’formatted/unformatted’

unformatted

Allowed values are

• unformatted: (default) fast compact (possibly machine-dependent) output: strongly recommended

• formatted: slow (machine-independent) output, big files

7.1.21.22 character outconv mean

The conversion type (see Sect. 6.2.3.1) of the additional data files can be specified e.g. with

character outconv_mean f=A80 b=80 n=’Output file conversion’ &

c0=’ieee_4/ieee_8/crayxmp_8/native’

ieee_4

The allowed values depend on the machine. Leaving this field empty means that the default is chosen
that is build into the local UIO module. If the type ieee_4 is supported (which is always the case, so
far) it should be chosen.

7.1.22 Scale and test parameters

7.1.22.1 real time scalestart

Usually, parameters are read from rhd.par and are kept constant during a run. A consecutive run could
be started with a different set though, e.g., to increase the luminosity of a model. However, in many
cases, such an abrupt change causes the generation of spurious (often plane-parallel or radial) waves. And
it takes time and effort – by temporarilly increasing some viscosity – to damp them. This is particularly
annoying when the transient waves reduce the time step of the simulations for some period.

The transition between two parameter sets can be smoothed by interpolating between them. The
onset of the transition interval is given by time_scalestart, while the end of the interval is given
by time_scaleend (see Sect. 7.1.22.2). The first set of parameters is given by the usual rhd.par

file, while the second set is given by an additional rhd.par2 file (see Tab. 6.1). Normally, the scal-
ing is inactive. To activate it, the rhd_scale_module has to be compiled by activating any tweak
module, i.e., e.g. by setting F90_TWEAK=1 (see Sect. 4.3.1.15) before calling the configure script (see
Sect. 4.3). The file rhd.par2 has to exist in the current directory, i.e., at the same place where the
rhd.par file resides, and it has to have some entries with values differing from those in rhd.par.
Note, though, that so far only a few parameters are treated by the rhd_scale_module. In addition,
0.0<time_ScaleStart<time and time_ScaleStart<=time_ScaleEnd have to be fulfilled. Choosing
0.0<time_ScaleStart=time_ScaleEnd should work but results in an abrupt change of parameters –
not recommended.

For later runs (starting with time_ScaleEnd<time) the file rhd.par should be replaced by the pre-
vious rhd.par2 and both scaling-time parameters should be set to negative values to properly indicate
that the scaling is now finished (otherwise, the data in rhd.par don’t represent the values actually used
for the simulation). The start time of the scaling interval can be set e.g. by

7.1. PARAMETER FILE: RHD.PAR 161

real time_scalestart f=E15.8 b=4 n=’Start time of scaling interval’ u=s

100.0

Allowed values are

• < 0.0: Don’t scale (default).

• ≥ 0.0: Perform the scaling if all the other conditions are met.

7.1.22.2 real time scaleend

Together with time_scalestart (see a detailed description in Sect. 7.1.22.1), this parameter specifies
the scaling interval. The end time of the scaling interval can be set e.g. by

real time_scaleend f=E15.8 b=4 n=’End time of scaling interval’ u=s

200.0

Allowed values are

• < 0.0: Don’t scale (default).

• ≥ 0.0: Perform the scaling if all the other conditions are met.

With the given example values time_ScaleStart=100.0 and time_ScaleEnd=200.0, values from
rhd.par would be used for 100.0<=time, values from rhd.par2 would be used for time>=200.0, and
values in between (according to the interpolation in rhd_scale_module) for 100.0<time<200.0.

7.1.22.3 integer n test1

The integer parameters n_test1 to n_test5 are general-purpose parameters to facilitate the testing of
new features. They can be used anywhere in the code – but only for a limited time. In any release version
of the code, all references to these parameters should be replaced by proper parameters with a dedicated
purpose and a descriptive name. In contrast to these recommendation, the parameters are used (more
or less permanently) in the various tweak modules. The parameter can be set e.g. by

integer n_test1 f=I11 b=4 n=’1st integer test parameter’

1.0

7.1.22.4 real c test1

The real parameters c_test1 to c_test5 are general-purpose parameters to facilitate the testing of new
features. They can be used anywhere in the code – but only for a limited time, see above. The parameter
can be set e.g. by

real c_test1 f=E15.8 b=4 n=’1st real test parameter’

1.0

7.1.22.5 character strtest1

The string parameters strtest1 to strtest5 are general-purpose parameters to facilitate the testing of
new features. They can be used anywhere in the code – but only for a limited time, see above. The
parameter can be set e.g. by

character strtest1 f=A80 b=80 n=’1st character test parameter’

mode1

162 CHAPTER 7. INPUT AND CONTROL FILES

7.1.23 Additional information and obsolete parameters

7.1.23.1 real abux

This optional information parameter can be specified with

real abux f=E15.8 b=4 n=’hydrogen abundance (number fraction)’ u=1 &

c0=’standard solar mixture’

0.90851003E+00

It has no practical consequences because the actually used chemical composition is determined by the
files for equation of state and opacity.

7.1.23.2 real abuy

This optional information parameter can be specified with

real abuy f=E15.8 b=4 n=’helium abundance (number fraction)’ u=1 &

c0=’standard solar mixture’

0.90850003E-01

It has no practical consequences because the actually used chemical composition is determined by the
files for equation of state and opacity.

7.1.23.3 real qmol

This optional information parameter can be specified with

real qmol f=E15.8 b=4 n=’mean molecular weight’ u=u &

c0=’standard solar mixture’

0.13018000E+01

It has no practical consequences because the actually used chemical composition is determined by the
files for equation of state and opacity.

7.1.23.4 real gamma

This optional information parameter can be specified with

real gamma f=E15.8 b=4 n=’Adiabatic coefficient’ u=1 &

c0=’0.0/1.6666666666666/1.4’

0.0

It has no practical consequences because the actually used chemical composition is determined by the
files for equation of state and opacity.

7.1.23.5 real c radkappasmooth

In the LHDrad module the opacity along each ray can be smoothed. The amount of smoothing can be set
e.g. with

real c_radkappasmooth f=E15.8 b=4 n=’Opacity smoothing parameter’ u=1 &

c0=’0.0: no smoothing, 0.25: light smoothing, 0.666: strong smoothing’

0.0

The smoothing can perhaps reduce the noise in the intensity images somewhat but has no general
beneficial effect and should usually not be used.

7.1. PARAMETER FILE: RHD.PAR 163

7.1.23.6 real c radtsmooth

In the LHDrad module the 3D temperature array can be smoothed. The amount of smoothing can be set
e.g. with

real c_radtsmooth f=E15.8 b=4 n=’Temperature smoothing parameter’ u=1 &

c0=’0.0: no smoothing, 0.5: reasonable smoothing, 1.0: max. smoothing’

0.0

The smoothing can sometimes reduce the noise in the intensity images but causes/amplifies some
anomalies of the radiative Greens function: Some cool cell just above the sharp sub-photospheric tem-
perature drop are not heated but cool further down. Negative temperature spikes may result. This
smoothing should not be used anymore.

7.1.23.7 character radpressure

In the LHDrad module there exists a simple prescription for the radiative pressure (reasonable in the
optically thin) which can be activated with

character radpressure f=A80 b=80 n=’Radiation pressure mode’ &

c0=’on/off’

on

Allowed values are

• on: Radiation pressure on.

• off: Radiation pressure off.

The scheme is pretty slow and wrong in the optically thick. Do not use! However, the SHORTrad version
is much more advance and can be used, even if it might require some more testing.

7.1.23.8 real c radtintminfac

In the LHDrad module: The fraction the interpolated temperature (at a point on the ray) may exceed
the minimum temperature at its four neighbors on the HD grid can be set e.g. with

real c_radtintminfac f=E15.8 b=4 &

n=’Temperature interpolation parameter’ u=1 &

c0=’<1.0: only bilinear, 1.1: reasonable weighting between min. und bil.’

0.0

The introduction of this parameter was an attempt to reduce the negative (cooling) effect of a single
hot cell on its cool neighbors. It should be switched off e.g. by setting it to 0.0.

7.1.23.9 integer dtimestep out fine

This parameter can be specified but there is no corresponding output file in CO5BOLD yet.

integer dtimestep_out_fine f=I4 b=4 n=’Output time step number’ u=1 &

c0=’dtimestep_out_fine<0 => no output’

-1

7.1.23.10 character outfile fine

The name of the file for the output of additional information at regular (small) intervals can be specified
with e.g.

character outfile_fine f=A80 b=80 n=’Output file name’

rhd.fine

Leaving it empty means that no file of this type is written. Specifying it means the same (up to now).

164 CHAPTER 7. INPUT AND CONTROL FILES

7.1.23.11 character outform fine

The format (see Sect. 6.2.3.1) of the files with frequent output can be chosen e.g. with

character outform_fine f=A80 b=80 n=’Output file format’ &

c0=’formatted/unformatted’

unformatted

Allowed values are

• unformatted: (default) fast compact (possibly machine-dependent) output: strongly recommended

• formatted: slow (machine-independent) output, big files

This parameter can be specified but there is no corresponding output file in CO5BOLD yet.

7.1.23.12 character outconv fine

The conversion type (see Sect. 6.2.3.1) of the files with frequent output can be specified e.g. with

character outconv_fine f=A80 b=80 n=’Output file conversion’ &

c0=’ieee_4/ieee_8/crayxmp_8/native’

ieee_4

The allowed values depend on the machine. Leaving this field empty means that the default is chosen
that is build into the local UIO module. If the type ieee_4 is supported (which is always the case, so
far) it should be chosen. This parameter can be specified but there is no corresponding output file in
CO5BOLD yet.

7.2 Input model file: rhd.sta

A start file has the same structure as an end file (or a full file containing only one snapshot), see Sect. 8.1.

7.3 EOS file

The equations of state is provided via a table in UIO format, see Sect. 7.1.6.

7.4 Opacity file

The opacity data is provided via an ASCII table, see Sect. 7.1.7.

7.5 Chemistry input

The number densities of the chemical species must be provided as cell-centred quantities quc in cm−3

(see Sect. 4.4.1.6). The array (UIO) headers must be named following this example: ”Number density of
H2”.

The chemistry input file contains all data for the reaction network. It is a text file with a strict format
following the UMIST 99 ratefile standard:

FORMAT(I4,5(A8,1X),2(1X,A4),1X,1PE8.2,3X,0PF5.2,2X,0PF8.1,A16)

It consists of 12 columns with the following meaning:

7.6. HION INPUT 165

col. meaning format

1 reaction ID I4
2-4 reactants (max. 3 symbols with 8 characters) 3(A8,1X)
5-8 products (max. 4 symbols, first two with 2(A8,1X),2(1X,A4)

8 characters, last 2 with 4 characters 2(A8,1X),2(1X,A4)
9 reaction coefficient α 1PE8.2
10 reaction coefficient β 0PF5.2
11 reaction coefficient γ 0PF8.1
12 reference A16

The symbols are usually the chemical symbols of the involved species, e.g. C for carbon. The present
species are recognised automatically. Molecules consisting of more than one atom of the same chemical
element, e.g. H2, are also possible (H2). A special case is the representative metal M which is a catalytic
element only, i.e. it must appear as reactant and product. The special symbol PHOTON represents a
photon as reaction product. Currently no photon can be used as reactant ionising or exciting another
species.

The reaction coefficients are needed to calculate the chemical rates at runtime. The basic rate is then
given by

k = α T300
β e−γ/T , (7.2)

where T300 = T/300 K with T the gas temperature. For catalytic reactions which involve a representative
metal also the number density nM of the metal enters:

k = nM α T300
β e−γ/T . (7.3)

An input file could look like this:

5001 H H H2 H2 H2 9.00E-33 -0.6 0.0 - AK

5002 H H H H2 H 4.43e-28 -4.0 0.0 DBDDG72

4069 H2 H2 H2 H H 1.00e-08 0.00 84100.0L 28034

4071 H2 OH O H2 H 6.00e-09 0.00 50900.0L 16964

66 C OH O CH 2.25e-11 0.50 14800.0L 4934

67 C OH CO H 1.81e-11 0.50 0.0 - W80

3707 C O CO PHOTON 1.58e-17 0.34 1297.4C BDD90

7001 C O H CO H 2.14e-29 -3.08 -2114.0D DBDDG76

4076 CO M O C M 2.79e-03 -3.52 128700.0D CBDDG76

Refer to Wedemeyer-Böhm et al. (2005) for more details.

7.6 HION input

Several input files are required for the time-dependent treatment of hydrogen ionization. Currently, they
need to be stored in the same input directory as specified with the parameter hion_datapath. There are
four input files:

• model atom: The following formatting rules apply. Currently we only provide a hydrogen atom file
H_6-2.atom. The module might be extended for other species in a future version.

• electron density look-up table (edens.dat) as function of total number density of hydrogen in cm−3

or m−3, gas temperature in K, and ionization degree of hydrogen.

• chemical abundances (abundance.input)

• partition functions (pf_kurucz.dat)

The first two files are always needed, whereas the files containing chemical abundances and partition
functions are required the initial LTE electron densities for very first time step of a model sequence (and
for creating electron density tables). Once the first time step has been calculated the last two input files
are obsolete. We plan to implement another initial guess for the LTE densities so that only the model
atom and the electron density look-up table are necessary.

Refer to Leenaarts & Wedemeyer-Böhm (2005) for more details.

166 CHAPTER 7. INPUT AND CONTROL FILES

7.7 More control files: rhd.stop, rhd.cont, rhd.dump

Before each time step CO5BOLD checks in the working directory whether the file rhd.stop exists. If it
has been generated (e.g. with touch rhd.stop), the code exits gracefully, i.e. it produces a proper final
model, which can be used to restart the code. This method of stopping a simulation is to be preferred
over a simple kill or qdel command because it allows to analyze the state of the model just at the end
of the simulation and a smooth restart.

