next up previous contents index
Next: 2.3.5 Ideal gas with Up: 2.3 A collection of Previous: 2.3.3 CO5BOLD equation of   Contents   Index

2.3.4 Derived thermodynamic coefficients

First, the missing derivative $\left(\frac{\partial T}{\partial \rho}\right)_{e}$ can be found from the relation:


\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\left(\frac{\partial...
...p}{\rho^2}\left(\frac{\partial T}{\partial e}\right)_{\rho}
$}
\end{displaymath} (34)

which is obtained from the equality of the mixed derivatives in Eq.(16), written as:


\begin{displaymath}
{\rm d} s = \frac{1}{T} {\rm d} e - \frac{p}{T \rho^2} {\rm d} \rho
\end{displaymath} (35)

Then


\begin{displaymath}
\frac{\partial^{2}s}{\partial e\partial \rho} = \frac{\parti...
...{\partial }{\partial e}\left( -\frac{p}{T \rho^2} \right)_\rho
\end{displaymath} (36)

First adiabatic exponent:

\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\Gamma_1 \equiv \lef...
...{1}{\rho} \left(\frac{\partial p}{\partial e}\right)_{\rho}
$}
\end{displaymath} (37)

This relation is obtained by combining Eq.(16) with the identity


\begin{displaymath}
{\rm d} p = \left(\frac{\partial p}{\partial \rho}\right)_{e...
... + \left(\frac{\partial p}{\partial e}\right)_{\rho} {\rm d} e
\end{displaymath} (38)

The adiabatic sound speed is then obtained as

\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
c_s \equiv \sqrt{\le...
...\partial \rho}\right)_{s}} = \sqrt{\Gamma_1 \frac{p}{\rho}}
$}
\end{displaymath} (39)

Third adiabatic exponent:

\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\Gamma_3 \equiv 1 + ...
...{1}{\rho} \left(\frac{\partial p}{\partial e}\right)_{\rho}
$}
\end{displaymath} (40)

This relation is obtained by combining Eq.(16) with the identity


\begin{displaymath}
{\rm d} T = \left(\frac{\partial T}{\partial \rho}\right)_{e...
... + \left(\frac{\partial T}{\partial e}\right)_{\rho} {\rm d} e
\end{displaymath} (41)

and then using Eq.(34).

Adiabatic temperature gradient:

\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\nabla_{\rm ad} \equ...
...T}{\partial \ln p}\right)_{s} = \frac{\Gamma_3-1}{\Gamma_1}
$}
\end{displaymath} (42)

since
\begin{displaymath}
\left(\frac{\partial \ln T}{\partial \ln p}\right)_{s} = \le...
...rho}{\partial \ln p}\right)_{s} = \frac{\Gamma_3-1}{\Gamma_1}.
\end{displaymath} (43)

Adiabatic energy changes:

\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\rho \left(\frac{\pa...
...l \ln \rho}{\partial \ln p}\right)_{s} = \frac{1}{\Gamma_1}
$}
\end{displaymath} (44)

or
\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\left(\frac{\partial...
..._{s}
= \frac{1}{\Gamma_1}\left(1 + \frac{\rho e}{p}\right)
$}
\end{displaymath} (45)

We define the coefficients $c_v^\prime$ and $c_p^\prime$ through the relation

\begin{displaymath}
{\rm d} s = c_v^\prime {\rm d} \ln p - c_p^\prime {\rm d} \ln \rho
\end{displaymath} (46)

Entropy change at constant density:

\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
c_v^\prime = \left(...
... \ln T}\right)_{s}
= \frac{p}{\rho T}\frac{1}{\Gamma_3-1}
$}
\end{displaymath} (47)

This relation is obtained from the equality of the mixed derivatives in Eq.(16) together with Eq.(40).

Entropy change at constant pressure:

\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
c_p^\prime = -\left...
...\right)_{s}
= \frac{p}{\rho T}\frac{\Gamma_1}{\Gamma_3-1}
$}
\end{displaymath} (48)

This relation is obtained from the equality of the mixed derivatives in Eq.(17) together with Eq.(42).

