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6 1 INTRODUCTION

1 Introduction

CO5BOLD – nickname COBOLD – is the short form of “COnservative COde for the COmputa-
tion of COmpressible COnvection in a BOx of L Dimensions with l=2,3”.

It is used to model solar and stellar surface convection. For solar-type stars only a small
fraction of the stellar surface layers are included in the computational domain. In the case of red
supergiants the computational box contains the entire star. The model range has been extended
to sub-stellar objects (brown dwarfs) and to white dwarfs.

CO5BOLD solves the coupled non-linear equations of compressible hydrodynamics in an ex-
ternal gravity field together with non-local frequency-dependent radiation transport. Operator
splitting is applied to solve the equations of hydrodynamics (including gravity), the radiative
energy transfer (with a long-characteristics or a short-characteristics ray scheme), and possibly
additional 3D (turbulent) diffusion in individual sub steps. The 3D hydrodynamics step is further
simplified with directional splitting (usually). The 1D sub steps are performed with a Roe solver,
accounting for an external gravity field and an arbitrary equation of state from a table.

The radiation transport is computed with either one of three modules:

• MSrad module: It uses long characteristics. The lateral boundaries have to be periodic. Top
and bottom can be closed or open (“solar module”).

• LHDrad module: It uses long characteristics and is restricted to an equidistant grid and
open boundaries at all surfaces (old “supergiant module”).

• SHORTrad module: It uses short characteristics and is restricted to an equidistant grid and
open boundaries at all surfaces (new “supergiant module”).

The code was supplemented with an (optional) MHD version [Schaffenberger et al. (2005)]
that can treat magnetic fields. There are also modules for the formation and advection of dust
available. The current version now contains the treatment of chemical reaction networks, mostly
used for the formation of molecules [Wedemeyer-Böhm et al. (2005)], and hydrogen ionization
[Leenaarts & Wedemeyer-Böhm (2005)], too.

CO5BOLD is written in Fortran90. The parallelization is done with OpenMP directives.

To get a brief overview you might want to look into the “Quickstart Sections” “How to Compile
CO5BOLD” (Sect. 3.1), “Introduction to UIO” (Sect. 4.1), “How to Make a Proper Parameter
File” (Sect. 5.4.1), “How to Run CO5BOLD” (Sect. 6.1).
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2 Equations

2.1 Basic Equations

The hydrodynamics equations are expressed as conservation relations plus source terms for

ρ, ρv1, ρv2, ρv3, ρeikg , (1)

the mass density, the three mass fluxes and the total energy density (per volume), respectively.
Each quantity q has its corresponding flux f(q) and possibly source term s(q). For convenience,

ρ, v1, v2, v3, ei (2)

are chosen as independent quantities. The conserved quantities are purely algebraic combinations
of these.

The 3D hydrodynamics equations, including source terms due to gravity, are the mass con-
servation equation

∂ρ

∂t
+
∂ ρ v1

∂x1
+
∂ ρ v2

∂x2
+
∂ ρ v3

∂x3
= 0 , (3)

the momentum equation

∂

∂t

 ρv1
ρv2
ρv3

+
∂

∂x1

 ρv1 v1 + P
ρv2 v1
ρv3 v1

+
∂

∂x2

 ρv1 v2
ρv2 v2 + P
ρv3 v2

+
∂

∂x3

 ρv1 v3
ρv2 v3
ρv3 v3 + P

=

 ρ g1
ρ g2
ρ g3


(4)

and the energy equation including radiative heating term Qrad

∂ρeik

∂t
+
∂ (ρeik+P ) v1

∂x1
+
∂ (ρeik+P ) v2

∂x2
+
∂ (ρeik+P ) v3

∂x3
= ρ (g1 v1+g2 v2+g3 v3)+Qrad . (5)

The pressure P is computed from density ρ and internal energy ei via a (tabulated) equation of
state

P = P (ρ, ei) . (6)

For local models the gravity field is simply given by

~g =

 0
0
−g

 . (7)

For global models it is given by

~g =

 g1
g2
g3

 = −

 ∂
∂x1
∂
∂x2
∂
∂x3

Φ (8)

with

Φ = − GM∗(
r40 + r4/

√
1 + (r/r1)8

)1/4 . (9)

Here, M∗ is the mass of the star to be modeled; r0 and r1 are free smoothing parameters.