Before the restart the rhd.stop file has to be deleted! The simulation can be continued by just
initiating a new run. If the file rhd.cont exists at the beginning of a simulation, the code tries to resume
an interrupted computation: The initial model will not be taken from the start model file (infile_start)
but from the final model (outfile_end). The data for the full and the mean file is not written into new
files but will be appended to the existing ones.

In this way a simulation can be interrupted and continued in a fairly safe way. It is possible to
analyze the final model and to changes values in the parameter file. Keep in mind that after a restart
with rhd.cont the specifications about the length of the job (e.g. the number of time steps) will be
counted from the restart point and not from the beginning of the original simulation.

To interrupt a job with rhd.stop can be very handy. The continuation with rhd.cont and the old
parameter file is not to be preferred over an ordinary restart with a new parameter file.

At the beginning of every time step CO5BOLD checks in the working directory whether the file
rhd.dump exists. If it has been generated (e.g. with touch rhd.dump) and the file rhd.snap does not
exist, the current model is written into rhd.snap. It has the same file properties (format and conversion)
as the regular rhd.end file. The run of the simulation itself is not modified. This feature might be useful
for debugging purposes.

Chapter 8

Output and status files

8.1 Output model files: rhd.end, rhd.full

If the UIO scripts (Sect. 6.2.6) are properly installed, you can view the contents (more precisely the
headers of the data entries) of an UIO file with uiolook filename, e.g.

uiolook st35gm04n05_03.end

gives the output (slightly edited)

fileform uio form=unformatted convert=ieee_4 version=0.1.2000.11.26 &

date=’02.01.2002 16:17:26.036’ system=craSHi machine=craSHi osrelease=10.0.0.6 &

osversion=UoK.4 hardware=’CRAY SV1’ language=Fortran90 program=RHD

character file_id f=A8 b=8 n=’File identification’

character description d=(1:1) f=A24 p=1 b=24 n=’File description’

character history d=(1:20) f=A80 p=1 b=80 n=’File history’

character version f=A80 b=80 n=’Program version’

label dataset n=’RHD model’ date=’02.01.2002 16:17:26.043’

character dataset_id f=A10 b=10 n=’Type of box hierarchy’

real modeltime f=E13.6 b=4 n=time u=s

real modeltime_db f=E23.15 b=8 n=time u=s

integer modelitime f=I11 b=4 n=’time step number’ u=1

real dtime f=E13.6 b=4 n=’time step’ u=s

real time_out_full_last f=E13.6 b=4 n=’Time of last output of full model’ u=s

real time_out_mean_last f=E13.6 b=4 n=’Time of last output of averaged data’ &

u=s

label box date=’02.01.2002 16:17:26.049’

character box_id f=A80 b=80 n=’Block identification’

integer dimension d=(1:2,1:3) f=I7 p=6 b=4

real time f=E13.6 b=4 n=time u=s

real time_db f=E23.15 b=8 n=time u=s

integer itime f=I11 b=4 n=’time step number’ u=1

real xc1 d=(-63:63,-63:-63,-63:-63) f=E13.6 p=4 b=4 &

n=’x1 coordinates of cell centers’ u=cm ds=(0:0,0:1,0:1)

real xc2 d=(-63:-63,-63:63,-63:-63) f=E13.6 p=4 b=4 &

n=’x2 coordinates of cell centers’ u=cm ds=(0:1,0:0,0:1)

real xc3 d=(-63:-63,-63:-63,-63:63) f=E13.6 p=4 b=4 &

n=’x3 coordinates of cell centers’ u=cm ds=(0:1,0:1,0:0)

real xb1 d=(-63:64,-63:-63,-63:-63) f=E13.6 p=4 b=4 &

n=’x1 coordinates of cell boundaries’ u=cm ds=(0:1,0:1,0:1)

real xb2 d=(-63:-63,-63:64,-63:-63) f=E13.6 p=4 b=4 &

n=’x2 coordinates of cell boundaries’ u=cm ds=(0:1,0:1,0:1)

real xb3 d=(-63:-63,-63:-63,-63:64) f=E13.6 p=4 b=4 &

n=’x3 coordinates of cell boundaries’ u=cm ds=(0:1,0:1,0:1)

real rho d=(-63:63,-63:63,-63:63) f=E13.6 p=4 b=4 n=Density u=g/cm^3

167

168 CHAPTER 8. OUTPUT AND STATUS FILES

real ei d=(-63:63,-63:63,-63:63) f=E13.6 p=4 b=4 n=’Internal energy’ u=erg/g

real v1 d=(-63:63,-63:63,-63:63) f=E13.6 p=4 b=4 n=’Velocity 1’ u=cm/s

real v2 d=(-63:63,-63:63,-63:63) f=E13.6 p=4 b=4 n=’Velocity 2’ u=cm/s

real v3 d=(-63:63,-63:63,-63:63) f=E13.6 p=4 b=4 n=’Velocity 3’ u=cm/s

label endbox

label enddataset date=’02.01.2002 16:17:43.322’

The UIO format is described in some detail in Sect. 6.2. Each entry has a type (e.g. “label”, “real”,
“character”), an identifier (e.g. “box”, “time”, “description”), and additional information about array
size (e.g. “d=(-63:63,-63:63,-63:63)”), data format (e.g. “f=E13.6 p=4 b=4”), and properties of the
quantity (e.g. “n=Density u=g/cm^3”).

Each start (“rhd.sta”) or final (“rhd.end”) model file has a structure as shown above. The
(“rhd.full”) file usually contains a sequence of these data sets, which of course can also be used as
start model of a simulation.

The axes xc1, xc2, and xc3 describe the positions of the cell centers. The axes xb1, xb2, and xb3

contain the positions of the cell boundaries: they have one element more than the corresponding cell
centered quantity.

Cell boundaries should be centered in the middle between cell centers for the best representation of
radiative fluxes with MSrad3D.

8.2 Files with additional chunks of data: rhd.chu1, rhd.chu2, rhd.chu3

If specified, the files “rhd.chu1”, “rhd.chu2”, and “rhd.chu3” contain (parts of) full data sets, written
with the same sampling rate as mean files (see below). The dimensions of the output blocks have to be
specified in detail with outdim_chu1, etc., as described in Sect. 7.1.21.5.

8.3 Files with averaged data: rhd.mean

A “rhd.mean” file contains derived data in addition to the complete data sets in “rhd.full” files:
horizontal – and for global models spherically – averaged fluxes and other averaged quantities (all 1D
vectors) and surface intensities (2D arrays). It has more entries than a full model file. However, they
are much smaller. Therefore, one can afford a higher output sampling rate. The format is usually UIO
“unformatted” (binary). A mean file usually consists of several datasets. The overall structure is

fileform uio form=unformatted convert=ieee_4

character file_id f=A8 b=8 n=’File identification’

character description d=(1:1) f=A14 p=2 b=14 n=’File description’

character history d=(1:20) f=A80 p=1 b=80 n=’File history’

character version f=A80 b=80 n=’Program version’

label dataset n=’RHD model’

...

label enddataset

label dataset n=’RHD model’

...

label enddataset

.

.

.

Each dataset has the following structure (for a supergiant simulation):

label dataset n=’RHD model’ date=’25.05.2001 09:41:29.405’

...

8.3. FILES WITH AVERAGED DATA: RHD.MEAN 169

label box date=’25.05.2001 09:41:29.408’

character box_id f=A80 b=80 n=’Block identification’

rad

...

label endbox

label box date=’25.05.2001 09:41:29.983’

character box_id f=A2 b=2 n=’Block identification’

z1

...

label endbox

label box date=’25.05.2001 09:41:30.078’

character box_id f=A2 b=2 n=’Block identification’

z2

...

label endbox

label box date=’25.05.2001 09:41:30.170’

character box_id f=A2 b=2 n=’Block identification’

z3

...

label endbox

label box date=’25.05.2001 09:41:30.260’

character box_id f=A1 b=1 n=’Block identification’

r

...

label endbox

label box date=’25.05.2001 09:41:30.359’

character box_id f=A80 b=80 n=’Block identification’

z

...

label endbox

label enddataset date=’25.05.2001 09:41:30.489’

There a six sub-blocks delimited with box and endbox labels. They contain surface intensity and flux
arrays (rad), averages in the 23-plane (z1), the 13-plane (z2), the 12-plane (z3), and over spherical shells
(r), and a 2D slice through the model (z).

An individual box inside a dataset entry in a mean file can have e.g. the following contents describing
horizontal averages in a plane-parallel model. With

uiolook chro2D03co08_01.mean | less

you get this (and more):

label box date=’06.11.2002 17:58:05.533’

character box_id f=A2 b=2 n=’Block identification’

integer dimension d=(1:2,1:3) f=I7 p=6 b=4

real time f=E13.6 b=4 n=time &

u=s

real time_db f=E23.15 b=8 n=time &

u=s

integer itime f=I10 b=4 n=’time step number’ &

u=1

real xc1 d=(1:1,1:1,1:1) f=E13.6 p=4 b=4 n=’x1 coordinates of cell centers’ &

u=cm &

ds=(0:0,0:1,0:1)

real xc2 d=(1:1,1:1,1:1) f=E13.6 p=4 b=4 n=’x2 coordinates of cell centers’ &

170 CHAPTER 8. OUTPUT AND STATUS FILES

u=cm &

ds=(0:1,0:0,0:1)

real xc3 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=’x3 coordinates of cell centers’ &

u=cm &

ds=(0:1,0:1,0:0)

real xb1 d=(1:2,1:1,1:1) f=E13.6 p=4 b=4 n=’x1 coordinates of cell boundaries’ &

u=cm &

ds=(0:1,0:1,0:1)

real xb2 d=(1:1,1:2,1:1) f=E13.6 p=4 b=4 n=’x2 coordinates of cell boundaries’ &

u=cm &

ds=(0:1,0:1,0:1)

real xb3 d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 n=’x3 coordinates of cell boundaries’ &

u=cm &

ds=(0:1,0:1,0:1)

real rho_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=Density &

u=g/cm^3

real v1_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Velocity x1’ &

u=cm/s

real v2_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Velocity x2’ &

u=cm/s

real v3_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Velocity x3’ &

u=cm/s

real v1_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Velocity x1’ &

u=cm/s

real v2_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Velocity x2’ &

u=cm/s

real v3_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Velocity x3’ &

u=cm/s

real rhov1_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Mass Flux x1’ &

u=g/cm^2/s

real rhov2_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Mass Flux x2’ &

u=g/cm^2/s

real rhov3_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Mass Flux x3’ &

u=g/cm^2/s

real bc1_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Magnetic field 1’ &

u=G

real bc2_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Magnetic field 2’ &

u=G

real bc3_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Magnetic field 3’ &

u=G

real bc1_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Magnetic field 1’ &

u=G

real bc2_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Magnetic field 2’ &

u=G

real bc3_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Magnetic field 3’ &

8.3. FILES WITH AVERAGED DATA: RHD.MEAN 171

u=G

real ei_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=’Internal energy’ &

u=erg/g

real rhoei_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Internal energy’ &

u=erg/cm^3

real rhoek_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Kinetic energy’ &

u=erg/cm^3

real rhoeg_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Gravitational energy’ &

u=erg/cm^3

real t_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=Temperature &

u=K

real t_xmean4 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=Temperature &

u=K

real t_xmeankapparho d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=Temperature &

u=K

real p_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=Pressure &

u=dyn/cm^2

real s_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=Entropy &

u=erg/K/g

real rhos_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=Entropy &

u=erg/K/cm^3

real gamma1_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’1st Adiabatic Coefficient’ &

u=1

real gamma3_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’3rd Adiabatic Coefficient’ &

u=1

real delta_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Expansion coefficient’ &

u=1

real kapparho_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Absorption Coefficient’ &

u=1/cm

real quc001_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Number density of CO’ &

u=1/cm^3

rreal rhovb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Mass flux’ &

u=g/cm^ &

ds=(0:0,0:0,0:1)

real frhov13b_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Momentum x1 flux x3 direction’ &

u=erg/cm^3 &

ds=(0:0,0:0,0:1)

real frhov23b_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Momentum x2 flux x3 direction’ &

u=erg/cm^3 &

ds=(0:0,0:0,0:1)

real frhov33b_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Momentum x3 flux x3 direction’ &

u=erg/cm^3 &

ds=(0:0,0:0,0:1)

real feipb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Enthalpy Flux’ &

u=erg/cm^2/s &

ds=(0:0,0:0,0:1)

172 CHAPTER 8. OUTPUT AND STATUS FILES

real fekb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Kinetic Energy Flux’ &

u=erg/cm^2/s &

ds=(0:0,0:0,0:1)

real fegb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Gravitational Energy Flux’ &

u=erg/cm^2/s &

ds=(0:0,0:0,0:1)

real fepb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Pressure Energy Flux’ &

u=erg/cm^2/s &

ds=(0:0,0:0,0:1)

real fevb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Viscous Energy Flux’ &

u=erg/cm^2/s &

ds=(0:0,0:0,0:1)

real ferb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Radiative Energy Flux’ &

u=erg/cm^2/s &

ds=(0:0,0:0,0:1)

label endbox

The list above was slightly edited (by inserting blanks) to improve readability. In the meantime, several
additional entries have been included.

The identifier of an entry together with the name (n=’. . . ’) and the unit (u=’. . . ’) should give a
first hint about the meaning of the quantity. The suffix ’_xmean’ indicates a simple average. The suffix
’_xmean2’ indicates the root-mean-square average (note: the simple average is not subtracted).

Some entries (e.g. ferb_xmean) have a hidden b in their name, have one element more (e.g. 121 instead
of 120) than most of the others, and are characterized by the ds keyword (see Table 6.4). These quantities
are located at the cell boundaries in contrast to the usual cell-centered quantities. Clearly, there are also
two sets of axes (e.g. xc3 and xb3) corresponding to the cell- or boundary-centered quantities.
Note: The total energy flux can be written as sum

feb_total = feipkgvrb = feipb+fekb+fegb+fevb+ferb .

The flux fepb is already part of feipb.