Specific heat at constant density:


\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
c_v = c_v^\prime   ...
...} = 1 / {\left(\frac{\partial T}{\partial e}\right)_{\rho}}
$}
\end{displaymath} (49)

To derive the specific heat at constant pressure, we start from the relation


\begin{displaymath}
{\rm d} \ln T = \left(\frac{\partial \ln T}{\partial \ln \rh...
...left(\frac{\partial \ln T}{\partial s}\right)_{\rho} {\rm d} s
\end{displaymath} (50)

from which we get
\begin{displaymath}
\left(\frac{\partial s}{\partial \ln \rho}\right)_{T} = -\le...
..._{s} /
\left(\frac{\partial \ln T}{\partial s}\right)_{\rho}
\end{displaymath} (51)

Using Eqs.(40) and (49), we obtain

\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\left(\frac{\partial s}{\partial \ln \rho}\right)_{T} = -c_v   (\Gamma_3-1)
$}
\end{displaymath} (52)

Now

\begin{displaymath}
{\rm d} s = \left(\frac{\partial s}{\partial \ln p}\right)_{...
...ac{\partial s}{\partial \ln \rho}\right)_{p} {\rm d} \ln \rho
\end{displaymath} (53)

or
\begin{displaymath}
{\rm d} s = \left(\frac{\partial s}{\partial \ln p}\right)_{...
...c{\partial \ln \rho}{\partial s}\right)_{T} {\rm d} s \right\}
\end{displaymath} (54)

hence
\begin{displaymath}
{\rm d} s \left\{1- \left(\frac{\partial s}{\partial \ln \rh...
...ac{\partial \ln \rho}{\partial \ln T}\right)_{s} {\rm d} \ln T
\end{displaymath} (55)

and finally
\begin{displaymath}
\left(\frac{\partial \ln T}{\partial s}\right)_{p} =
\left\{...
...ft(\frac{\partial \ln \rho}{\partial \ln T}\right)_{s}\right\}
\end{displaymath} (56)

or
\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\left(\frac{\partial...
...eft(\frac{\partial \ln \rho}{\partial s}\right)_{T}\right\}
$}
\end{displaymath} (57)

Using Eqs.(23), (40), (48), (52), we finally obtain the relation for the specific heat at constant pressure:
\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\frac{1}{c_p} = \fra...
...
= \frac{1}{c_v} - T \left(\frac{\Gamma_3-1}{c_s}\right)^2
$}
\end{displaymath} (58)

Alternatively, $c_p$ can be obtained from Eq.(28)
\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
c_p = c_v + \frac{p}{\rho T}  \delta  \chi_{T}
$}
\end{displaymath} (59)

or from
\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
c_p = \delta   c_p^...
... = \frac{p}{\rho T}  \delta   \frac{\Gamma_1}{\Gamma_3-1}
$}
\end{displaymath} (60)

once $\delta$ and $\chi_{T}$ are known (see below).

We can now express the thermodynamic coefficients provided by CO5BOLD in terms of $c_v$, $\Gamma_1$, $\Gamma_3$, and $\nabla_{\rm ad}$:


\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\left(\frac{\partial p}{\partial e}\right)_{\rho} = \rho   (\Gamma_3 - 1)
$}
\end{displaymath} (61)


\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\left(\frac{\partial...
...ho}\right)_{e} = \frac{p}{\rho}   (1 - \Gamma_3 +\Gamma_1)
$}
\end{displaymath} (62)


\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\left(\frac{\partial T}{\partial e}\right)_{\rho} = \frac{1}{c_v}
$}
\end{displaymath} (63)


\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\left(\frac{\partial...
...T}{\rho}   (\Gamma_3-1) -
\frac{p}{\rho^2} \frac{1}{c_v}
$}
\end{displaymath} (64)


\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\left(\frac{\partial...
...^2}\left\{1 - \frac{\rho T}{p}   c_v (\Gamma_3-1)\right\}
$}
\end{displaymath} (65)


\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\left(\frac{\partial...
...=
\frac{p}{\rho^2}\frac{\nabla_{\rm ad}-1}{\nabla_{\rm ad}}
$}
\end{displaymath} (66)

