 
 
 
 
 
 
 
 
 
 
 Next: 5.6 Chemistry Input
 Up: 5 Control and Data
 Previous: 5.4 Additional Control and
     Contents 
     Index 
5.5 Text Output: rhd.out
During execution - expecially during the initialization phase - CO5BOLD writes lots of
information to standard output:
After the header its with a block ``Compiler call'', e.g.
 pgf90 -byteswapio -fast -Mvect=sse -Mcache_align -Minfo=inline -Minline=rhd_hyd_a
  vg,rhd_hyd_upwind,rhd_hyd_pred0,rhd_hyd_predm,rhd_hyd_predp,rhd_hyd_alpha,rhd_h
  yd_constanteq,rhd_hyd_minmodeq,rhd_hyd_minmod,rhd_hyd_vanleereq,rhd_hyd_vanleer
  ,rhd_hyd_superbeeeq,rhd_hyd_superbee,rhd_hyd_ppeq,rhd_hyd_pp,rhd_hyd_hdflux,rhd
  _hyd_entropyfix -Minline=rhd_rad3d_raylhd,rhd_rad3d_solve,rhd_rad3d_solveeq,rhd
  _shortrad_operator,rhd_shortrad_dtauop -Drhd_hyd_roe1d_l01=0 -Drhd_r02 -Drhd_r0
  3 -DMSrad_raytas1 -Drhd_hyd_entropyfix_p01=1 -Drhd_roe1d_step_t01 -Drhd_roe1d_f
  lux_t01 -Drhd_vis_t01 -Drhd_bound_t01 -Drhd_shortrad_step_t01 -Drhd_shortrad_fo
  rmal_t01 -Drhd_shortrad_lambda_t01
These lines were produced by the configure script
(see Sect. 3.5) and written into the file
   compiler_flags.info
which is accessed from rhd.F90 via include during compilation.
Various modules now have a routine ``XXX_switchinfo'' that prints the values
of the compiler switches used during the compilation of that particular module.
The output can look e.g. like
 Compiler switches: rhd_hyd_module .........................
  IDF:                             0
  rhd_hyd_gravcorr_p01:            5
  rhd_hyd_entropyfix_p01:          1
  rhd_hyd_upwind_p01:              0
  rhd_hyd_roe1d_l01:               0
  rhd_roe1d_step_l01:              0
  rhd_roe1d_slope_l01:             0
  rhd_roe1d_flux_l01:      undefined
  rhd_bound_t01:             defined
  rhd_roe1d_flux_t01:        defined
  rhd_roe1d_step_t01:        defined
See Sect. 3.6 for more information about the meaning of the values.
The reading of the parameter file starts with
 ACTION: Read parameter file ««««
After a parameter is read, its value is printed (see Sect. 5.3)
The line
 ACTION: Load EOS data ««««
indicates the start of the reading of the equation of state data.
It is followed by some information about the EOS table in use.
Similarly, the line
 ACTION: Load opacity tables ««««
indicates the start of the reading of the opacity data.
The information that follows is taken directly from the header of
the opacity table.
Currently, the last file to be read is the start model, which is announced by
 ACTION: Read start model ««««
and followed by some information about the start model, e.g. the number of
grid points and a new section showing the quantities actually read, e.g.
 Properties of start model:
  time       "time"                                     [s]
  xc1        "x1 coordinates of cell centers"           [cm]
  xc2        "x2 coordinates of cell centers"           [cm]
  xc3        "x3 coordinates of cell centers"           [cm]
  xb1        "x1 coordinates of cell boundaries"        [cm]
  xb2        "x2 coordinates of cell boundaries"        [cm]
  xb3        "x3 coordinates of cell boundaries"        [cm]
  rho        "Density"                                  [g/cm^3]
  ei         "Internal energy"                          [erg/g]
  v1         "Velocity 1"                               [cm/s]
  v2         "Velocity 2"                               [cm/s]
  v3         "Velocity 3"                               [cm/s]
  quc001     "Number density of CO"                     [1/cm^3]     advect(1)
  bb1        "Magnetic field 1"                         [G]
  bb2        "Magnetic field 2"                         [G]
  bb3        "Magnetic field 3"                         [G]
It might follow
 ACTION: Initialize MS radiation transport routines ««««
And finally
 ACTION: Open output files ««««
which indicates that the rhd.full file (see Sect 5.1)) and
the rhd.mean file (see Sect 5.2)) have been opened and now contain
a header.
The end of the initialization phase and the beginning of the proper simulation is
marked by e.g.
 ================================ Start Computation =================================
=== Time step number: itime=    47050  time=  2.5821813E+08  t_job= 8.510000E+00 ===
The output for a typical simulation time step can look like (for a supergiant model
with SHORTrad radiation transport)
 -- Time step number: itime=    49048  time=  2.6822680E+08  t_job= 1.272180E+06 --
dtime= 5.3047E+03 HD= 1.4838E+04 RAD= 5.3047E+03 VIS= 1.0723E+05
Luminosity per core volume:  4.49999049E-02
HYD 1: N_cellsperchunk, n_chunks:      10000  1410
HYD 2: N_cellsperchunk, n_chunks:      10000  1410
HYD 3: N_cellsperchunk, n_chunks:      10000  1410
VIS3D: N_cellsperchunk, n_chunks:      10000  1360
=== Start of rhd_shortrad_step ===
n_subdtime:    1
minmax(T)        1.111651E+03 1.630733E+05
Main ( 1/ 3) ray direction 2:   0.000000  1.000000  0.000000 ------------
Main ( 2/ 3) ray direction 3:   0.707105  0.000000  0.707109 ------------