8.4 File with azimuthally averaged data: rhd.mcyl

For global models an additional “rhd.mcyl” file can be written. It contains azimuthal averages that are
particularly useful for global models rotating around the x3 axis. The format is usually UIO “unformat-
ted” (binary). An individual dataset in “rhd.mcyl” so far consists only of one box. With

uiolook st36g45n22_005.mcyl | head -105

you get (some indentation and blank lines added):

fileform uio form=unformatted convert=ieee_4 version=0.1.2013.08.24 &

date=’22.09.2013 23:39:54.402’ system=Linux machine=c8220node84.ens-lyon.fr &

osrelease=3.2.0-3-amd64 osversion=’#1 SMP Mon Jul 23 02:45:17 UTC 2012’ &

hardware=x86_64 language=Fortran90 program=RHD

character file_id f=A8 b=8 n=’File identification’

character description d=(1:1) f=A14 p=2 b=14 n=’File description’

character history d=(1:20) f=A80 p=1 b=80 n=’File history’

character version f=A80 b=80 n=’Program version’

label dataset n=’RHD model’ date=’22.09.2013 23:40:08.596’

character dataset_id f=A10 b=10 n=’Type of box hierarchy’

real modeltime f=E13.6 b=4 n=time u=s

real modeltime_db f=E23.15 b=8 n=time u=s

8.4. FILE WITH AZIMUTHALLY AVERAGED DATA: RHD.MCYL 173

integer modelitime f=I10 b=4 n=’time step number’ u=1

label box date=’22.09.2013 23:40:08.599’

character box_id f=A1 b=1 n=’Block identification’

integer dimension d=(1:2,1:3) f=I7 p=6 b=4

real time f=E13.6 b=4 n=time u=s

real time_db f=E23.15 b=8 n=time u=s

integer itime f=I10 b=4 n=’time step number’ u=1

real xc1 d=(1:128,1:1,1:1) f=E13.6 p=4 b=4 &

n=’x1 coordinates of cell centers (radius)’ u=cm ds=(0:0,0:1,0:1)

real xc1_volume d=(1:128,1:1,1:1) f=E13.6 p=4 b=4 &

n=’Radius coordinates of cell centers (volume preserving)’ u=cm &

ds=(0:0,0:1,0:1)

real xc2 d=(1:1,1:1,1:1) f=E13.6 p=4 b=4 n=’phi coordinates of cell centers’ &

u=1 ds=(0:1,0:0,0:1)

real xc3 d=(1:1,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’x3 coordinates of cell centers (height)’ u=cm ds=(0:1,0:1,0:0)

real xb1 d=(1:129,1:1,1:1) f=E13.6 p=4 b=4 &

n=’x1 coordinates of cell boundaries (radius)’ u=cm ds=(0:1,0:1,0:1)

real xb1_volume d=(1:129,1:1,1:1) f=E13.6 p=4 b=4 &

n=’Radius coordinates of cell boundaries (volume preserving)’ u=cm &

ds=(0:1,0:1,0:1)

real xb2 d=(1:2,1:1,1:1) f=E13.6 p=4 b=4 &

n=’phi coordinates of cell boundaries’ u=1 ds=(0:1,0:1,0:1)

real xb3 d=(1:1,1:1,-127:128) f=E13.6 p=4 b=4 &

n=’x3 coordinates of cell boundaries (height)’ u=cm ds=(0:1,0:1,0:1)

real relvol_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Relative Volume’ &

u=1

real rho_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=Density u=g/cm^3

real ei_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Internal energy’ &

u=erg/g

real rhoei_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Internal energy’ &

u=erg/cm^3

real t_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=Temperature u=K

real p_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=Pressure u=dyn/cm^2

real gamma1_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’1st Adiabatic coefficient’ u=1

real gamma3_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’3rd Adiabatic coefficient’ u=1

real delta_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Expansion coefficient’ u=1

real s_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=Entropy u=erg/K/g

real s_xmean2 d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=Entropy u=erg/K/g

real rhos_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=Entropy u=erg/K/cm^3

real v1_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Velocity radial’ &

u=cm/s

real v2_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Velocity azimuthal’ &

u=cm/s

real v3_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Velocity vertical’ &

u=cm/s

real v1_xmean2 d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Velocity radial’ &

u=cm/s

real v2_xmean2 d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Velocity azimuthal’ &

u=cm/s

real v3_xmean2 d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Velocity vertical’ &

u=cm/s

real rhov1_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Mass flux radial’ &

u=g/cm^2/s

real rhov2_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Mass flux azimuthal’ u=g/cm^2/s

real rhov3_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Mass flux vertical’ &

174 CHAPTER 8. OUTPUT AND STATUS FILES

u=g/cm^2/s

real rhov1v1_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Momentum flux 11 radial’ u=g/cm/s^2

real rhov2v2_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Momentum flux 22 azimuthal’ u=g/cm/s^2

real rhov3v3_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Momentum flux 33 vertical’ u=g/cm/s^2

real rhov1v2_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Momentum flux 12’ &

u=g/cm/s^2

real rhov1v3_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Momentum flux 13’ &

u=g/cm/s^2

real rhov2v3_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 n=’Momentum flux 23’ &

u=g/cm/s^2

real fepc1_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Pressure energy flux radial’ u=erg/cm^2/s

real fepc3_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Pressure energy flux vertical’ u=erg/cm^2/s

real feipc1_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Enthalpy flux radial’ u=erg/cm^2/s

real feipc3_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Enthalpy flux vertical’ u=erg/cm^2/s

real fekc1_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Kinetic energy flux radial’ u=erg/cm^2/s

real fekc3_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Kinetic energy flux vertical’ u=erg/cm^2/s

real ferc1_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Radiative energy flux radial’ u=erg/cm^2/s

real ferc2_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Radiative energy flux azimuthal’ u=erg/cm^2/s

real ferc3_xmean d=(1:128,1:1,-127:127) f=E13.6 p=4 b=4 &

n=’Radiative energy flux vertical’ u=erg/cm^2/s

label endbox

label enddataset date=’22.09.2013 23:40:08.608’

8.5 HION output

The HION module can produce two types of output. The first is the standard output of the quc arrays in
the .full and .end files, holding the level populations. This is all that is needed to restart a computation.
The second (optional) output is a HION specific output system that generates files in UIO format after a
prescribed number of simulation timesteps or alternatively after a prescribed time interval (see parameter
dtime_out_hion). Output after a fixed number of timesteps is mainly useful for debugging. The files are
named HION.aaaa.bb.cccc.out with aaaa either ’step’ or ’time’, indicating output after a fixed number
of timesteps or a fixed amount of solar time, bb the atom identifier and cccc the number of the output file,
e.g. HION.step.H.0001.out. The HION files can be read with the IDL uio_dataset_rd (’filename’)

function. The resulting data structure contains mass density, gas temperature, electron density of the
atmosphere, as well as the axes in the atmos substructure. The atom substructure contains the time-
dependent populations ntd, the LTE populations nstar, the total population ntot, a number of atomic
parameters and l_ntr and c_ntr, arrays of the z-index per column where the radiation temperature in
a transition starts to deviate from the gas temperature.

Refer to Leenaarts & Wedemeyer-Böhm (2005) for more details.

8.6 Text output: rhd.out

During execution – expecially during the initialization phase – CO5BOLD writes lots of information to
standard output, which is usually directed into rhd.out. the output contains:

After the header, there is a block “Compiler call”, e.g.

8.6. TEXT OUTPUT: RHD.OUT 175

pgf90 -byteswapio -fast -Mvect=sse -Mcache_align -Minfo=inline -Minline=rhd_hyd_a

vg,rhd_hyd_upwind,rhd_hyd_pred0,rhd_hyd_predm,rhd_hyd_predp,rhd_hyd_alpha,rhd_h

yd_constanteq,rhd_hyd_minmodeq,rhd_hyd_minmod,rhd_hyd_vanleereq,rhd_hyd_vanleer

,rhd_hyd_superbeeeq,rhd_hyd_superbee,rhd_hyd_ppeq,rhd_hyd_pp,rhd_hyd_hdflux,rhd

_hyd_entropyfix -Minline=rhd_rad3d_raylhd,rhd_rad3d_solve,rhd_rad3d_solveeq,rhd

_shortrad_operator,rhd_shortrad_dtauop -Drhd_hyd_roe1d_l01=0 -Drhd_r02 -Drhd_r0

3 -DMSrad_raytas1 -Drhd_hyd_entropyfix_p01=1 -Drhd_roe1d_step_t01 -Drhd_roe1d_f

lux_t01 -Drhd_vis_t01 -Drhd_bound_t01 -Drhd_shortrad_step_t01 -Drhd_shortrad_fo

rmal_t01 -Drhd_shortrad_lambda_t01

These lines were produced by the configure script (see Sect. 4.3) and written into the file

compiler_flags.info

which is accessed from rhd.F90 via include during compilation. Various modules now have a routine
“XXX_SwitchInfo” that prints the values of the compiler switches used during the compilation of that
particular module. The output can look e.g. like

Compiler switches: rhd_hyd_module

rhd_hyd_gravcorr_p01: 5

rhd_hyd_entropyfix_p01: 1

rhd_hyd_upwind_p01: 0

rhd_hyd_roe1d_l01: 0

rhd_roe1d_step_l01: 0

rhd_roe1d_slope_l01: 0

rhd_roe1d_flux_l01: undefined

rhd_bound_t01: defined

rhd_roe1d_flux_t01: defined

rhd_roe1d_step_t01: defined

See Sect. 4.4 for more information about the meaning of the values. The reading of the parameter file
starts with

ACTION: Read parameter file <<<<<<<<

After a parameter is read, its value is printed (see Sect. 7.1). The line

ACTION: Load EOS data <<<<<<<<

indicates the start of the reading of the equation of state data. It is followed by some information about
the EOS table in use. Similarly, the line

ACTION: Load opacity tables <<<<<<<<

indicates the start of the reading of the opacity data. The information that follows is taken directly from
the header of the opacity table. Currently, the last file to be read is the start model, which is announced
by

ACTION: Read start model <<<<<<<<

and followed by some information about the start model, e.g. the number of grid points and a new section
showing the quantities actually read, e.g.

Properties of start model:

time "time" [s]

xc1 "x1 coordinates of cell centers" [cm]

xc2 "x2 coordinates of cell centers" [cm]

xc3 "x3 coordinates of cell centers" [cm]

xb1 "x1 coordinates of cell boundaries" [cm]

xb2 "x2 coordinates of cell boundaries" [cm]

xb3 "x3 coordinates of cell boundaries" [cm]

176 CHAPTER 8. OUTPUT AND STATUS FILES

rho "Density" [g/cm^3]

ei "Internal energy" [erg/g]

v1 "Velocity 1" [cm/s]

v2 "Velocity 2" [cm/s]

v3 "Velocity 3" [cm/s]

quc001 "Number density of CO" [1/cm^3] advect(1)

bb1 "Magnetic field 1" [G]

bb2 "Magnetic field 2" [G]

bb3 "Magnetic field 3" [G]

It might follow

ACTION: Initialize MS radiation transport routines <<<<<<<<

And finally

ACTION: Open output files <<<<<<<<

which indicates that for instance the rhd.full file (see Sect 8.1)) and the rhd.mean file (see Sect 8.3))
have been opened and now contain a header.

The end of the initialization phase and the beginning of the proper simulation is marked by e.g.

================================ Start Computation =================================

=== Time step number: itime= 47050 time= 2.5821813E+08 t_job= 8.510000E+00 ===

The output for a typical simulation time step can look like (for a supergiant model with SHORTrad
radiation transport)

--- Time step number: itime= 49048 time= 2.6822680E+08 t_job= 1.272180E+06 ---

dtime= 5.3047E+03 HD= 1.4838E+04 RAD= 5.3047E+03 VIS= 1.0723E+05

Luminosity per core volume: 4.49999049E-02

HYD 1: N_cellsperchunk, n_chunks: 10000 1410

HYD 2: N_cellsperchunk, n_chunks: 10000 1410

HYD 3: N_cellsperchunk, n_chunks: 10000 1410

VIS3D: N_cellsperchunk, n_chunks: 10000 1360

=== Start of rhd_shortrad_step ===

n_subdtime: 1

minmax(T) 1.111651E+03 1.630733E+05

Main (1/ 3) ray direction 2: 0.000000 1.000000 0.000000 -----------------------

Main (2/ 3) ray direction 3: 0.707105 0.000000 0.707109 -----------------------

Main (3/ 3) ray direction 3: -0.707105 0.000000 0.707109 -----------------------

Time step ratio: dtime/dtime_rad: 1.750409E+01

dtime_:rad,drhoei,limit_this,all: 6.667E+02 2.510E+03 6.276E+02 0.000E+00

n_subdtime: 2

minmax(T) 1.116348E+03 1.630658E+05

Main (1/ 3) ray direction 1: 1.000000 0.000000 0.000000 -----------------------

Main (2/ 3) ray direction 3: 0.000000 0.707105 0.707109 -----------------------

Main (3/ 3) ray direction 3: 0.000000 -0.707105 0.707109 -----------------------

Time step ratio: dtime/dtime_rad: 1.836970E+01

dtime_:rad,drhoei,limit_this,all: 6.353E+02 3.188E+03 7.971E+02 6.276E+02

...

n_subdtime: 8

minmax(T) 1.118540E+03 1.630164E+05

Main (1/ 3) ray direction 2: -0.707105 0.707109 0.000000 -----------------------

Main (2/ 3) ray direction 2: 0.707105 0.707109 0.000000 -----------------------

Main (3/ 3) ray direction 3: 0.000000 0.000000 1.000000 -----------------------

Time step ratio: dtime/dtime_rad: 1.791384E+01

dtime_:rad,drhoei,limit_this,all: 6.515E+02 3.894E+03 8.884E+02 4.814E+03

=== End of rhd_shortrad_step =====

8.6. TEXT OUTPUT: RHD.OUT 177

A simulation ends with e.g.

