next up previous contents index
Next: 2.2 A collection of Up: 2 Equations Previous: 2 Equations   Contents   Index

2.1 Basic Equations

So far, this section demonstrates only how nicely LATEX can display formulae...

The 3D hydrodynamics equations, including source terms due to gravity, are the mass conservation equation

\begin{displaymath}
\frac{\partial \rho}{\partial t} + \frac{\partial \; \rho \...
...frac{\partial \; \rho \; v{\rm 2}}{\partial x3} = 0 \enspace ,
\end{displaymath} (1)

the momentum equation
\begin{displaymath}
\frac{\partial }{\partial t}
\left( \!
\begin{array}{c}
...
...\rho \; g{\rm 2} \\
\rho \; g{\rm 3}
\end{array} \! \right)
\end{displaymath} (2)

and the energy equation
\begin{displaymath}
\frac{\partial \rho e{\rm ik}}{\partial t} + \frac{\partial...
... \; v{\rm 1} + g{\rm 2} \; v{\rm 2} + g{\rm 3} \; v{\rm 3} ) .
\end{displaymath} (3)

In addition, there are equations for the 3D tensor viscosity and the non-local radiation transport.