next up previous

2 Exact solution for (piecewise) linear source function

Source function

\begin{displaymath}
S(\tau) = S_0 +
\frac{\Delta S}{\Delta \tau }   \left( \t...
...e \enspace \mbox{in the interval} \enspace [ \tau_0 , \tau_1 ]
\end{displaymath} (2)
and the abbreviations
\begin{displaymath}
\Delta \tau := \tau_1 - \tau_0
\enspace , \enspace \enspac...
... S_1 - S_0
\enspace , \enspace \enspace
\Delta I:= I_1 - I_0
\end{displaymath} (3)
give for the change of the intensity
$\displaystyle \Delta I\left( I_0, S_0, S_1, \Delta \tau \right)$ $\textstyle =$ $\displaystyle \left( I_0 -S_0 \right)  
\left[ e^{- \Delta \tau } -1 \right] \...
...}
\left[
e^{- \Delta \tau } - \left( 1 - \Delta \tau \right)
\right]
\enspace .$ (4)

Special care has to be taken for optically (very) thin and thick regimes.