=== Time step number: itime= 49050 time= 2.6823742E+08 t_job= 1.273407E+06 ===

================================ End Computation ===================================

A proper exit is indicated by

--

Exit information: Requested number of time steps done

Exit status: 0

--

In this case a file rhd.done (see Sect. 8.7) is produced. A messages like

**

Severe error: SHORTRAD: Time step below absolute limit

Error index: 100

Interrupt computation

**

marks an exit with an error and without rhd.done file. A message about the final model like

ACTION: Write final model <<<<<<<<

Model file ’rhd.end’ opened on channel 12

==

is followed by some timing information like e.g.

Timing statistics (rate x factor= 1000000 x 10000)

==

Process Samples Total time Mean time

[sec] [sec]

RHD code 1 410.830017 410.830017

uio output routines 27 37.469997 1.387778

HYD: bound_3DCenter 2000 3.540000 0.001770

Hydrodynamics routines 2000 48944.660156 24.472330

HYD: 1 2000 16350.610352 8.175305

HYD: 2 2000 16052.459961 8.026230

HYD: 3 2000 16520.798828 8.260400

Viscosity routines 3D 2000 25446.400391 12.723200

VIS: make_box(modelvis) 2000 0.010000 0.000005

VIS: copy_box(modelvis) 2000 1750.960083 0.875480

VIS: delete_box(modelvis) 2000 0.000000 0.000000

Radiation transport routines 2000 243729.000000 121.864502

SHC: step 2020 244064.515625 120.824020

SHC: step: dtime: init: EOS 16024 49312.738281 3.077430

SHC: step: dtime: explicit 16024 174542.343750 10.892558

SHC: formal 16024 170085.437500 10.614418

SHC: formal: init 16024 35591.378906 2.221129

SHC: formal: dirloop 16024 133010.687500 8.300717

SHC: formal: exp 28014 9014.280273 0.321778

SHC: formal: exp: expl2t 28014 3950.409912 0.141016

SHC: formal: dir3 36083 63222.242188 1.752134

SHC: time: dir3 36083 19676.009766 0.545299

SHC: formal: limitei 16024 1306.419922 0.081529

SHC: step: dtime: final 16024 12730.129883 0.794441

SHC: formal: dir2 11959 22205.000000 1.856761

SHC: time: dir2 11959 5731.149902 0.479233

SHC: formal: dir1 4044 10674.429688 2.639572

SHC: time: dir1 4044 1893.760010 0.468289

SHC: step: dtime: final(output) 181 8620.870117 47.629116

Radiation trans.: output only 20 335.929993 16.796499

178 CHAPTER 8. OUTPUT AND STATUS FILES

In this example the value for the overall time (“rhd code 410.830017 sec”) is not useful because of an
overflow in the counter. However, it is evident that the radiation transport consumes most of the time
(243729.000000 sec), followd by the hydrodynamics routines (48944.660156 sec) and the tensor-viscosity
routines (25446.400391 sec). Some of these values are split further.

8.7 Additional status and output files: rhd.done, rhd.snap

At the beginning of every time step CO5BOLD checks in the working directory whether the file rhd.dump
exists. If it has been generated (e.g. with touch rhd.dump) and the file rhd.snap does not exist, the
current model is written into rhd.snap. It has the same file properties (format and conversion) as the
regular rhd.end file. The run of the simulation itself is not modified. This feature might be useful for
debugging purposes.

If a run was successful i.e. it was completed because one of the regular termination conditions was
fulfilled (e.g. the requested number of time steps was performed) the exit status file rhd.done is produced.
Currently, it contains the date and time of its generation. The existence of this file can be checked within
a script to determine if the simulation was successful (and should be continued). Note: the existence
of an rhd.end file only indicates that CO5BOLD managed to exit gracefully – due to an error or in a
regular way.

Chapter 9

Running a simulation

9.1 Quickstart: How to run CO5BOLD

The generation of a start file and the modification of the parameter file is a somewhat complex process.
In short, the following steps have to be performed.

1. Produce an executable rhd.exe (see Sect. 4.1) and put it into your working directory.

2. Make sure the environment variable LD_LIBRARY_PATH is – still – set correctly, so that all necessary
libraries are included (which usually just means: don’t change it after a successful compilation).

3. Choose a start model (e.g. the final model of an earlier simulation or a model produced with an
IDL routine).

4. Create the parameter file rhd.par: typically, you will start with an existing file and edit it just a
bit. You should check that the paths names of EOS and opacity files are set correctly (watch the
username!). For details about the parameter file see Sect. 7.1.1.

5. Prepare the runtime environment. That might involve – depending on operating system, compiler,
and machine – commands like
ulimit -s unlimited (to increase the overall stacksize)
export OMP_STACKSIZE=300M (to increase the stacksize per thread for an OpenMP run)
export OMP_NUM_THREADS=8 (to prepare an OpenMP run on 8 cores)

6. Start the simulation with
nice nohup rhd.exe > rhd.out &

7. You can see how the simulation proceeds with
tail -f rhd.out

8. The other data files usually are in a binary format. You can check them e.g. with – if installed, see
Sect. 6.2.6.2 –
uiolook rhd.mean

They are usually read and analyzed with IDL routines (see Sect. 6.2.7.3) or processed by a spectrum-
synthesis code.

For machines with batch queue there is a script, which can handle an entire sequence of simulations
(see Sect. 9.2).

179

180 CHAPTER 9. RUNNING A SIMULATION

9.2 Using a batch system

For longer simulations it is inconvenient to restart the individual jobs by hand. This task is done by a
script originally from Hans-Günter Ludwig. Its basic function is sketched in Fig. 9.1.

rhd.exe

In

In

In

In

 (.dat)

job command file (.cmd)(chain) job file (.job)

Out

Out

Out

Out

averaged output (.mean)

detailed output (.full)

end model (.end)

job log file (*.o*)

parameter file (.par)

start model (.sta, .end)

EOS table

opacity table (.dat)

In In

JOB

CO5BOLD - function diagram

Figure 9.1: Program scheme

Here comes an example of the script (rhd1.job) for a system without dedicated batch system. The
submission of a job is done via nohup rhd1.job &:

#!/bin/sh

--- PBS -N rhd1

--- PBS -l walltime=72:00:00

--- PBS -l nodes=1:ppn=4

#

--- Job file for the execution of CO5BOLD ---

9.2. USING A BATCH SYSTEM 181

--- Source: rhd1.job, original from HGL ---

--- Last modification: 2014-06-23 ---

#

BASEDIR=/users/bf/dat/job/j1

STADIR=${BASEDIR}/sta # Start directory: contains *.par, rhd1.cmd, rhd1.job

WRKDIR=${BASEDIR}/wrk # Work directory

BAKDIR=${BASEDIR}/bak # Backup and output directory

RHDEXE=$STADIR/rhd.exe # RHD program to be executed

#

ulimit -s unlimited

#

export OMP_NUM_THREADS=4

export OMP_STACKSIZE=300M

#

--- Jump into work directory ---

cd ${WRKDIR}

#

--- Loop: execute RHD code (possibly) several times in one job --------------

for IRUN in 1 2

do

echo

echo ’CO5BOLD Run #’ $IRUN

date

#

--- Clear up work directory ---

rm *

#

##

#

--- Get old command file, select actual command line ---

--- and read variables from command line ---

#

cp -p $STADIR/rhd1.cmd rhd1.cmd

#

awk \

’ /#/ { print; next}

/*/ { print; next}

/\+/ { print; next}

DONE!="T" { print >"cmdline"; printf "%-77s*\n", $0; DONE="T"; next}

{ print} ’ rhd1.cmd | cat > dummy_nrhd.cmd

#

read INFILE OUTFILE PARFILE ACT < cmdline

mv dummy_nrhd.cmd ${OUTFILE}_nrhd.cmd

echo ${INFILE}

echo ${OUTFILE}

echo ${PARFILE}

echo ${ACT}

#

##

#

if ["${ACT}" != dum]

then

##

#

--- RHD execution ---

#

--- Copy parameter file ---

cp -p ${STADIR}/${PARFILE} rhd.par

#

--- Copy start file ---

if test -s ${BAKDIR}/${INFILE}

then

cp -p ${BAKDIR}/${INFILE} rhd.sta

else

cp -p ${STADIR}/${INFILE} rhd.sta

cp -p rhd.sta ${BAKDIR}/${INFILE}

fi

182 CHAPTER 9. RUNNING A SIMULATION

--- Copy executable ---

cp -p ${RHDEXE} rhd.exe

#

--- Execute RHD ---

./rhd.exe > rhd.out

RHD_EXIT=$?

#

if ["$RHD_EXIT" != 0] || [! -s rhd.done]

then

--- Exit status not zero, ---

--- error may have occurred during execution of rhd.exe ---

if ["$RHD_EXIT" != 0]

then

echo ’Non-zero exit status ’ $RHD_EXIT ’ occurred during execution of RHD!’

else

echo ’No rhd.done file found: assume error during execution of RHD!’

fi

echo ’Execution of job chain terminated!’

--- Modify nrhd.cmd, set termination character "+" ---

awk \

’ /#/ { print; next}

/*/ { print; next}

/\+/ { print; next}

DONE!="T" { printf "%-77s+\n", $0; DONE="T"; next}

{ print} ’ rhd1.cmd | cat > nrhd.cmd

--- Terminate chain by simulating ${ACT} = eoc ... ---

ACT=eoc

else

--- Modify command file: add ’*’ in appropriate column to indicate ---

--- proper execution ---

awk \

’ /#/ { print; next}

/*/ { print; next}

/\+/ { print; next}

DONE!="T" { print >"cmdline"; printf "%-77s*\n", $0; DONE="T"; next}

{ print} ’ rhd1.cmd | cat > nrhd.cmd

fi

#

ls -l

#

--- Move data into backup directory and modify permissions ---

gzip rhd.out

mv rhd.out.gz ${BAKDIR}/${OUTFILE}.out.gz

cp -p rhd.par ${BAKDIR}/${OUTFILE}.par

mv rhd.end ${BAKDIR}/${OUTFILE}.end

mv rhd.fine ${BAKDIR}/${OUTFILE}.fine

mv rhd.full ${BAKDIR}/${OUTFILE}.full

mv rhd.mcyl ${BAKDIR}/${OUTFILE}.mcyl

mv rhd.mean ${BAKDIR}/${OUTFILE}.mean

mv rhd.chu1 ${BAKDIR}/${OUTFILE}.chu1

mv rhd.chu2 ${BAKDIR}/${OUTFILE}.chu2

mv rhd.chu3 ${BAKDIR}/${OUTFILE}.chu3

chmod go+r ${BAKDIR}/${PARFILE} ${BAKDIR}/${OUTFILE}.*

chmod go-w ${BAKDIR}/${PARFILE} ${BAKDIR}/${OUTFILE}.*

#

##

fi

#

#

##

#

--- Dispose modified command file for next job ---

cp -p nrhd.cmd $STADIR/rhd1.cmd

#

--- Exit loop if end of chain reached ---

if test ${ACT} = eoc

then

9.2. USING A BATCH SYSTEM 183

break

fi

#

--- End of loop --

done

#

--- Submit next job if not end of chain reached---

if test ${ACT} != eoc

then

cd $STADIR

echo "Resubmit job"

/usr/local/bin/qsub rhd1.job

qsub rhd1.job

nice nohup rhd1.job &

nohup rhd1.job &

else

echo "End of job chain"

fi

#

##

184 CHAPTER 9. RUNNING A SIMULATION

Chapter 10

Data analysis with IDL

In this section some basic commands for handling CO5BOLD data in IDL are described. See also
Sect. 6.2.7

10.1 Preparations

Make the UIO IDL routines visible to IDL – somehow. There are several ways to do that. Three are
described below:

We recommend to create an initialization file (e.g. named start.pro) which should be called after
starting IDL (e.g. @start). This is necessary to define relevant paths of IDL subroutines and to provide
the UIO package. Thus, the file should contain the following:

; --- Add user IDL directory to search path ---

addpath=expand_path(’+$UIOPATH/idl’)

addpath=addpath + ’:’ + expand_path(’+$HOME/HYDRO/IDL/rhdpro’)

if strtrim(addpath,2) ne ’’ then !path=addpath+’:’+!path

delvar, addpath

; --- Initialize uio-routines ---

uio_init, progrm=’by hand’

Note: Before using IDL the environment variables for the CO5BOLD paths should have been set.
Use setarcdeppaths.sh (or .ksh, .csh) for this purpose. Important is ${UIOPATH} which specifies where to
find the IDL routines for the UIO handling in the script above.

Alternatively, one might set the IDL path variable accordingly like

export IDL_PATH="+$UIOPATH/idl"

for example in the .bashrc file before starting IDL.
Or, you just make a symbolic link from the UIO IDL routines at their original location to a sub-

directory of the main IDL directory, which should be in the IDL path anyway.
The initial (single) call of uio_init is necessary in any case.

10.2 CO5BOLD data in IDL

Important to know is that all operations can be performed in the command line of IDL. This allows
an interactive processing of CO5BOLD data. Moreover, there are already prepared IDL scripts for this
purpose but most of them are rather complex and still have to be edited (e.g. changing file names –
Huuhh!). For the beginning it is more clear to use single commands. We give a short overview of some
essential commands.

10.2.1 Loading the parameter file

IDL> parfile=’mymodel.par’

IDL> par=uio_struct_rd(parfile)

All control parameters are provided in the structure PAR.