In addition, there are equations for the non-local radiation transport. If grey opacity tables
are used, the opacities κ are a simple function of e.g. temperature T and pressure P

κ = κ(T, P ) (10)

and the source function S is given by

S =
σ

π
T 4 . (11)
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The change in optical depth ∆τ along a path with length ∆x is than

∆τ = κρ∆x . (12)

The variation of the intensity I with optical depth τ along a ray with orientation (θ, ϕ) can be
described by the simple differential equation

dI

dτ
= −I + S . (13)

The radiative energy flux is given by

Frad =

∫ 2π

0

∫ π

0
I cos θ sin θ dθ dϕ . (14)

The energy change can than be computed from the flux divergence with

∂ρei

∂t
= Qrad = −

(
∂Fx1,rad
∂x1

+
∂Fx2,rad
∂x2

+
∂Fx3,rad
∂x3

)
. (15)

2.2 Magnetohydrodynamics (W. Schaffenberger)

The MHD module solves the equations of ideal MHD, given in compact vector form

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

∂ρv

∂t
+ ∇ ·

(
ρvv +

(
P +

B ·B
2

)
I−BB

)
= ρg ,

∂B

∂t
+ ∇ · (vB−Bv) = 0 ,

∂ρetot

∂t
+ ∇ ·

((
ρetot + P +

B ·B
2

)
v − (v ·B) B + Frad

)
= 0 .

(16)

Here, B is the magnetic field vector, where the units are such that the magnetic permeability
µ is equal to one. I is the identity matrix and a · b =

∑
k akbk the scalar product of the two

vectors a and b. The dyadic tensor product of two vectors a and b is the tensor ab = C with
elements cmn = ambn and the nth component of the divergence of the tensor C is (∇ ·C)n =∑

m ∂cmn/∂xm. The total energy is given by

ρetot = ρei + ρ
v · v

2
+

B ·B
2

+ ρΦ , (17)

where ei is the internal energy per unit mass. The additional solenoidality constraint,

∇ ·B = 0 , (18)

must also be fulfilled.
The aim was to create a stable and easy to use module (see [Schaffenberger et al. (2005)]).

The module has the following features:

• Use of the HLL solver with the Janhunen source terms [Janhunen (2000)].

◦ Extension to 2nd order with linear or parabolic reconstruction and a Hancock predictor
step or Runge-Kutta-TVD timeintegration scheme.

◦ The following limiters are available: Minmod, vanLeer, Superbee, Piecewise Parabolic
(PP).

◦ Hybridization of 1st and 2nd order flux to ensure positivity of pressure and density.

• Use of Roe solver.
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• Flux interpolated constrained transport step.

• Small violation of strict energy conservation after the constrained transport step to keep
the pressure positive E-term of [Balsara (1999)].

• Electric conductivity and additional energy diffusion.

• Use of thermal energy equation instead of total energy equation possible (for HLL solver
only).

• Use of both, thermal energy equation and total energy equation possible (dual energy
method, HLL solver only).

• Reduction of Alfvén speed to avoid small time steps (with HLL solver only and in combi-
nation with thermal energy equation or dual energy method only).

• Use of multiple MHD-substeps.

• Boundary conditions for the magnetic field can be specified independently from the hydro
boundary conditions.

• Diffusive boundary layers possible.

• Dimensional splitting or unsplit scheme possible.

The magnetic field is located at the cell boundaries rather than in the cell centers. Therefore,
the format of the magnetic field arrays is slightly different from that of the other hydrodynamic
variables.

Staggered grid representation of the magnetic field in 2 dimensions:

+---^---+---^---+---^---+---^---+---^---+---^---+

| | | | | | |

> * > * > * > * > * > * >

| | | | | | |

+---^---+---^---+---^---+---^---+---^---+---^---+

| | | | | | |

> * > * > * > * > * > * >

| | | | | | |

+---^---+---^---+---^---+---^---+---^---+---^---+

| | | | | | |

> * > * > * > * > * > * >

| | | | | | |

+---^---+---^---+---^---+---^---+---^---+---^---+

| | | | | | |

> * > * > * > * > * > * >

| | | | | | |

+---^---+---^---+---^---+---^---+---^---+---^---+

| | | | | | |

> * > * > * > * > * > * >

| | | | | | |

+---^---+---^---+---^---+---^---+---^---+---^---+

* hydrodynamic variables

> x1 component of the magnetic field

^ x2 component of the magnetic field
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The extension to 3 dimensions should be clear. Variables at the left or the bottom boundary
have the same indices as the cell.

