next up previous contents index
Next: 3 Program Files, Installation, Up: CO5BOLD User Manual Previous: 1 Introduction   Contents   Index

2 Basic Equations

The 3D hydrodynamics equations, including source terms due to gravity, are the mass conservation equation

\begin{displaymath}
\frac{\partial \rho}{\partial t} + \frac{\partial \; \rho \...
...frac{\partial \; \rho \; v{\rm 2}}{\partial x3} = 0 \enspace ,
\end{displaymath} (1)

the momentum equation
\begin{displaymath}
\frac{\partial }{\partial t}
\left( \!
\begin{array}{c}
...
...\rho \; g{\rm 2} \\
\rho \; g{\rm 3}
\end{array} \! \right)
\end{displaymath} (2)

and the energy equation
\begin{displaymath}
\frac{\partial \rho e{\rm ik}}{\partial t} + \frac{\partial...
... \; v{\rm 1} + g{\rm 2} \; v{\rm 2} + g{\rm 3} \; v{\rm 3} ) .
\end{displaymath} (3)

In addition, there are equations for the 3D tensor viscosity and the non-local radiation transport.