185

186 CHAPTER 10. DATA ANALYSIS WITH IDL

10.2.2 Loading CO5BOLD data (.full, .sta, .end, .chu1)

IDL> modelfile=’/home/user/mymodel.full’ & n=0

IDL> ful=uio_dataset_rd(modelfile,n=n)

First the name and full path (if not in the actual directory) of the model file and the wanted time
step should be defined. Here, time step means the consecutive number of the model snapshot in the file.
Declaring a time step number greater than the number of snapshots contained in the file will cause an
error.
Otherwise all data of the particular time step n will be provided in the structure FUL.
Loading more than one timestep from the same file could be achieved as follows:

IDL> uio_openrd, nc, modelfile, outstr, ierr

IDL> for i=0,ntime-1 do begin &$

IDL> ful=uio_dataset_rd(modelfile, channel=nc,ierr=ierr, outstr=err_msg) &$

IDL> endfor &$

IDL> uio_closrd, nc

Again, this operation would cause an error if the wanted time step is not contained in the file. Via
checking the error flag ierr of the routine uio_dataset_rd such errors can be avoided. This way it is
unnecessary to know exactly of how many time steps the model file consists.

IDL> uio_openrd, nc, modelfile, outstr, ierr

IDL> i=0

IDL> repeat begin &$

IDL> ful=uio_dataset_rd(modelfile, channel=nc, ierr=ierr) &$

IDL> if (ierr eq 0) then begin &$

IDL> ;--- Do the data processing here ---

IDL> i=i+1 &$

IDL> endif else begin &$

IDL> print,’IDL> Reached EOF.’ &$

IDL> endelse &$

IDL> endrep until (ierr ne 0) or (EOF(nc))

IDL> uio_closrd, nc

To read a number of entries from a list of files in sequence the routine uio_datasetlist_rd.pro (see
Sect. 6.2.7.3) is appropriate.

10.2.3 Loading the equation of state

IDL> eosfile=’../eos/dat/’ + par.eosfile

IDL> tabinter_rdcoeff, eosfile, eos

The table for the equation of state is provided in the structure EOS.
NOTE: Always check file name and path!

10.2.4 Loading the opacity table

IDL> opafile=’../opa/dat/’ + par.opafile

IDL> dfopta, opafile

The opacity table will be stored as common block OPTA_COMMON. NOTE: Always check file name
and path!

10.2.5 Computation of deduced quantities

After having read the model data FUL and the tables for the equation of state (EOS) and opacity
(OPTA_COMMON) (see Sects. 10.2.3, 10.2.4), more quantities can be calculated:

IDL> eosbox, ful, eos=eos , /opa ,ierror=ierror

10.3. IDL DATA STRUCTURE 187

This operation adds the tags EOS and OPA to the data structure FUL, which contain more quantities
like e.g. the temperature (see Sect. 10.3).

Based on the thermodynamic quantities now present in the FUL structure, further quantities can be
computed with combox.pro, as for instance in

IDL> cs=combox(’cs’,ful)

10.3 IDL data structure

The data structure FUL contains the following variables and substructures. Use help,/str,ful, to get
this information. See also the short description of the contents of a model file in Sect. 8.1 and particularly
the man page of the script uiolook in Sect. 6.2.6.2 which gives you even more detailed information directly
from the file:

** Structure <8287a0c>, 9 tags, length=78404128, refs=1:

TYPE STRING ’uio’

HEAD STRUCT -> <Anonymous> Array[1]

DATASET_ID STRING ’single_box’

MODELTIME FLOAT 10050.1

MODELITIME LONG 64088

DTIME FLOAT 0.176381

TIME_OUT_FULL_LAST FLOAT 10050.1

TIME_OUT_MEAN_LAST FLOAT 10040.0

Z STRUCT -> <Anonymous> Array[1]

If the command in Sect.10.2.5 has been performed, the following substructures are present:

EOS STRUCT -> <Anonymous> Array[1]

OPA STRUCT -> <Anonymous> Array[1]

The substructure FUL.Z contains the original data arrays from the model file like the spatial axes,
density rho, internal energy ei, and the three spatial components of the velocity (v1, v2, v3):

** Structure <8274184>, 16 tags, length=78403900, refs=2:

TYPE STRING ’uio’

BOX_ID STRING ’z’

DIMENSION LONG Array[2, 3]

TIME FLOAT 10050.1

ITIME LONG 64088

XC1 FLOAT Array[140, 1 , 1]

XC2 FLOAT Array[1 , 140, 1]

XC3 FLOAT Array[1 , 1 , 200]

XB1 FLOAT Array[141, 1 , 1]

XB2 FLOAT Array[1 , 141, 1]

XB3 FLOAT Array[1 , 1 , 201]

RHO FLOAT Array[140, 140, 200]

EI FLOAT Array[140, 140, 200]

V1 FLOAT Array[140, 140, 200]

V2 FLOAT Array[140, 140, 200]

V3 FLOAT Array[140, 140, 200]

The spatial axes are: XC1, XC2, XC3, XB1, XB2, XB3:

The indices stand for 1:x, 2:y, 3:z (or h) C for the grid cell centre, B for the boundaries. Most of the
quantities are defined for the cell centres. In case of doubt, this can be found out by checking the array
dimensions: the number of cell boundaries is one larger than the number of cell centers.

The substructure FUL.Z can contain additional arrays in case of dust formation, chemical reaction
networks, or time-dependent hydrogen ionization:

188 CHAPTER 10. DATA ANALYSIS WITH IDL

QUC001 FLOAT Array[140, 140, 200]

QUC002 FLOAT Array[140, 140, 200]

QUC003 FLOAT Array[140, 140, 200]

QUC004 FLOAT Array[140, 140, 200]

The meaning of the quantities depends on the used source-term module. The magnetic field compo-
nents are also stored in this substructure:

BB1 FLOAT Array[141, 140, 200]

BB2 FLOAT Array[140, 141, 200]

BB3 FLOAT Array[140, 140, 201]

The magnetic field is defined on the cell boundaries in the direction of the spatial components, e.g.
BB1 in direction 1, and in the cell-centres for the other directions. The resulting array dimensions differ
from the cell-centred quanties like, e.g., rho. The array values must be multiplied with a factor

√
4π in

order to obtain the field strength in Gauss.
The substructure FUL.EOS (which is present only after a call of, e.g., eosbox.pro) contains important

quantities like the temperature T, gas pressure P, entropy S:

** Structure <826a03c>, 6 tags, length=109760000, refs=2:

P FLOAT Array[140, 140, 200]

DPDRHO FLOAT Array[140, 140, 200]

DPDEI FLOAT Array[140, 140, 200]

T FLOAT Array[140, 140, 200]

DTDEI FLOAT Array[140, 140, 200]

S FLOAT Array[140, 140, 200]

The substructure FUL.OPA only contains the opacity KAPPA:

** Structure <826a5b4>, 1 tags, length=15680000, refs=2:

KAPPA FLOAT Array[140, 140, 200]

10.4 More IDL routines

In the directory idl/bflib/ a lot of useful routines can be found which can be used for further processing
and visualisation of CO5BOLD data. For the visualisation of 2-D models or 2-D data slices in general
we recommend plotfield.pro. With combox.pro further quantities can be calculated.
Furthermore, we currently develop a widget-based analysis tool called CO5BOLD AT (abbrev.: CAT)
which will help to work with CO5BOLD data without having to write and edit own IDL code. The
routines are stored (if available) in the directory IDL/COBOLDAT and have to be started with @cat.

Chapter 11

Document history

• 2001-12-30: First version of the manual

• 2002-02-16: First version of the manual on the web

• . . . lots of extensions and changes in between. . .

• 2004-02-23: SGI Origin compiler settings section modified (for CINES machines) 4.6.13, 4.6.14

• 2004-02-23: short example for uio_datasetlist_rd.pro usage: 6.2.7.3

• 2004-03-02: Intel compiler settings section modified (LD_ASSUME_KERNEL=2.4.19): 4.6.8

• 2004-03-02: SGI Origin compiler settings section modified: 4.6.13

• 2004-03-03: IBM compiler settings section added: 4.6.6

• 2004-03-04: Document history started (pretty late. . .)

• 2004-03-04: Dedicated OpenMP section: 4.5.1

• 2004-03-04: Dedicated inlining section: 4.5.4

• 2004-03-04: Parameter for core drag force: 7.1.4.22

• 2004-03-04: New EOS table for solar composition: 7.1.6.1

• 2004-03-04: Trademarks: 13

• 2004-03-04: List of new dust files (the table was split into two): 3.2

• 2004-03-04: Installation of UIO UNIX scripts with configure: 6.2.6.1

• 2004-05-03: Thermodynamic relations: 2.3

• 2004-05-14: Point-to-point ”tensor” viscosity: 7.1.11.9

• 2004-07-26: New gravitational potential mimicking a travelling tidal wave: 7.1.3.2

• 2004-08-18: New control files rhd.dump and rhd.snap to request a snapshot of current model: 8.7

• 2005-03-08: New control parameter dtime_out_end: 7.1.21.2

• 2006-07-28: Preparation for major code release (beta version) with the new modules CHEM (7.5),
and HION(7.6), including new parameters (7.1.12.1) and switches for the configure script (4.3)

• 2006-08-14: MHD section: 2.2, MHD parameters: 7.1.10, 7.1.5

• 2007-02-12: Hydro section with new modii and parameters: heat mode: 7.1.4.4, rotating coordinate
system: 7.1.3.10, possible hydrodynamics iteration: 7.1.8.6, new pressure correction scheme: 4.4.5.1
unsplit hydrodynamics operator possible: 7.1.8.3.

189

190 CHAPTER 11. DOCUMENT HISTORY

• 2007-10-22: Double precision time as additional scalar in model file: 8.1

• 2007-12-18: Rather stable version and parameter-rearrangements for dust model
dustscheme=dust_k3mon_03: 7.1.14
and dustscheme=dust_bins_01: 7.1.15.

• 2008-03-13: Expansion Courant number C_hydExpCourant, C_hydExpCourantmax: 7.1.20.11

• 2008-03-17: ”Hydrostatic pressure correction” in waves 3 and ”6” switch-on-and-offable with
C_hydPredfactor: 7.1.9.16

• 2008-04-27: Expansion viscosity C_visExpansion: 7.1.11.4

• 2008-07-03: Linear viscosity C_visLinear: 7.1.11.5

• 2008-08-13: Parameters N_radrsyslevel, N_radoutput, C_radTcool, C_radDcool, C_radscool in
MSrad: 7.1.17.6, parameters C_radTinci and C_radDinci to control incident radiation in MSrad:
7.1.17.11

• 2008-08-14: Compiling double precision code: 4.5.5

• 2008-08-19: Some parameters (possibly) valid for MHD module: 7.1.10.6

• 2008-08-28: Rather old parameters for additional I/O control: integer n_outslicedim_mean:
7.1.21.4, integer istep_in_start: 7.1.21.9

• 2009-01-12: README_MHD: 2.2

• 2010-03-17: Performance enhancement for EOS: gasinter_l02: 4.4.3.2

• 2010-03-19: Performance enhancement during box handling: rhd_box_arrays01: 4.4.1.4

• 2010-04-09: Transmitting upper boundary condition: c_rhochangetop: 7.1.4.15
Better counters for timing statisctis: timing_c_range: 4.4.1.2

• 2010-04-11: Merging of previous introductory text to Sect. 2.2 by BF with README_MHD by WS.
Update of various text passages. Shift of parameter description to Sect. 7.1: 2.2
Removal of remarks relating to the magnetic field in descriptions of parameters side_bound,
top_bound, and bottom_bound: 7.1.5
Description of boundary parameters for the magnetic field: side_bound_mag_x1,
side_bound_mag_x2, top_bound_mag, bottom_bound_mag, b1_inflow, C_magthetaB, and
C_magphiB: 7.1.5
Updates for reconstruction:PP, c_slopered, n_hyditer, n_hydmaxiter: 7.1.10
Updates and introduction of parameters for the MHD-module: c_resb, c_resbconst,
c_resepsilon, beta_inv, va_max, N_magDiffSide, N_magDiffTop, and n_magbiffbottom:
7.1.5
F90_MHD: comment about zero magnetic fields: 4.3
Removal of “(first version)” for MHD entry in table of high-level modules: 3.2
References: Balsara & Spicer (1999), Janhunen (2000), Stone & Pringle (2001): 13

• 2010-04-14: Some parameters in MHD module were renamed: B_theta, B_phi, N_side, N_top,
N_bottom → C_magthetaB, C_magphiB, N_magDiffSide, N_magDiffTop, N_magDiffBottom

• 2010-04-29: The files rhd_mac_*module.f90 were removed. The single routine from it was put into
timing_module.F90.

• 2010-05-06: Compiler switch timing_r_type explained: 4.4.1.3.
Input/output (UIO) compiler switches explained: 4.4.2, accompanied by some changes concerning
the files uio_mac*_module.[fF]90.

191

• 2010-06-14: Output of additional chunks described in 7.1.21.5 and 7.1.21.14
New versions of bottom boundary conditions, better suited for HLLMHD solver: 7.1.4.3
The HLLMHD solver can do different time-integration schemes: 7.1.8.2
In the HLLMHD step the CheckFlux step can be (des)activated: 7.1.10.1
MHD module allows unsplit update: 7.1.8.3.