For a box with 120×120×120 cells, the header for the magnetic field arrays in the start model
may look like

real bb1 d=(1:121,1:120,1:120) f=E13.6 p=4 b=4 &

n=’cell boundary magnetic field 1’ u=G*sqrt(4pi)

real bb2 d=(1:120,1:121,1:120) f=E13.6 p=4 b=4 &

n=’cell boundary magnetic field 2’ u=G*sqrt(4pi)

real bb3 d=(1:120,1:120,1:121) f=E13.6 p=4 b=4 &

n=’cell boundary magnetic field 3’ u=G*sqrt(4pi)

For simplicity, the MHD module uses units such that the 4 pi factors do not appear in the
MHD equations.

Therefore one has to multiply the original magnetic fields in gauss with the factor 1/
√

4π in
order to get the correct magnetic field strength for CO5BOLD!!!

After the computation, one has to multiply the magnetic fields from the CO5BOLD output
with the factor

√
4π in order to get the magnetic field strength in gauss!!!

The CO5BOLD analysis tool CAT does this automatically when reading the model data, so
that CAT outputs the field strength in gauss.

Positivity of pressure and density:
A special problem of MHD simulations is that pressure or density can become negative in some
circumstances. This problem is also present in pure hydrodynamic simulations but gets worse
for MHD. The original hydrodynamic version of CO5BOLD tries to fix this problem by reducing
the time step. In hydrodynamics, this works in most cases. In MHD, however, reduction of the
time step often does not help and other methods are necessary to avoid this problem. Therefore,
the MHD module uses a HLL solver instead of a Roe solver, which is used in the hydrodynamic
module. It was shown numerically by [Janhunen (2000)], that using a HLL solver together with
additional source terms in the induction equation keeps pressure and density positive under
all circumstances. Because the constrained transport step, which is performed after the 1D
sweeps with the MHD solver, changes the magnetic field, a correction of the internal energy in
each cell is necessary to keep the total energy conserved. Because this correction can lead to
negative pressure, it is omitted if the internal energy would become too small. Therefore, the
total energy is not exactly conserved but this affects only a few cells in the simulation box. (See
also [Balsara (1999)] on this topic.)

The methods described above result in a very robust scheme, which guarantees positivity of
pressure and density under almost all conditions. However, this does not mean, that these values
are accurate! The pressure and temperature distribution may be very inaccurate in regions with
strong magnetic fields. This may be relevant, if one includes special chromospheric physics such
as dynamic hydrogen ionization and CO formation in the simulation. A possibility to get more
accurate pressure and temperature would consist in the use of the entropy equation instead of
the energy equation for the computation of the internal energy in regions with strong magnetic
field. This was included in the original test version of the MHD module. In the present version,
we mak use of the equation for the thermal energy itself depending on the ratio of thermal to
magnetic pressure, i.e., the plasma β. The limiting β can be specified by the model parameter
beta_inv. This is the dual energy approach, used in many MHD codes. Its advantage goes at
the expense of violation of strict conservation of the total energy.

Due to the Courant condition, the time step in case of MHD can become considerably smaller
than in the hydrodynamic case. This happens because the time step is also limited by the Alfvén
speed which is large in regions with strong magnetic field and low density (small plasma β).

To avoid an extreme time step reduction, the Alfvén speed can be artificially limited. This
this is done by reducing the Lorentz force in the momentum equation by a factor f. This factor
is calculated with the following formula:

f =
v2Amax

(v2A + v2Amax)
, (19)
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where vA is the original Alfvén speed and vAmax is the desired maximum value of the Alfvén
speed. Currently, this feature works only with the HLL-solver. It is advisable to use this feature
only in combination with either the thermal energy equation (beta_inv = 0.0) or the dual energy
method. In the latter case, beta_inv should be chosen small enough so that the region where
the Lorentz-force reduction is active is handled by the thermal energy equation. This is obtained
with beta_inv / γv2Amax/c

2
s, where cs is the speed of sound and γ the adiabatic exponent.

This module has been extensively tested. It should be able to handle many MHD flows of
astrophysical interest. Bugs and problems can be reported to werner.schaffenberger@gmx.at.

