next up previous contents index

3.2.11 Transformation of shock speed formula

Velocity at cell boundary from shock speed (Eq. (169) and Eq. (180), entropy fix ignored),

$\displaystyle v_{i+\frac{1}{2}}$ $\textstyle =$ $\displaystyle \frac{f \! \left( q_{i+1}^n \right)
-
f \! \left( q_i^n \right)}
{q_{i+1}^n
-
q_i^n}$ (190)
  $\textstyle =$ $\displaystyle \frac{f \! \left( q_{i+1}^n \right)
-
\frac{f \! \left( q_i^n \ri...
...t) + f \! \left( q_{i+1}^n \right)}{2}}
{q_{i}^n
-
\frac{q_i^n + q_{i+1}^n}{2}}$ (191)
  $\textstyle =$ $\displaystyle \frac{f \! \left( q_{{i_{\rm up}}_{i+\frac{1}{2}}}^n \right)
-
\f...
...\right)}{2}}
{q_{{i_{\rm up}}_{i+\frac{1}{2}}}^n
-
\frac{q_i^n + q_{i+1}^n}{2}}$ (192)
with the upwind index
\begin{displaymath}
{i_{\rm up}}_{i+\frac{1}{2}}
:=
\left\{
\begin{array}{ll...
...i+\frac{1}{2}} \le 0 \enspace
\end{array} \right.
\enspace .
\end{displaymath} (193)