• 2011-02-10: New parameters for MHD module: 7.1.10.2

• 2011-03-28: New option ’vertical2’ for magnetic boundary conditions: 7.1.5.1

• 2011-07-04: MHD equations: 2.2
New parameters r0_core, centrifugal_force: 7.1.3.8
Heating modes for core heating: 7.1.4.4

• 2011-12-09: New parameter r2_grav: 7.1.3.7
New option for old parameter c_radhtautop: 7.1.4.19

• 2012-01-10: A few new references including links: 13
Removal of old uio_mac_modules, mention of rhd_rec_module.f90: 3.3
New reconstruction methods: PPmimo, FRmimo, FRmono, FRweno, FRcont: 7.1.8.4
New parameters:
r2_grav, r0_core: 7.1.3.7
ar_RotationAxis, centrifugal_force: 7.1.3.9
hdTransVeloMode: 7.1.9.13

• 2012-01-11: Parameter real C_visDrag is obsolete.
Compiler switches rhd_roe1d_slope_l01, IDF, rhd_hyd_roe1d_l01 are obsolete: 4.4.8.3
Updates for c_slopered: 7.1.9.7
New options for parameters:
hdsplit=CTU: 7.1.8.3
for HD Roe solver: hdtimeintegrationscheme=Single,RungeKutta2,RungeKutta3 7.1.8.2
New parameters:
C_hydTdiffLin, C_hydTdiffMach: 7.1.9.19
C_RecContShift, C_RecContSteep: 7.1.9.8
dustReconstruction: 7.1.12.2

• 2012-01-12: New parameters:
C_hydSoundCourant, C_hydSoundCourantmax: 7.1.20.9
C_v3ChangeLinBottom, C_v3ChangeSqrBottom: 7.1.4.12

• 2012-02-16: New parameter: C_TminLimit: 7.1.16.8

• 2012-04-06: Added some lines in the Intel compiler section: 4.6.8

• 2012-09-04: New options for hdTransVeloMode: 7.1.9.13
New parameters:
C_hydLowMachcsFactor: 7.1.9.4
hdEntropyWaveMode: 7.1.9.14
hdEnthalpyAvgMode: 7.1.9.15
C_hydsDiffVelo, C_hydvDiffVelo: 7.1.9.17
C_visP2PhypSmagorinsky, C_visP2PhypArtificial, C_visP2PhypExpansion, C_visP2Pdivrhov:
7.1.11.11

• 2012-11-07: New options for:
hdEntropyWaveMode: 7.1.9.14
hdEnthalpyAvgMode: 7.1.9.15
character reconstruction: 7.1.8.4

192 CHAPTER 11. DOCUMENT HISTORY

• 2013-09-11: New parameters:
outdim_chu2, outdim_chu3: 7.1.21.6
outfile_chu2, outfile_chu3: 7.1.21.15
character outfile_mcyl: 7.1.21.13, 8.4
character hdcoredragprofile: 7.1.4.23
New compiler options:
better vectorization of EOS routines, gasinter_l01: 4.4.3.1
better vectorization of opacity routines, opta_switch_l01: 4.4.4.1
better vectorization of Roe-upwind-state computations, rhd_roe1d_flux_l01: 4.4.5.4
Old compiler option removed, rhd_roe1d_slope_l01: 4.4.8.3

• 2013-09-18: Optionally, parts of the source code included in the manual. Revised script to produce
the manual.

• 2013-09-21: Some long itemize lists transformed into sequences of paragraphs.
Cleanup of reference list.

• 2013-09-22: Changed documentclass: article to book (sections become chapters. . .)

• 2013-09-23: Reorganization and renaming of sections.

• 2013-09-24: Source-code files sorted into groups.

• 2013-09-27: New short subsections about vectorization: 4.5.2
and cache usage: 4.5.3.

• 2014-02-24: Change of default values of some compiler switches.

• 2014-06-20: New option randomcube for parameter radraybase: 7.1.16.6
parameter C_radHtauTop also in handled in SHORTrad: 7.1.4.19
new option core_energyentropy1 for parameter heat_mode: 7.1.4.4
new parameter hdCoreHeatProfile: 7.1.4.5
new ...-Radial and ...-Meridional options for hdCoreDragProfile: 7.1.4.23
new parameters s_InFlRadGrad and s_InFlLatGrad: 7.1.4.8
color output of configure script: 6, 4.3.1.1.

• 2014-07-18: New parameter C_gravmu: 7.1.8.5

• 2014-09-03: New reconstruction methods: HBweno, VAweno: 7.1.8.4

• 2015-04-20: First draft of Programmer’s guide: 5

• 2015-04-21: New parameters:
C_hydLowMachcsBase: 7.1.9.5
C_hydSmallFluctFactor: 7.1.9.6
N_hydRKIter: 7.1.9.3

• 2015-05-06: New parameters:
C_hydCellsPerChunk2 and C_hydCellsPerChunk3: 7.1.9.1
hdTmpStructKeepMode: 7.1.8.8
N_visIter: 7.1.11.1
Removed parameters:
C_ReconstructiondTimeFactor, C_visNeu1, C_visNeu2, C_visDrag

• 2015-05-07: New parameters:
time_ScaleStart and time_ScaleEnd: 7.1.22.1
C_recWenoWeightCenter, C_recWenoWeightRight, and C_recWenoPsiFactor: 7.1.9.10

• 2015-05-09: Updated Intel-compiler section: 4.6.8
New option F90_OPTIMIZE for configure script: 4.3.1.7

Chapter 12

Glossary

• CAT: ’CO5BOLD Analysis Tool’

• CO5BOLD or COBOLD is the short form of “COnservative COde for the COmputation of
COmpressible COnvection in a BOx of L Dimensions with l=2,3”.

• EOS: “Equation Of State”

• HION: “Hydrogen IONization”

• MPI: “Message Passing Interface”

• MHD: “Magneto-HydroDynamics”

• OpenMP: “Open Multi-Processing”

• OpenMPI: “Open Message Passing Interface”

• RHD: “Radiation HydroDynamics”

• UIO: the “Universal Input Output” format. It is used in CO5BOLD for parameter, model, mean,
and EOS files.

193

194 CHAPTER 12. GLOSSARY

Chapter 13

Trademarks

• AMD is a trademark of Advanced Micro Devices, Inc.

• Compaq is a US trademark of Compaq and/or Hewlett-Packard Company.

• Cray is a trademark of Cray Research.

• HP is a US trademark of Hewlett-Packard Company.

• IBM is a US trademark of International Business Machines.

• IDL is a registered trademark of Research Systems, Inc.

• Intel, Itanium, and Pentium are US trademarks of Intel Corporation.

• Linux is a trademark of Linus Torvalds.

• NEC is a registered trademark of Nippon Electric Company.

• PGI is a trademark of The Portland Group Compiler Technology.

• SGI is a trademark of Silicon Graphics.

• Solaris, Sun, SunOS, and SunFire are US trademarks of Sun Microsystems, Inc.

• Sparc is a US trademark of SPARC International, Inc.

• UNIX is a registered trademark of The Open Group.

• All other product names mentioned in this manual are trademarks or registered trademarks of their
respective owners.

195

196 CHAPTER 13. TRADEMARKS

Bibliography

Allard, F., Homeier, D., & Freytag, B. 2011, “Model Atmospheres From Very Low Mass Stars to Brown
Dwarfs”, 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, eds. Johns-Krull,
C., Browning, M. K., West, A. A., ASPCS 448, 91 (link to ADS)

Balsara, D. S. & Spicer, D. S. 1999, “A Staggered Mesh Algorithm Using High Order Godunov Fluxes
to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations”, J.Comput.Phys. 149,
270-292 (link to ADS)

Beeck, B., Collet, R., Steffen, M., Asplund, M., Cameron, R. H., Freytag, B., Hayek, W., Ludwig, H.-G.,
& Schüssler, M. 2012, “Simulations of the solar near-surface layers with the CO5BOLD, MURaM, and
Stagger codes”, A&A 539, 121 (link to ADS)

Caffau, E. and Ludwig, H.-G. and Steffen, M. and Freytag, B. and Bonifacio, P. 2011, “Solar Chemical
Abundances Determined with a CO5BOLD 3D Model Atmosphere”, Solar Physics 268, 255-269 (link
to ADS)

Chiavassa, A., Freytag, B., Masseron, T., & Plez, B. 2011, “Radiative hydrodynamics simulations of red
supergiant stars. IV. Gray versus non-gray opacities”, A&A 535, 22 (link to ADS)

Chiavassa, A. and Freytag, B. and Plez, B. 2013, “3D hydrodynamical simulations to interpret observa-
tions of stellar surfaces of red supergiant stars”, EAS Publications Series, eds. Kervella, P., Le Bertre,
T., & Perrin, G., vol. 60, 145-153 (link to ADS)

Colella, P. 1990, “Multidimensional Upwind Methods for Hyperbolic Conservation Laws”, J.Comp.Phys.,
87, 171-200 (link to publisher)

Colella, P. & Woodward, P. R. 1984, “The Piecewise Parabolic Method (PPM) for Gas-Dynamical
Simulations”, J.Comput.Phys. 54, 174-201 (link to ADS)

Freytag, B., Steffen, M., & Dorch, B. 2002, “Spots on the surface of Betelgeuse – Results from new 3D
stellar convection models”, Astron.Nachr. 323, 213 (link to ADS)

Freytag, B. & Höfner, S. 2008, “Three-dimensional simulations of the atmosphere of an AGB star”, A&A
483, 571-583 (link to ADS)

Freytag, B., Allard, F., Ludwig, H.-G., Homeier, D., Steffen, M. 2010, “The role of convection, overshoot,
and gravity waves for the transport of dust in M dwarf and brown dwarf atmospheres”, A&A 513, 19
(link to ADS)

Freytag, B., Steffen, M., Ludwig, H.-G., Wedemeyer-Böhm, S., Schaffenberger, W., Steiner, O. 2012,
“Simulations of stellar convection with CO5BOLD”, J.Comput.Phys. (Special Issue: Computational
Plasma Physics, ed. Barry Koren) 231, 919-959 (link to ADS, link to publisher)

Freytag, B. and Chiavassa, A. 2013, “Global radiation-hydrodynamics simulations of red supergiant
stars”, EAS Publications Series, eds. Kervella, P., Le Bertre, T., & Perrin, G., vol. 60, 137-144 (link
to ADS)

Freytag, B. 2013, “Advances in the hydrodynamics solver of CO5BOLD”, MemSAIS 24, 26 (link to ADS)

197

http://adsabs.harvard.edu/abs/2011ASPC..448...91A
http://adsabs.harvard.edu/abs/1999JCoPh.149..270B
http://adsabs.harvard.edu/abs/2012A%26A...539A.121B
http://adsabs.harvard.edu/abs/2011SoPh..268..255C
http://adsabs.harvard.edu/abs/2011SoPh..268..255C
http://adsabs.harvard.edu/abs/2011A%26A...535A..22C
http://adsabs.harvard.edu/abs/2013EAS....60..145C
http://www.sciencedirect.com/science/article/pii/002199919090233Q
http://adsabs.harvard.edu/abs/1984JCoPh..54..174C
http://adsabs.harvard.edu/abs/2002AN....323..213F
http://adsabs.harvard.edu/abs/2008A%26A...483..571F
http://adsabs.harvard.edu/abs/2010A%26A...513A..19F
http://adsabs.harvard.edu/abs/2012JCoPh.231..919F
http://www.sciencedirect.com/science/article/pii/S0021999111005699
http://adsabs.harvard.edu/abs/2013EAS....60..137F
http://adsabs.harvard.edu/abs/2013EAS....60..137F
http://adsabs.harvard.edu/abs/2013MSAIS..24...26F

198 BIBLIOGRAPHY

Janhunen, P. 2000, “A positive conservative method for magnetohydrodynamics based on HLL and Roe
methods”, J. Comput. Phys. 160, 649-661 (link to publisher)

Leenaarts, J. & Wedemeyer-Böhm, S. 2005, “DOT tomography of the solar atmosphere. III. Observations
and simulations of reversed granulation”, A&A 431, 687-692 (link to ADS)

Ludwig, H.-G., Caffau, E., Steffen, M., Freytag, B., Bonifacio, P., & Kučinskas, A. 2009, “The CIFIST
3D model atmosphere grid.”, MemSAIS 80, 711 (link to ADS)

Roe, P.L. 1986, “Characteristic-Based Schemes for the Euler Equations”, Ann.Rev.Fluid.Mech. 18, 337-
365 (link to publisher)

Rossow, W. B. 1978, “Cloud microphysics – Analysis of the clouds of Earth, Venus, Mars, and Jupiter”,
Icarus 36, 1-50 (link to ADS, link to publisher)

Schaffenberger, W., Wedemeyer-Böhm, S., Steiner, O., & Freytag, B. 2005, “Magnetohydrodynamic
Simulation from the Convection Zone to the Chromosphere”, in ESA SP-596: Chromospheric and
Coronal Magnetic Fields, ed. D. E. Innes, A. Lagg, & S. A. Solanki, p. 65.1 (link to ADS)

Stone, J.M. & Pringle, J.E. 2001, “Magnetohydrodynamical non-radiative accretion flows in two dimen-
sions”, Mon.Not.R.Astron.Soc. 322, 461-472 (link to ADS)

Tremblay, P.-E., Ludwig, H.-G., Freytag, B., Steffen, M., & Caffau, E. 2013, “Granulation properties of
giants, dwarfs, and white dwarfs from the CIFIST 3D model atmosphere grid”, A&A 557, 7 (link to
ADS)

Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G., & Holweger, H. 2004, “Numerical simulation
of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere”, A&A 414,
1121-1137 (link to ADS)

Wedemeyer-Böhm, S., Kamp, I., Bruls, J., & Freytag, B. 2005, “Carbon monoxide in the solar atmo-
sphere. I. Numerical method and two-dimensional models”, A&A 438, 1043-1057 (link to ADS)

http://www.sciencedirect.com/science/article/pii/S0021999100964799
http://adsabs.harvard.edu/abs/2005A%26A...431..687L
http://adsabs.harvard.edu/abs/2009MmSAI..80..711L
http://www.annualreviews.org/doi/abs/10.1146/annurev.fl.18.010186.002005
http://adsabs.harvard.edu/abs/1978Icar...36....1R
http://www.sciencedirect.com/science/article/pii/0019103578900726
http://adsabs.harvard.edu/abs/2005ESASP.596E..65S
http://adsabs.harvard.edu/abs/2001MNRAS.322..461S
http://adsabs.harvard.edu/abs/2013A%26A...557A...7T
http://adsabs.harvard.edu/abs/2013A%26A...557A...7T
http://adsabs.harvard.edu/abs/2004A%26A...414.1121W
http://adsabs.harvard.edu/abs/2005A%26A...438.1043W