2.3 A collection of thermodynamic relations (M. Steffen, AIP)

2.3.1 Basic thermodynamic equations

Differential relations:

de = Tds+
p

ρ2
dρ (20)

where e is the internal energy .

dh = Tds+
1

ρ
dp (21)

where the specific enthalpy , h, is defined as

h = e+ p/ρ (22)

This implies: (
∂e

∂s

)
ρ

= T (23)

(
∂e

∂ρ

)
s

=
p

ρ2
(24)

(
∂h

∂s

)
p

= T (25)

(
∂h

∂p

)
s

=
1

ρ
(26)

2.3.2 Definition of often-used thermodynamic coefficients

Definition of specific heats:

cp ≡
(
∂h

∂T

)
p

= T

(
∂s

∂T

)
p

=

(
∂s

∂ lnT

)
p

(27)

cv ≡
(
∂e

∂T

)
ρ

= T

(
∂s

∂T

)
ρ

=

(
∂s

∂ lnT

)
ρ

(28)

Definitions of further thermodynamic coefficients:

χT ≡
(
∂ ln p

∂ lnT

)
ρ

(29)

χρ ≡
(
∂ ln p

∂ ln ρ

)
T

≡ (Kp)−1 (30)
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δ ≡ −
(
∂ ln ρ

∂ lnT

)
p

≡ αT =
χT
χρ

(31)

It can be shown that

cp − cv = α2T/(Kρ) =
p

ρT
δ2 χρ =

p

ρT
δ χT =

p

ρT
χ2
T /χρ (32)

Definition of adiabatic exponents:

Γ1 ≡
(
∂ ln p

∂ ln ρ

)
s

(33)

Γ3 ≡
(
∂ lnT

∂ ln ρ

)
s

+ 1 (34)

∇ad ≡
(
∂ lnT

∂ ln p

)
s

≡ Γ2 − 1

Γ2
(35)

2.3.3 CO5BOLD equation of state

CO5BOLD equation of state input:

ρ; e (36)

CO5BOLD equation of state output:

s; P ; T ;

(
∂p

∂e

)
ρ

;

(
∂p

∂ρ

)
e

;

(
∂T

∂e

)
ρ

(37)

All required thermodynamic coefficients can be expressed in terms of(
∂p
∂e

)
ρ
,
(
∂p
∂ρ

)
e
,
(
∂T
∂e

)
ρ
:

2.3.4 Derived thermodynamic coefficients

First, the missing derivative
(
∂T
∂ρ

)
e

can be found from the relation:

(
∂T

∂ρ

)
e

=
T

ρ2

(
∂p

∂e

)
ρ

− p

ρ2

(
∂T

∂e

)
ρ

(38)

which is obtained from the equality of the mixed derivatives in Eq.(20), written as:

ds =
1

T
de− p

Tρ2
dρ (39)

Then

∂2s

∂e∂ρ
=

∂

∂ρ

(
1

T

)
e

=
∂

∂e

(
− p

Tρ2

)
ρ

(40)

First adiabatic exponent:

Γ1 ≡
(
∂ ln p

∂ ln ρ

)
s

=
ρ

p

(
∂p

∂ρ

)
e

+
1

ρ

(
∂p

∂e

)
ρ

(41)

This relation is obtained by combining Eq.(20) with the identity

dp =

(
∂p

∂ρ

)
e

dρ+

(
∂p

∂e

)
ρ

de (42)
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The adiabatic sound speed is then obtained as

cs ≡

√(
∂p

∂ρ

)
s

=

√
Γ1
p

ρ
(43)

Third adiabatic exponent:

Γ3 ≡ 1 +

(
∂ lnT

∂ ln ρ

)
s

= 1 +
1

ρ

(
∂p

∂e

)
ρ

(44)

This relation is obtained by combining Eq.(20) with the identity

dT =

(
∂T

∂ρ

)
e

dρ+

(
∂T

∂e

)
ρ

de (45)

and then using Eq.(38).
Adiabatic temperature gradient:

∇ad ≡
(
∂ lnT

∂ ln p

)
s

=
Γ3 − 1

Γ1
(46)

since (
∂ lnT

∂ ln p

)
s

=

(
∂ lnT

∂ ln ρ

)
s

·
(
∂ ln ρ

∂ ln p

)
s

=
Γ3 − 1

Γ1
. (47)

Adiabatic energy changes:

ρ

(
∂e

∂p

)
s

=
p

ρ

(
∂ρ

∂p

)
s

=

(
∂ ln ρ

∂ ln p

)
s

=
1

Γ1
(48)

or (
∂ρe

∂p

)
s

= e

(
∂ρ

∂p

)
s

+ ρ

(
∂e

∂p

)
s

=
1

Γ1

(
1 +

ρe

p

)
(49)

We define the coefficients c′v and c′p through the relation

ds = c′vd ln p− c′pd ln ρ (50)

Entropy change at constant density:

c′v =

(
∂s

∂ ln p

)
ρ

=
p

ρT

(
∂ ln ρ

∂ lnT

)
s

=
p

ρT

1

Γ3 − 1
(51)

This relation is obtained from the equality of the mixed derivatives in Eq.(20) together with
Eq.(44).

