Next: 5.3 Parameter File: rhd.par
Up: 5.2 File with Additional
Previous: 5.2.1 Organization of rhd.mean
Contents
Index
An individual box inside a dataset entry in a mean file can have e.g. the
following contents describing horizontal averages in a plane-parallel model.
With
uiolook chro2D03co08_01.mean | less
you get this (and more):
label box date='06.11.2002 17:58:05.533'
character box_id f=A2 b=2 n='Block identification'
integer dimension d=(1:2,1:3) f=I7 p=6 b=4
real time f=E13.6 b=4 n=time &
u=s
real time_db f=E23.15 b=8 n=time &
u=s
integer itime f=I10 b=4 n='time step number' &
u=1
real xc1 d=(1:1,1:1,1:1) f=E13.6 p=4 b=4 n='x1 coordinates of cell centers' &
u=cm &
ds=(0:0,0:1,0:1)
real xc2 d=(1:1,1:1,1:1) f=E13.6 p=4 b=4 n='x2 coordinates of cell centers' &
u=cm &
ds=(0:1,0:0,0:1)
real xc3 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n='x3 coordinates of cell centers' &
u=cm &
ds=(0:1,0:1,0:0)
real xb1 d=(1:2,1:1,1:1) f=E13.6 p=4 b=4 n='x1 coordinates of cell boundaries' &
u=cm &
ds=(0:1,0:1,0:1)
real xb2 d=(1:1,1:2,1:1) f=E13.6 p=4 b=4 n='x2 coordinates of cell boundaries' &
u=cm &
ds=(0:1,0:1,0:1)
real xb3 d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 n='x3 coordinates of cell boundaries' &
u=cm &
ds=(0:1,0:1,0:1)
real rho_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n=Density &
u=g/cm^3
real v1_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Velocity x1' &
u=cm/s
real v2_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Velocity x2' &
u=cm/s
real v3_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Velocity x3' &
u=cm/s
real v1_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Velocity x1' &
u=cm/s
real v2_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Velocity x2' &
u=cm/s
real v3_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Velocity x3' &
u=cm/s
real rhov1_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Mass Flux x1' &
u=g/cm^2/s
real rhov2_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Mass Flux x2' &
u=g/cm^2/s
real rhov3_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Mass Flux x3' &
u=g/cm^2/s
real bc1_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Magnetic field 1' &
u=G
real bc2_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Magnetic field 2' &
u=G
real bc3_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Magnetic field 3' &
u=G
real bc1_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Magnetic field 1' &
u=G
real bc2_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Magnetic field 2' &
u=G
real bc3_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Magnetic field 3' &
u=G
real ei_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n='Internal energy' &
u=erg/g
real rhoei_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Internal energy' &
u=erg/cm^3
real rhoek_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Kinetic energy' &
u=erg/cm^3
real rhoeg_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Gravitational energy' &
u=erg/cm^3
real t_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=Temperature &
u=K
real t_xmean4 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=Temperature &
u=K
real t_xmeankapparho d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n=Temperature &
u=K
real p_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=Pressure &
u=dyn/cm^2
real s_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=Entropy &
u=erg/K/g
real rhos_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n=Entropy &
u=erg/K/cm^3
real gamma1_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='1st Adiabatic Coefficient' &
u=1
real gamma3_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='3rd Adiabatic Coefficient' &
u=1
real delta_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Expansion coefficient' &
u=1
real kapparho_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Absorption Coefficient' &
u=1/cm
real quc001_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &
n='Number density of CO' &
u=1/cm^3
rreal rhovb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &
n='Mass flux' &
u=g/cm^ &
ds=(0:0,0:0,0:1)
real frhov13b_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &
n='Momentum x1 flux x3 direction' &
u=erg/cm^3 &
ds=(0:0,0:0,0:1)
real frhov23b_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &
n='Momentum x2 flux x3 direction' &
u=erg/cm^3 &
ds=(0:0,0:0,0:1)
real frhov33b_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &
n='Momentum x3 flux x3 direction' &
u=erg/cm^3 &
ds=(0:0,0:0,0:1)
real feipb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &
n='Enthalpy Flux' &
u=erg/cm^2/s &
ds=(0:0,0:0,0:1)
real fekb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &
n='Kinetic Energy Flux' &
u=erg/cm^2/s &
ds=(0:0,0:0,0:1)
real fegb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &
n='Gravitational Energy Flux' &
u=erg/cm^2/s &
ds=(0:0,0:0,0:1)
real fepb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &
n='Pressure Energy Flux' &
u=erg/cm^2/s &
ds=(0:0,0:0,0:1)
real fevb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &
n='Viscous Energy Flux' &
u=erg/cm^2/s &
ds=(0:0,0:0,0:1)
real ferb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &
n='Radiative Energy Flux' &
u=erg/cm^2/s &
ds=(0:0,0:0,0:1)
label endbox
The above list was slightly edited (by adding blanks) to improve readability.
The identifier of an entry together with the name (n
='...')
and the unit (u
='...')
should give a first hint about the meaning of the quantity.
The suffix '_xmean
' indicates a simple average.
The suffix '_xmean2
' indicates the root-mean-square average (note: the simple average is
not subtracted).
Some entries (e.g. ferb_xmean
) have a hidden b
in their name,
have one element more (e.g. 121 instead of 120) than most of the others,
and are characterized by the ds
keyword (see Table 6).
These quantities are located at the cell
boundaries in contrast to the usual cell-centered quantities.
Clearly, there are also two sets of axes (e.g. xc3
and xb3
)
corresponding to the cell- or boundary-centered quantities.
Note: The total energy flux can be written as sum
feb_total = feipkgvrb = feipb+fekb+fegb+fevb+ferb .
The flux fepb
is already part of feipb
.
Next: 5.3 Parameter File: rhd.par
Up: 5.2 File with Additional
Previous: 5.2.1 Organization of rhd.mean
Contents
Index