Index

alpha, 56
AMD, 195
axis

xb1, 168
xb2, 168
xb3, 168
xc1, 168
xc2, 168
xc3, 168

batch queue, 180
big_endian, 56, 61, 64–66, 83, 86
boundary conditions, 105, 112

cache usage, 54
centrifugal force, 105
chem.dat, 164
chemical composition, 114
chemical reaction network, 17, 42, 137, 164, 187
CINES, 66
CO5BOLD, 17, 29–32, 193
Compaq, 195
compilation, 33–69
compiler

alpha, 44, 56
Cray, 56
g95, 65
gfortran, 65
Hewlett-Packard, 56, 57
Hitachi SR8000, 58
IBM, 60
Intel, 61
NEC

SX-5, 65
SX-6, 65
SX-8, 65

PathScale, 64
PGI, 61
SGI, 66

UKAFF, 66
Sun, 69

compiler macro, 40–52
category, 40
gasinter_l01, 45

gasinter_l02, 45

IDF, 52

MSrad_raytas, 51

opta_switch_l01, 45

rhd_shortrad_lambda_l01, 51

rhd_bound_t01, 46

rhd_box_arrays01, 42

rhd_box_bmag01, 43

rhd_box_grav01, 42

rhd_box_quc01, 42

rhd_hyd_entropyfix_p01, 46

rhd_hyd_gravcorr_p01, 45

rhd_hyd_roe1d_l01, 52

rhd_hyd_upwind_p01, 46

rhd_r01, 47

rhd_r02, 48

rhd_r03, 48

rhd_rad3d_dir_t01, 49

rhd_rad3d_fromray_l01, 48

rhd_rad3d_r02, 48

rhd_rad3d_solve_t01, 49

rhd_rad3d_step_t01, 49

rhd_rad3d_toray_l01, 48

rhd_roe1d_flux_l01, 46

rhd_roe1d_flux_t01, 47

rhd_roe1d_slope_l01, 52

rhd_roe1d_step_t01, 47

rhd_shortrad_dir1_l01, 50

rhd_shortrad_dir_l02, 51

rhd_shortrad_dtauop_l01, 50

rhd_shortrad_dtauop_l02, 50

rhd_shortrad_formal_l01, 50

rhd_shortrad_formal_t01, 51

rhd_shortrad_operator_l01, 49

rhd_shortrad_operator_l02, 50

rhd_shortrad_step_t01, 51

rhd_vis_density_p01, 47

rhd_vis_t01, 47

timing_c_factor, 41

timing_c_range, 41

timing_r_type, 42

uio_switch_crayxmp_l01, 44

uio_switch_ieeebe_l01, 44

199

200 INDEX

uio_switch_ieee_l01, 44
uio_switch_ieeele_l01, 44
uio_switch_native_l01, 43
uio_switch_open_l01, 44
uio_switch_system_l01, 43

configure script, 37–40, 175
control variables, 37
F90_BASEPATH, 37, 40
F90_CHEM, 39
F90_COLOR, 38
F90_COMPILER, 38
F90_DEBUG, 38
F90_DUST, 39
F90_HION, 39
F90_LHDRAD, 39
F90_MACHINE, 40
F90_MHD, 40
F90_MSRAD, 39
F90_OPTIMIZE, 39
F90_PARALLEL, 38
F90_POSTFLAGS, 38
F90_PREFLAGS, 38
F90_SHORTRAD, 39
F90_TWEAK, 40
F90_UNIT, 82

.configurerc file, 36, 37
Coriolis force, 105
craSHi, 56
Cray, 56, 150, 151, 195
CTU, 118

data format
UIO, 83

directional splitting, 17, 117
double precision, 55, 63, 65
dust, 17, 42, 137

entropy fix, 46
environment variable, 40, 53
EOS, 24, 114
equation of state, 24, 114

files, 83, 101, 167
configure script, 37–40

resource file, 36, 37
.configurerc, 36, 37
data files, table of, 84
documentation, 32
documentation files, table of, 32
Fortran, 30
Fortran files, table of, 30, 31
HION, 84
IDL

UIO, 95
input

chem.dat, 164
EOS, 114
opacities, 115
rhd.cont, 166
rhd.dump, 166
rhd.par, 101–164
rhd.sta, 164
rhd.stop, 166

LaTeX
CO5BOLD manual, 32

Makefile, 33, 34, 37
output

rhd.chu1, 168
rhd.chu2, 168
rhd.chu3, 168
rhd.done, 178
rhd.end, 167
rhd.full, 167
rhd.mcyl, 172
rhd.mean, 168
rhd.out, 174
rhd.snap, 178

rhd.exe, 33, 36
script, 32

configure, 37–40
job file, 180
uiocat, 94
uioinfo, 95
uiolook, 94

script files, table of, 32
fluxes, 168
formatted, 85
Fortran, 17, 83

g95, 65
gfortran, 65

HD, 19, 116, 121
Hewlett-Packard, 56, 57, 195
HION

input, 165
output, 174

Hitachi, 58
HP, 195
hydrodynamics, 17, 19, 116, 121
hydrogen ionization, 17, 42, 137, 187

IBM, 60, 195
IDL, 83, 185, 195

CAT, 22, 188
combox.pro, 187
eosbox.pro, 186
UIO routines, 95
uio_data.pro, 97
uio_datasetlist_rd.pro, 98

INDEX 201

uio_dataset_rd.pro, 98
uio_init.pro, 96
uio_struct_rd.pro, 98

inlining, 53, 55
alpha, 56
Cray VX1, 56
IBM, 60
Intel compiler on Linux, 62
PGI compiler on Linux, 61
SGI, 66
Sun, 69

input
chemical reaction network, 164
HION, 165

Intel, 61, 195
Itanium, 57

KMP_AFFINITY, 54

LHDrad, 17, 143, 144
Linux, 61, 64, 65, 195
little_endian, 56, 61, 64, 65, 86
Loadleveler, 60

Macintosh, 63, 137
magnetic fields, 17, 43, 188
magnetohydrodynamics, 20
make, 36

clean, 37
removeall, 37

Makefile, 33, 34
configure script, 37
UIO, 91

MHD, 20, 116, 130
molecules, 17, 42, 137, 187
MSrad, 17, 48, 56, 58, 61, 62, 69, 111, 143, 144

cell centering, 168

NEC, 195
SX-5, 65
SX-6, 65
SX-8, 65

OMP_NUM_THREADS, 53
OMP_SCHEDULE, 53
OMP_STACKSIZE, 54
opacities, 115
OpenMP, 17, 52, 53

activation in configure script, 38, 53
chunk size, 121, 137
KMP_AFFINITY, 54, 64
KMP_STACKSIZE, 64
LD_ASSUME_KERNEL, 64
OMP_NUM_THREADS, 53, 63
OMP_SCHEDULE, 53, 64
OMP_STACKSIZE, 54, 64

on Cray VX1, 56
on Hitachi, 58
on HP, 57
on Linux gfortran, 65
on Linux Intel, 62
on Linux Pathscale, 64
on NEC, 65
on SGI, 66
on Sun, 69
thread affinity, 64

operator splitting, 17, 117
output

chunk data sets, 168
full data sets, 167
HION, 174
mcyl data, 172
mean data, 168

PathScale, 64
PGI, 195
precision

double, 55, 63, 65
single, 55

quc, 39, 42, 164

radiation transport, 17, 143, 148, 150
README, 34
rhd.cont, 166
rhd.dump, 166
rhd.exe, 33, 36
rhd.out, 174
rhd.par, 83, 101–164

boundary conditions, 105, 112
character bottom_bound, 106
character bottom_bound_mag, 113
character centrifugal_force, 105
character chem_reacfile, 138
character chem_reacpath, 138
character description, 102
character dustreconstruction, 138
character dustscheme, 137
dust_bins_01, 141
dust_k3mon_03, 140
dust_moment04_c2, 139

character eosfile, 114
character eospath, 115
character file_id, 102
character grav_mode, 103
character hdcheckflux, 130
character hdcoredragprofil, 111
character hdcoreheatprofil, 107
character hdenthalpyavgmode, 127
character hdentropywavemode, 126
character hdscheme, 116
character hdsplit, 117

202 INDEX

character hdtimeintegrationscheme,
117

character hdtmpstructkeepmode, 120

character hdtransvelomode, 126

character heat_mode, 107

character hion_abufile, 139

character hion_atomfile, 139

character hion_datapath, 139, 165

character hion_edensfile, 139

character hion_pffile, 139

character history, 103

character infile_start, 158

character opafile, 115

character opapath, 116

character outconv_end, 159

character outconv_fine, 164

character outconv_full, 160

character outconv_mean, 160

character outfile_chu1, 159

character outfile_chu2, 159

character outfile_chu3, 159

character outfile_end, 158

character outfile_fine, 163

character outfile_full, 158

character outfile_mcyl, 158

character outfile_mean, 158

character outform_end, 159

character outform_fine, 164

character outform_full, 159

character outform_mean, 160

character radpressure, 163

character radraybase, 146

character radraystar, 146

character radscheme, 143

character reconstruction, 118

character side_bound, 105

character side_bound_mag_x1, 112

character side_bound_mag_x2, 112

character top_bound, 106

character top_bound_mag, 113

chemical reaction network, 137

dust, 137

effective temperature, 103, 108

equation of state, 114

fileform uio, 102

gravity, 103

header, 102

hydrodynamics, 116, 121

hydrogen ionization, 137

input/output, 156

integer dtimestep_out_fine, 163

integer endtimestep, 152

integer hion_chunks, 139

integer istep_in_start, 158

integer n_outslicedim_mean, 157

integer n_dustgrainradius, 140, 142

integer n_hydcellsperchunk, 60, 121

integer n_hydcellsperchunk2, 121

integer n_hydcellsperchunk3, 121

integer n_hyditer, 120

integer n_hydmaxiter, 120

integer n_hydrkiter, 122

integer n_magdiffbottom, 133

integer n_magdiffside, 132

integer n_magdifftop, 132

integer n_orderconstrainedtransport,
130

integer n_radband, 144

integer n_raditer, 145

integer n_radmaxiter, 145

integer n_radminiter, 145

integer n_radoutput, 149

integer n_radphi, 148

integer n_radrsyslevel, 149

integer n_radsubray, 148

integer n_radtaurefine, 149

integer n_radtheta, 148

integer n_radthickpoint, 148

integer n_rescellsperchunk, 131

integer n_viscellsperchunk, 137

integer n_visiter, 133

integer outdim_chu1, 157

integer outdim_chu2, 157

integer outdim_chu3, 157

integer plustimestep, 152

integer starttimestep, 151

luminosity, 108

MHD, 116, 130

molecules, 137

opacities, 115

process management, 150

radiation transport, 143, 148, 150

reading in IDL, 98

real abux, 162

real abuy, 162

real ar_dustgrainradius, 140, 142

real ar_RotationAxis, 105

real b1_inflow, 114

real beta_inv, 132

real c_magthetab, 114

real c_radkappasmooth, 162

real c_visp2pdivrhov, 136

real c_visp2phypartificial, 136

real c_visp2phypexpansion, 136

real c_visp2phypsmagorinsky, 135

real c_coredrag, 111

real c_courant, 153

real c_courantmax, 153

INDEX 203

real c_dust01, 140, 142

real c_dust02, 140–142

real c_dust03, 140–142

real c_dust04, 140–142

real c_dust05, 141

real c_dust06, 141, 143

real c_dust07, 143

real c_dust08, 143

real c_dust09, 143

real c_dust0X, 138

real c_gravmu, 119

real chem_abumetal, 138

real c_hptopfactor, 110

real c_hydexpcourant, 154

real c_hydexpcourantmax, 154

real c_hydlowmachcsbase, 123

real c_hydlowmachcsfactor, 122

real c_hydpredfactor, 128

real c_hydsdiffvelo, 128

real c_hydsmallfluctfactor, 123

real c_hydsoundcourant, 154

real c_hydsoundcourantmax, 154

real c_hydtdifflin, 129

real c_hydtdiffmach, 130

real c_hydvdiffvelo, 129

real c_magphib, 114

real c_maxeichange, 154

real c_pchange, 109

real cputime, 151

real cputime_remainlimit, 151

real c_radcourant, 155

real c_radcourantmax, 155

real c_raddcool, 149

real c_raddinci, 150

real c_radhtautop, 111

real c_radimplicitmu, 147

real c_raditereps, 147

real c_raditerstep, 148

real c_radmaxeichange, 155

real c_radscool, 149

real c_radtcool, 149

real c_radthintimefac, 150

real c_radtinci, 149

real c_radtintminfac, 163

real c_radtsmooth, 163

real c_radtvis, 150

real c_radtvisdtau, 150

real c_reccontshift, 124

real c_reccontsteep, 124

real c_recwenopsifactor, 125

real c_recwenoweightcenter, 125

real c_recwenoweightright, 125

real c_resB, 131

real c_resBconst, 131

real c_rescourant, 131

real c_rescourantmax, 131

real c_resepsilon, 132

real c_rhochangetop, 110

real c_schange, 108

real c_slopered, 123

real c_tchange, 110

real c_test1, 161

real c_tminlimit, 147

real c_tsurf, 110

real c_v3changelinbottom, 109

real c_v3changesqrbottom, 109

real c_visartificial, 134

real c_visbound, 109

real c_viscourant, 155

real c_viscourantmax, 156

real c_visexpansion, 134

real c_vislinear, 134

real c_visp2pcoeff, 135

real c_visp2pincl1, 136

real c_visp2pincl2, 136

real c_visprturb, 134

real c_vissmagorinsky, 133

real c_vistensordiag, 134

real c_vistensordiv, 135

real c_vistensoroff, 135

real dtime_out_hion, 139, 174

real dtime_incmax, 153

real dtime_max, 153

real dtime_min, 152

real dtime_min_stop, 153

real dtime_out_end, 156

real dtime_out_full, 156

real dtime_out_mean, 157

real dtime_start, 152

real endtime, 151

real gamma, 162

real grav, 103

real luminositypervolume, 108

real mass_star, 104

real n_test1, 161

real nu_rotation, 105

real plustime, 152

real qmol, 162

real r0_core, 104

real r0_grav, 104

real r1_grav, 104

real r1_rad, 111

real r2_grav, 104

real rho_min, 111

real s_infllatgrad, 108

real s_inflow, 108

real s_inflradgrad, 108

real starttime, 151

204 INDEX

real strtest1, 161

real teff, 103

real time_scaleend, 161

real time_scalestart, 160

real va_max, 132

tensor viscosity, 133

time step, 152

rhd.snap, 178

rhd.stop, 166

Roe solver, 56, 58, 61

rotation, 105, 158

axis, 105

centrifugal force, 105

Coriolis force, 105

SGI, 66, 195

SHORTrad, 17, 61, 111, 143, 144

single precision, 55

Sparc, 195

Sun, 69, 195

tensor viscosity, 133

tests

unit, 74, 82

thermodynamic relations, 23

adiabatic gradient, 24, 25

enthalpy, 23

entropy, 25

internal energy, 23, 25

polytropic gas, 28

sound speed, 25, 28

specific heats, 23, 25, 26

time step, 145

timing statistics, 41, 177

total energy flux, 172

UIO, 83–99
conversion type, 85
example, 84, 86, 87
format, 85
Fortran, 90
IDL, 95
Makefile, 91
record length unit, 56, 63
uiocat, 55, 94
uio_datasetlist_rd.pro, 98
uio_dataset_rd.pro, 98
uioinfo, 95
uio_init.pro, 96
uiolook, 94
uio_mac_module, 90
uio_struct_rd.pro, 98
UNIX scripts, 93