Entropy change at constant pressure:

c′p = −
(

∂s

∂ ln ρ

)
p

=
p

ρT

(
∂ ln p

∂ lnT

)
s

=
p

ρT

Γ1

Γ3 − 1
(52)

This relation is obtained from the equality of the mixed derivatives in Eq.(21) together with
Eq.(46).
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Specific heat at constant density:

cv = c′v χT =

(
∂s

∂ lnT

)
ρ

=

(
∂e

∂T

)
ρ

= 1/

(
∂T

∂e

)
ρ

(53)

To derive the specific heat at constant pressure, we start from the relation

d lnT =

(
∂ lnT

∂ ln ρ

)
s

d ln ρ+

(
∂ lnT

∂s

)
ρ

ds (54)

from which we get (
∂s

∂ ln ρ

)
T

= −
(
∂ lnT

∂ ln ρ

)
s

/

(
∂ lnT

∂s

)
ρ

(55)

Using Eqs.(44) and (53), we obtain

(
∂s

∂ ln ρ

)
T

= −cv (Γ3 − 1) (56)

Now

ds =

(
∂s

∂ ln p

)
ρ

d ln p+

(
∂s

∂ ln ρ

)
p

d ln ρ (57)

or

ds =

(
∂s

∂ ln p

)
ρ

d ln p+

(
∂s

∂ ln ρ

)
p

{(
∂ ln ρ

∂ lnT

)
s

d lnT +

(
∂ ln ρ

∂s

)
T

ds

}
(58)

hence

ds

{
1−

(
∂s

∂ ln ρ

)
p

(
∂ ln ρ

∂s

)
T

}
=

(
∂s

∂ ln p

)
ρ

d ln p+

(
∂s

∂ ln ρ

)
p

(
∂ ln ρ

∂ lnT

)
s

d lnT (59)

and finally (
∂ lnT

∂s

)
p

=

{
1−

(
∂s

∂ ln ρ

)
p

(
∂ ln ρ

∂s

)
T

}
/

{(
∂s

∂ ln ρ

)
p

(
∂ ln ρ

∂ lnT

)
s

}
(60)

or (
∂ lnT

∂s

)
p

=

(
∂ lnT

∂ ln ρ

)
s

{(
∂ ln ρ

∂s

)
p

−
(
∂ ln ρ

∂s

)
T

}
(61)

Using Eqs.(27), (44), (52), (56), we finally obtain the relation for the specific heat at constant
pressure:

1

cp
=

1

cv
− ρT

p

(Γ3 − 1)2

Γ1
=

1

cv
− T

(
Γ3 − 1

cs

)2

(62)

Alternatively, cp can be obtained from Eq.(32)

cp = cv +
p

ρT
δ χT (63)

or from

cp = δ c′p =
p

ρT
δ

Γ1

Γ3 − 1
(64)
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once δ and χT are known (see below).

We can now express the thermodynamic coefficients provided by CO5BOLD in terms of cv, Γ1,
Γ3, and ∇ad:

(
∂p

∂e

)
ρ

= ρ (Γ3 − 1) (65)

(
∂p

∂ρ

)
e

=
p

ρ
(1− Γ3 + Γ1) (66)

(
∂T

∂e

)
ρ

=
1

cv
(67)

(
∂T

∂ρ

)
e

=
T

ρ
(Γ3 − 1)− p

ρ2
1

cv
(68)

(
∂e

∂ρ

)
T

= −
(
∂T

∂ρ

)
e

/

(
∂T

∂e

)
ρ

=
p

ρ2

{
1− ρT

p
cv (Γ3 − 1)

}
(69)

(
∂e

∂ρ

)
p

= −
(
∂p

∂ρ

)
e

/

(
∂p

∂e

)
ρ

=
p

ρ2

{
1− Γ1

Γ3 − 1

}
=

p

ρ2
∇ad − 1

∇ad
(70)

