next up previous contents index

3.1.8 Similarity solutions II

Inserting this ansatz (175) into Eq. (173) gives for \bgroup\color{DEFcolor}$t > 0$\egroup

\begin{displaymath}
- \frac{x}{t^2}   \tilde{q}' + \frac{\mathrm{d} f}{\mathrm{d} q}   \frac{1}{t}   \tilde{q}' = 0
\end{displaymath} (176)
with the solutions
\begin{displaymath}
\tilde{q}' \! \left( \frac{x}{t} \right) = 0
\enspace \Rig...
...nspace
\tilde{q} \! \left( \frac{x}{t} \right) = \mbox{const}
\end{displaymath} (177)
or
\begin{displaymath}
\tilde{q}' \! \left( \frac{x}{t} \right) \neq 0
\enspace \...
... \tilde{q} \! \left( \frac{x}{t} \right) \right) = \frac{x}{t}
\end{displaymath} (178)
which for Burgers' equation gives
\begin{displaymath}
v_{} = \frac{x}{t}
\enspace .
\end{displaymath} (179)
This solution (179) describes the state within a rarefaction fan whereas Eq. (177) applies everywhere else (outside of rarefaction waves and shocks).