Main ( 3/ 3) ray direction 3:  -0.707105  0.000000  0.707109 ------------
Time step ratio: dtime/dtime_rad:   1.750409E+01
dtime_:rad,drhoei,limit_this,all:  6.667E+02 2.510E+03 6.276E+02 0.000E+00
n_subdtime:    2
minmax(T)        1.116348E+03 1.630658E+05
Main ( 1/ 3) ray direction 1:   1.000000  0.000000  0.000000 ------------
Main ( 2/ 3) ray direction 3:   0.000000  0.707105  0.707109 ------------
Main ( 3/ 3) ray direction 3:   0.000000 -0.707105  0.707109 ------------
Time step ratio: dtime/dtime_rad:   1.836970E+01
dtime_:rad,drhoei,limit_this,all:  6.353E+02 3.188E+03 7.971E+02 6.276E+02
...
n_subdtime:    8
minmax(T)        1.118540E+03 1.630164E+05
Main ( 1/ 3) ray direction 2:  -0.707105  0.707109  0.000000 ------------
Main ( 2/ 3) ray direction 2:   0.707105  0.707109  0.000000 ------------
Main ( 3/ 3) ray direction 3:   0.000000  0.000000  1.000000 ------------
Time step ratio: dtime/dtime_rad:   1.791384E+01
dtime_:rad,drhoei,limit_this,all:  6.515E+02 3.894E+03 8.884E+02 4.814E+03
=== End of rhd_shortrad_step =====
A simulation ends with e.g.
 === Time step number: itime=    49050  time=  2.6823742E+08  t_job= 1.273407E+06 ===
================================ End Computation ===================================
A proper exit is indicated by
 ------------------------------------------
Exit information: Requested number of time steps done
Exit status:        0
------------------------------------------
In this case a file rhd.done (see Sect. 5.4) is produced.
A messages like
 ************************************************************************************
Severe error: SHORTRAD: Time step below absolute limit
Error index:      100
Interrupt computation
************************************************************************************
marks an exit with an error and without rhd.done file.
A message about the final model like
 ACTION: Write final model ««««
Model file 'rhd.end' opened on channel  12
====================================================================================
is followed by some timing information like e.g.
 Timing statistics (rate x factor=   1000000 x     10000)
========================================================
Process                           Samples     Total time      Mean time
                                                   [sec]          [sec]
----------------------------------------
RHD code                                1     410.830017     410.830017
uio output routines                    27      37.469997       1.387778
HYD: bound_3Dcenter                  2000       3.540000       0.001770
Hydrodynamics routines               2000   48944.660156      24.472330
HYD: 1                               2000   16350.610352       8.175305
HYD: 2                               2000   16052.459961       8.026230
HYD: 3                               2000   16520.798828       8.260400
Viscosity routines 3D                2000   25446.400391      12.723200
VIS: make_box(modelvis)              2000       0.010000       0.000005
VIS: copy_box(modelvis)              2000    1750.960083       0.875480
VIS: delete_box(modelvis)            2000       0.000000       0.000000
Radiation transport routines         2000  243729.000000     121.864502
SHC: step                            2020  244064.515625     120.824020
SHC: step: dtime: init: EOS         16024   49312.738281       3.077430
SHC: step: dtime: explicit          16024  174542.343750      10.892558
SHC: formal                         16024  170085.437500      10.614418
SHC: formal: init                   16024   35591.378906       2.221129
SHC: formal: dirloop                16024  133010.687500       8.300717
SHC: formal: exp                    28014    9014.280273       0.321778
SHC: formal: exp: expl2t            28014    3950.409912       0.141016
SHC: formal: dir3                   36083   63222.242188       1.752134
SHC: time: dir3                     36083   19676.009766       0.545299
SHC: formal: limitei                16024    1306.419922       0.081529
SHC: step: dtime: final             16024   12730.129883       0.794441
SHC: formal: dir2                   11959   22205.000000       1.856761
SHC: time: dir2                     11959    5731.149902       0.479233
SHC: formal: dir1                    4044   10674.429688       2.639572
SHC: time: dir1                      4044    1893.760010       0.468289
SHC: step: dtime: final(output)       181    8620.870117      47.629116
Radiation trans.: output only          20     335.929993      16.796499
In this example the value for the overall time (``rhd code 410.830017 sec'') is not
useful because of an overflow in the counter.
However, it is evident that the radiation transport consumes most of the time (243729.000000 sec),
followd by the hydrodynamics routines (48944.660156 sec)
and the tensor viscosity routines (25446.400391 sec).
Some of these values are split further.
 
 
 
 
 
 
 
 
 
 
 Next: 5.6 Chemistry Input
 Up: 5 Control and Data
 Previous: 5.4 Additional Control and
     Contents 
     Index