We consider again Eq.(39), replacing de by

de =

(
∂e

∂T

)
ρ

dT +

(
∂e

∂ρ

)
T

dρ (71)

so

ds =
1

T

(
∂e

∂T

)
ρ

dT +

{
1

T

(
∂e

∂ρ

)
T

− p

Tρ2

}
dρ (72)

The requirement that the mixed derivatives must be equal then yields

∂

∂ρ

(
1

T

(
∂e

∂T

)
ρ

)
T

=
∂

∂T

(
1

T

(
∂e

∂ρ

)
T

− p

Tρ2

)
ρ

(73)

or

0 = − 1

T 2

(
∂e

∂ρ

)
T

− 1

ρ2

{
1

T

(
∂p

∂T

)
ρ

− p

T 2

}
(74)

Finally, (
∂e

∂ρ

)
T

=
p

ρ2

{
1−

(
∂ ln p

∂ lnT

)
ρ

}
=

p

ρ2
(1− χT ) (75)

Comparison with Eq.(69) implies

χT =
ρT

p
cv (Γ3 − 1) (76)
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Similarly, replacing de by

de =

(
∂e

∂p

)
ρ

dp+

(
∂e

∂ρ

)
p

dρ (77)

in Eq.(39), we get

ds =
1

T

(
∂e

∂p

)
ρ

dp+

{
1

T

(
∂e

∂ρ

)
p

− p

Tρ2

}
dρ (78)

and the requirement that the mixed derivatives must be equal then yields

∂

∂ρ

(
1

T

(
∂e

∂p

)
ρ

)
p

=
∂

∂p

(
1

T

(
∂e

∂ρ

)
p

− p

Tρ2

)
ρ

(79)

or (
∂e

∂p

)
ρ

(
∂T

∂ρ

)
p

=

(
∂T

∂p

)
ρ

{(
∂e

∂ρ

)
p

− p

ρ2

}
+
T

ρ2
(80)

or (
∂e

∂p

)
ρ

(
∂ lnT

∂ ln ρ

)
p

=

(
∂ lnT

∂ ln p

)
ρ

{
ρ

p

(
∂e

∂ρ

)
p

− 1

ρ

}
+

1

ρ
. (81)

Since (
∂ lnT

∂ ln ρ

)
p

/

(
∂ lnT

∂ ln p

)
ρ

= −
(
∂ ln p

∂ ln ρ

)
T

= −χρ (82)

we finally obtain, using Eqs.(29), (65) and (70),

χρ = Γ1 − χT (Γ3 − 1) (83)

and

δ = χT / {Γ1 − χT (Γ3 − 1)} (84)

The isothermal sound speed is then obtained as

cT ≡

√(
∂p

∂ρ

)
T

=

√
χρ
p

ρ
=

√
Γ1
p

ρ

{
1− χT

Γ3 − 1

Γ1

}
= cs

√
(1− χT∇ad) (85)

2.3.5 Ideal gas with constant specific heats (polytropic gas)

In this case, we obtain much simpler relations:

e = cvT =
p

ρ

1

γ − 1
(86)

h = cpT =
p

ρ

γ

γ − 1
(87)

s = cv {ln p− γ ln ρ}+ const. (88)

γ ≡ cp
cv

= Γ1 = Γ2 = Γ3 = const. (89)

cp − cv =
p

ρT
≡ R (90)

cv = R 1

γ − 1
= c′v (91)
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cp = R γ

γ − 1
= c′p (92)

χT = χρ = δ = 1 (93)

cs ≡

√(
∂p

∂ρ

)
s

=

√
γ
p

ρ
(94)

cT ≡

√(
∂p

∂ρ

)
T

=

√
p

ρ
(95)



18 3 PROGRAM FILES, INSTALLATION, COMPILATION

3 Program Files, Installation, Compilation

In this section all the files and modules CO5BOLD contains are listed. The installation procedure
is outlined and compiler switches necessary to compile CO5BOLD and to optimize its performance
are described.

3.1 Quickstart: How to Compile CO5BOLD

If you are going to install CO5BOLD on a machine with a “known” (to setup script and Makefile)
operating system and compiler (see Sections 3.5 and 3.7), then the procedure should be fairly
easy. The general compilation procedure is now:

tar -zxvf for.tar.gz

cd for/hd/rhd

mkdir -p YOUR_MACHINE

cd YOUR_MACHINE

ln -s ../conf/configure .

./configure

make

The compilation process is explained in more detail in Sect. 3.2. The configure script is
described in its header and in Sect. 3.5. The directory structure is shown in Tab. 1. All Fortran
files are listed in Tables 2 and 3.