UKAFF, 66
unformatted, 85
unit tests, 74, 82
UNIX, 195

vectorization, 54
viscosity

point-to-point, 133, 135
tensor, 47, 133

xb1, 168
xb2, 168
xb3, 168
xc1, 168
xc2, 168
xc3, 168

	Contents
	List of figures
	List of tables
	Introduction
	Equations
	Basic equations
	Magnetohydrodynamics (W. Schaffenberger)
	A collection of thermodynamic relations (M. Steffen, AIP)
	Basic thermodynamic equations
	Definition of often-used thermodynamic coefficients
	CO5BOLD equation of state
	Derived thermodynamic coefficients
	Ideal gas with constant specific heats (polytropic gas)

	CO5BOLD file overview
	Fortran directories
	Fortran files
	Script files
	Documentation files

	Compilation & installation
	Quickstart: How to compile CO5BOLD
	Compilation procedure for CO5BOLD
	Configure script
	Control environment variables
	F90_COLOR
	F90_COMPILER
	F90_PREFLAGS
	F90_POSTFLAGS
	F90_PARALLEL
	F90_DEBUG
	F90_OPTIMIZE
	F90_LHDRAD
	F90_MSRAD
	F90_SHORTRAD
	F90_CHEM
	F90_HION
	F90_DUST
	F90_MHD
	F90_TWEAK
	F90_MACHINE
	F90_BASEPATH

	Compiler macros
	General
	timing_c_factor
	timing_c_range
	timing_r_type
	rhd_box_arrays01
	rhd_box_grav01
	rhd_box_quc01
	rhd_box_bmag01

	Input/output with UIO
	uio_switch_system_l01
	uio_switch_native_l01
	uio_switch_ieeebe_l01
	uio_switch_ieeele_l01
	uio_switch_ieee_l01
	uio_switch_crayxmp_l01
	uio_switch_open_l01

	Equation of state
	gasinter_l01
	gasinter_l02

	Opacity
	opta_switch_l01

	Hydrodynamics (Roe solver)
	rhd_hyd_gravcorr_p01
	rhd_hyd_entropyfix_p01
	rhd_hyd_upwind_p01
	rhd_roe1d_flux_l01
	rhd_bound_t01
	rhd_roe1d_flux_t01
	rhd_roe1d_step_t01

	Hydrodynamics (tensor viscosity)
	rhd_vis_density_p01
	rhd_vis_t01

	Radiation transport
	rhd_r01
	rhd_r02
	rhd_r03
	rhd_rad3d_toray_l01
	rhd_rad3d_fromray_l01
	rhd_rad3d_r02
	rhd_rad3d_solve_t01
	rhd_rad3d_dir_t01
	rhd_rad3d_step_t01
	rhd_shortrad_operator_l01
	rhd_shortrad_operator_l02
	rhd_shortrad_dtauop_l01
	rhd_shortrad_dtauop_l02
	rhd_shortrad_formal_l01
	rhd_shortrad_dir1_l01
	rhd_shortrad_dir_l02
	rhd_shortrad_lambda_l01
	rhd_shortrad_formal_t01
	rhd_shortrad_step_t01
	MSrad_raytas

	Obsolete macros
	IDF
	rhd_hyd_roe1d_l01
	rhd_roe1d_slope_l01

	Optimization, compiler switches
	OpenMP settings
	Vectorization
	Cache usage
	Inlining
	Single versus double precision

	Specific machines & compilers
	Cray: SV1
	Compaq: alpha
	Hewlett-Packard: V2500
	Hewlett-Packard: Itanium 2
	Hitachi SR8000
	IBM
	Linux: PGI compiler
	Linux: Intel compiler
	Linux: PathScale compiler
	Linux: GNU g95 compiler
	Linux: GNU gfortran compiler
	NEC SX-5, SX-6, SX-8
	SGI: Origin
	SGI: Origin 2000/3800 at UKAFF
	Sun: SunFire

	Programmer's guide
	General code organization
	Indentation and spaces
	General layout and indentation recommendations
	Alignment of assignments and equations
	Normal code indentation
	Further recommendations

	Naming conventions
	File names
	Program names
	Names of modules, subroutines, and functions
	Variable names

	Comments
	Header of files
	Header of modules
	Header of subroutines and functions
	Comment lines
	Short comments after Fortran statements

	Compiler switches and directives
	OpenMP
	Compiler directives
	Compiler macros or switches

	Unit tests
	F90_UNIT

	Data file types
	File overview
	UIO data format
	Quickstart: Introduction to UIO
	Example of UIO data file
	Structure of UIO files
	Data representation: ASCII or binary
	Data file structure
	Tables
	Recommendations for standard file structure

	Files & directories & paths
	Fortran90
	Files
	Use of UIO modules in Fortran90
	Compiling and Makefiles
	Sample calls of Fortran UIO routines

	UNIX scripts
	Installation of UIO UNIX scripts
	Quick examination of files: uiolook
	Transformation of files: uiocat
	Information about conversion types: uioinfo

	IDL UIO routines
	Initialization of UIO routines under IDL
	Reading data with uio_data.pro
	Reading data with uio_dataset_rd.pro or uio_datasetlist_rd.pro

	Input and control files
	Parameter file: rhd.par
	Quickstart: How to make a proper parameter file
	Header
	fileform uio
	character file_id
	character description
	character history

	Fundamental model parameters
	real teff
	character grav_mode
	real grav
	real mass_star
	real r0_grav
	real r1_grav
	real r2_grav
	real r0_core
	character centrifugal_force
	real nu_rotation
	real ar_rotationaxis

	Boundary conditions (general)
	character side_bound
	character top_bound
	character bottom_bound
	character heat_mode
	character hdcoreheatprofile
	real luminositypervolume
	real s_inflow
	real s_inflradgrad
	real s_infllatgrad
	real c_schange
	real c_pchange
	real c_v3changelinbottom
	real c_v3changesqrbottom
	real c_visbound
	real c_rhochangetop
	real c_tchange
	real c_tsurf
	real c_hptopfactor
	real c_radhtautop
	real r1_rad
	real rho_min
	real c_coredrag
	character hdcoredragprofile

	Boundary conditions (MHD only)
	character side_bound_mag_x1 and side_bound_mag_x2
	character top_bound_mag
	character bottom_bound_mag
	real b1_inflow
	real c_magthetab
	real c_magphib

	Equation of state
	character eosfile
	character eospath

	Opacities
	character opafile
	character opapath

	Hydrodynamics control (HD and MHD)
	character hdscheme
	character hdtimeintegrationscheme
	character hdsplit
	character reconstruction
	real c_gravmu
	integer n_hyditer
	integer n_hydmaxiter
	character hdtmpstructkeepmode
	integer n_hydcellsperchunk

	Hydrodynamics control (HD only)
	integer n_hydcellsperchunk2
	integer n_hydcellsperchunk3
	integer n_hydrkiter
	real c_hydlowmachcsfactor
	real c_hydlowmachcsbase
	real c_hydsmallfluctfactor
	real c_slopered
	real c_reccontshift
	real c_reccontsteep
	real c_recwenoweightcenter
	real c_recwenoweightright
	real c_recwenopsifactor
	character hdtransvelomode
	character hdentropywavemode
	character hdenthalpyavgmode
	real c_hydpredfactor
	real c_hydsdiffvelo
	real c_hydvdiffvelo
	real c_hydtdifflin
	real c_hydtdiffmach

	Hydrodynamics control (MHD only)
	character hdcheckflux
	integer n_orderconstrainedtransport
	integer n_rescellsperchunk
	real c_rescourant
	real c_rescourantmax
	real c_resb
	real c_resbconst
	real c_resepsilon
	real beta_inv
	real va_max
	integer n_magdiffside
	integer n_magdifftop
	integer n_magdiffbottom

	Tensor-viscosity control
	integer n_visiter
	real c_vissmagorinsky
	real c_visartificial
	real c_visexpansion
	real c_vislinear
	real c_visprturb
	real c_vistensordiag
	real c_vistensoroff
	real c_vistensordiv
	real c_visp2pcoeff
	real c_visp2phypsmagorinsky
	real c_visp2phypartificial
	real c_visp2phypexpansion
	real c_visp2pdivrhov
	real c_visp2pincl1
	real c_visp2pincl2
	integer n_viscellsperchunk

	Dust/molecules/hydrogen ionization: General
	character dustscheme
	character dustreconstruction
	real c_dust0X
	character chem_reacfile
	character chem_reacpath
	real chem_abumetal
	character hion_datapath
	character hion_atomfile
	character hion_abufile
	character hion_edensfile
	character hion_pffile
	real dtime_out_hion
	integer hion_chunks

	Dust: dustscheme=dust_moment04_c2
	real c_dust01
	real c_dust02
	real c_dust03
	real c_dust04

	Dust: dustscheme=dust_k3mon_03
	integer n_dustgrainradius
	real ar_dustgrainradius
	real c_dust01
	real c_dust02
	real c_dust03
	real c_dust04
	real c_dust05
	real c_dust06

	Dust: dustscheme=dust_bins_01
	integer n_dustgrainradius
	real ar_dustgrainradius
	real c_dust01
	real c_dust02
	real c_dust03
	real c_dust04
	real c_dust06
	real c_dust07
	real c_dust08
	real c_dust09

	Radiation-transport control (general)
	character radscheme
	integer n_radband
	integer n_radminiter
	integer n_raditer
	integer n_radmaxiter
	character radraybase
	character radraystar
	real c_tminlimit
	real c_radimplicitmu
	real c_raditereps
	real c_raditerstep

	Radiation-transport control (MSrad only)
	integer n_radtheta
	integer n_radphi
	integer n_radsubray
	integer n_radthickpoint
	integer n_radtaurefine
	integer n_radrsyslevel
	integer n_radoutput
	real c_radtcool
	real c_raddcool
	real c_radscool
	real c_radtinci
	real c_raddinci

	Radiation-transport control (LHDrad only)
	real c_radtvisdtau
	real c_radtvis
	real c_radthintimefac

	Process-time management
	real starttime
	integer starttimestep
	real cputime
	real cputime_remainlimit
	real endtime
	real plustime
	integer endtimestep
	integer plustimestep

	Time-step control
	real dtime_start
	real dtime_min
	real dtime_max
	real dtime_min_stop
	real dtime_incmax
	real c_courant
	real c_courantmax
	real c_maxeichange
	real c_hydsoundcourant
	real c_hydsoundcourantmax
	real c_hydexpcourant
	real c_hydexpcourantmax
	real c_radcourant
	real c_radcourantmax
	real c_radmaxeichange
	real c_viscourant
	real c_viscourantmax

	Input/output control
	real dtime_out_full
	real dtime_out_end
	real dtime_out_mean
	integer n_outslicedim_mean
	integer outdim_chu1
	integer outdim_chu2
	integer outdim_chu3
	character infile_start
	integer istep_in_start
	character outfile_end
	character outfile_full
	character outfile_mean
	character outfile_mcyl
	character outfile_chu1
	character outfile_chu2
	character outfile_chu3
	character outform_end
	character outconv_end
	character outform_full
	character outconv_full
	character outform_mean
	character outconv_mean

	Scale and test parameters
	real time_scalestart
	real time_scaleend
	integer n_test1
	real c_test1
	character strtest1

	Additional information and obsolete parameters
	real abux
	real abuy
	real qmol
	real gamma
	real c_radkappasmooth
	real c_radtsmooth
	character radpressure
	real c_radtintminfac
	integer dtimestep_out_fine
	character outfile_fine
	character outform_fine
	character outconv_fine

	Input model file: rhd.sta
	EOS file
	Opacity file
	Chemistry input
	HION input
	More control files: rhd.stop, rhd.cont, rhd.dump

	Output and status files
	Output model files: rhd.end, rhd.full
	Files with additional chunks of data: rhd.chu1, rhd.chu2, rhd.chu3
	Files with averaged data: rhd.mean
	File with azimuthally averaged data: rhd.mcyl
	HION output
	Text output: rhd.out
	Additional status and output files: rhd.done, rhd.snap

	Running a simulation
	Quickstart: How to run CO5BOLD
	Using a batch system

	Data analysis with IDL
	Preparations
	CO5BOLD data in IDL
	Loading the parameter file
	Loading CO5BOLD data (.full, .sta, .end, .chu1)
	Loading the equation of state
	Loading the opacity table
	Computation of deduced quantities

	IDL data structure
	More IDL routines

	Document history
	Glossary
	Trademarks
	Bibliography
	Index