We consider again Eq.(35), replacing ${\rm d} e$ by

\begin{displaymath}
{\rm d} e = \left(\frac{\partial e}{\partial T}\right)_{\rho...
...left(\frac{\partial e}{\partial \rho}\right)_{T} {\rm d} \rho
\end{displaymath} (67)

so
\begin{displaymath}
{\rm d} s = \frac{1}{T} \left(\frac{\partial e}{\partial T}\...
... \rho}\right)_{T}
- \frac{p}{T \rho^2}\right\} {\rm d} \rho
\end{displaymath} (68)

The requirement that the mixed derivatives must be equal then yields
\begin{displaymath}
\frac{\partial }{\partial \rho}\left( \frac{1}{T} \left(\fra...
...e}{\partial \rho}\right)_{T} - \frac{p}{T \rho^2} \right)_\rho
\end{displaymath} (69)

or
\begin{displaymath}
0 = -\frac{1}{T^2}\left(\frac{\partial e}{\partial \rho}\rig...
...\partial p}{\partial T}\right)_{\rho} - \frac{p}{T^2}\right\}
\end{displaymath} (70)

Finally,

\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\left(\frac{\partial...
... T}\right)_{\rho}\right\}
= \frac{p}{\rho^2}(1 - \chi_{T})
$}
\end{displaymath} (71)

Comparison with Eq.(65) implies
\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\chi_{T} = \frac{\rho T}{p}   c_v (\Gamma_3-1)
$}
\end{displaymath} (72)

Similarly, replacing ${\rm d} e$ by

\begin{displaymath}
{\rm d} e = \left(\frac{\partial e}{\partial p}\right)_{\rho...
...left(\frac{\partial e}{\partial \rho}\right)_{p} {\rm d} \rho
\end{displaymath} (73)

in Eq.(35), we get
\begin{displaymath}
{\rm d} s = \frac{1}{T} \left(\frac{\partial e}{\partial p}\...
... \rho}\right)_{p}
- \frac{p}{T \rho^2}\right\} {\rm d} \rho
\end{displaymath} (74)

and the requirement that the mixed derivatives must be equal then yields
\begin{displaymath}
\frac{\partial }{\partial \rho}\left( \frac{1}{T} \left(\fra...
...e}{\partial \rho}\right)_{p} - \frac{p}{T \rho^2} \right)_\rho
\end{displaymath} (75)

or
\begin{displaymath}
\left(\frac{\partial e}{\partial p}\right)_{\rho} \left(\fr...
...rho}\right)_{p} - \frac{p}{\rho^2}\right\} + \frac{T}{\rho^2}
\end{displaymath} (76)

or
\begin{displaymath}
\left(\frac{\partial e}{\partial p}\right)_{\rho} \left(\fr...
...al \rho}\right)_{p} - \frac{1}{\rho}\right\} + \frac{1}{\rho}.
\end{displaymath} (77)

Since
\begin{displaymath}
\left(\frac{\partial \ln T}{\partial \ln \rho}\right)_{p}/\l...
...c{\partial \ln p}{\partial \ln \rho}\right)_{T} = -\chi_{\rho}
\end{displaymath} (78)

we finally obtain, using Eqs.(25), (61) and (66),
\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\chi_{\rho} = \Gamma_1 - \chi_{T} (\Gamma_3 -1)
$}
\end{displaymath} (79)

and
\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
\delta = \chi_{T} / \left\{\Gamma_1 - \chi_{T} (\Gamma_3 -1)\right\}
$}
\end{displaymath} (80)

The isothermal sound speed is then obtained as

\begin{displaymath}
\fcolorbox{blue}{yellow}{$\displaystyle
c_T \equiv \sqrt{\le...
...mma_1}\right\}}
= c_s \sqrt{(1 - \chi_{T} \nabla_{\rm ad})}
$}
\end{displaymath} (81)




next up previous contents index
Next: 2.3.5 Ideal gas with Up: 2.3 A collection of Previous: 2.3.3 CO5BOLD equation of   Contents   Index