3.2 Compilation Procedure for CO5BOLD

The installation procedure has changed significantly since the last release: now, there is a configure
script (see Sect. 3.5) that creates the complete (temporary) makefile which can be used to compile
CO5BOLD and produce the executable rhd.exe.

Installation procedure:

1. Choose/create a proper base directory. (This will usually be $HOME. Then the master
directory will typically be $HOME/for – this is the default created by the tar file. Some
prefer to rename it to $HOME/HYDRO.)

2. Put all source files and the configure script there. This will be done typically by expanding
the gzipped tar file for.tar.gz e.g. with

tar -zxvf for.tar.gz

(or by copying all files from an existing installation). On a restricted UNIX you might be
forced to use

gunzip for.tar.gz

tar -xvf for.tar

instead. Unpacking the tar file creates a sub directory for in the local directory (and
possible overwrites existing files!). You get sub sub directories as described in Sect. 3.3 and
files as listed in Tables 2 and 3. See the Readme file ’for/README’.

3. Change with

cd for/hd/rhd

into the main directory.

4. Look at the existing sub directories, e.g. with
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ls -og | grep "^d"

to see if you find one that fits your machine. The directory

for/hd/rhd/conf

should not be used. It contains only the configure script. But any other directory will do.
If you don’t like any of the existing directories, create your own e.g. with

mkdir YOUR_MACHINE

Change into this directory with

cd YOUR_MACHINE

5. Check if there is a configure script or a link to it with

ls -og configure

which should give something like

lrwxrwxrwx 1 17 2002-12-04 17:39 configure -> ../conf/configure

If it is not there, create the link with

ln -s ../conf/configure .

6. Start the configure script to create the (first version of the) Makefile

./configure

This gives you a screen output like

Configuration script for CO5BOLD Makefile

=========================================

No parallelization requested, assume default: F90_PARALLEL=scalar

No debugging requested, assume default: F90_DEBUG=0

No LHDrad module requested, assume default: F90_LHDRAD=0

No MSrad module requested, assume default: F90_MSRAD=0

No SHORTrad module requested, assume default: F90_SHORTRAD=1

No CHEM module requested, assume default: F90_CHEM=0

No HION module requested, assume default: F90_HION=0

No dust module requested, assume default: F90_DUST=0

No MHD module requested, assume default: F90_MHD=0

No TWEAK module requested, assume default: F90_TWEAK=0

No explicit machine requested, assume default: F90_MACHINE=local

List of control environment variables:

F90_COMPILER =

F90_PREFLAGS =

F90_POSTFLAGS=

F90_PARALLEL = scalar

F90_DEBUG = 0

F90_LHDRAD = 0
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F90_MSRAD = 0

F90_SHORTRAD = 1

F90_CHEM = 0

F90_HION = 0

F90_DUST = 0

F90_MHD = 0

F90_TWEAK = 0

F90_MACHINE = local

-> MACHINE = i686

MACMODEL = Intel Pentium

F90_BASEPATH = /home/bf/for

Linux system with i686 architecture

PGI compiler

version=3.3-2

pgf90 -byteswapio -fast -Mvect=sse -Mcache_align -Minfo=inline

Write compiler name and flags into file compiler_flags.info

Makefile already exists. It is appended to Makefile_old.

New Makefile written..........................................

A new ’Makefile’ is produced. An existing one is appended to ’Makefile_old’. Addition-
ally, the file ’compiler_flags.info’ is written which contains the compiler call in Fortran
format.

7. Check the output of the configure script and the header of the new Makefile. You get
an overview over the relevant environment variables that control the configure script (see
Sect. 3.5) with

env | grep F90_

Obs: at the beginning there might be none.

8. Look into the header (and if necessary the rest) of the configure script or into Sect. 3.5
to find out how to change the environment variables to control the script properly. For
instance, if you want to enable debugging options, type:

export F90_DEBUG=1

Restart the configure script after every change in the control variables! With e.g.

export F90_MACHINE=dummy

export F90_PREFLAGS="-Oprettyfast +Qsomethingelse"

./configure

it is possible to specify all machine-dependent settings yourself (see Sect. 3.5 and Sect. 3.5).
This is useful when dealing with a compiler hitherto unknown to the configure script.

9. Start the compilation with

make

to produce the executable rhd.exe.
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A simple sample installation may look like the following (the sub directory ’for’ is put into
the home directory).

# --- Choose base directory ---

cd $HOME

# --- Put the tar file there ---

# ...

# --- Expand the tar file ---

tar -zxvf for.tar.gz

# --- Go into (default) master directory ---

cd for/hd/rhd/YOUR_MACHINE

# --- Activate OpenMP und MSrad radiation transport ---

export F90_PARALLEL=openmp

export F90_MSRAD=1

# --- Start the configure script ---

./configure

# --- Compile ---

make

echo ’Voila!’

If you want to compile in a directory in a completely different place (not in a sub directory of
for as described above), you have to set the environment variable F90_BASEPATH (see Sect. 3.5)
to make the paths to the source files known to the configure script. That might look like

mkdir SOME_REMOTE_PLACE

cd SOME_REMOTE_PLACE

export F90_BASEPATH=$HOME/for

ln -s $F90_BASEPATH/hd/rhd/conf/configure .

./configure

The variable F90_BASEPATH also has to be set explicitely if the main directory for should
have another name. Renaming the sub-directories with the source files is not a good idea – it
requires modifications of the configure script itself.

3.3 Directory Structure

The files necessary to compile CO5BOLD are distributed over a few directories. A typical setup
would be to put everything into the main directory for. Then the source files would be located
as in Tab. 1.

The executables (and makefiles, object files, module information files) are usually located in
subdirectories of the source code directories. These subdirectories typically have the name of the
machine, architecture, or operating system the executable is compiled for.

3.4 Fortran Files

Tables 2 and 3 show a list of all source files necessary to compile the complete version of
CO5BOLD.
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Figure 1: Old directory scheme
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Paths Abb. Description

${HOME}/for/con/f90/ CON constants and units
${HOME}/for/dust/f90/ DUST source terms due to dust or molecules
${HOME}/for/hion/f90/ HION time-dependent hydrogen ionization
${HOME}/for/chem/ CHEM chemical reaction network
${HOME}/for/eos/f90/ EOS equation of state
${HOME}/for/hd/mhd/ MHD MHD routines
${HOME}/for/hd/rhd/ RHD main rhd routines (hydro, Bernd’s radiation transport)
${HOME}/for/hd/rhdb/ RHDB basic rhd routines
${HOME}/for/mat/str/ STR string handling
${HOME}/for/opa/opta/ OPTA opacities
${HOME}/for/rad/hdrad/ RAD Matthias’ radiation transport
${HOME}/for/uio/f90/ UIO I/O routines
${HOME}/for/time/f90/ TIME timing routines

Table 1: List of source directories with path and file name, abbreviation, and a short description.

3.5 Configure Script

The configure script produces a Makefile.
It is controlled by environment variables (see below). It tries to use reasonable default values

if they are not set (properly). In the script the machine type is determined with ‘uname -
m‘. According to the control variables and the machine architecture the compiler name and its
compiler flags are composed. These are written into the header of a Makefile which is produced
in the end. An existing Makefile is appended to

Makefile_old.

Additionally the compilation command is written into the file

’compiler_flags.info’

in a form ready to be included in a Fortran program.
The environment variables that control the script are

• F90_COMPILER:
Fortran compiler:

◦ ’’: a machine dependent default is chosen individually for each architecture

◦ f90: general default

• F90_PREFLAGS:
Compiler flags to be put at the beginning of the list. Usually, the list of compiler flags
produced by the configure script should be pretty complete. But you might want to add
special switches like ’-Bstatic’ to enforce static linking of libraries.

◦ ’’: No extra flags

• F90_POSTFLAGS:
Compiler flags to be put at the end of the list. Usually, the list of compiler flags produced
by the configure script should be pretty complete. However, you might want to overwrite
some settings. This can be done by setting this variable to a none-empty value because
typically a compiler should interpret the flags from left to right.

◦ ’’: No extra flags

• F90_PARALLEL:
Parallelization scheme:
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File and path Abb. Description

hd/rhd/rhd.F90 RHD main program

hd/rhd/rhd_hyd_module.F90 RHD hydrodynamics routines
hd/rhd/rhd_lhdrad_module.F90 RHD radiative transfer routines,

long characteristics, supergiant case
hd/rhd/rhd_shortrad_module.F90 RHD radiative transfer routines,

short characteristics, supergiant case
hd/rhd/rhd_shortrad_dtauop01.f90 RHD short characteristics tau-coupling
hd/rhd/rhd_shortrad_dtauop02.f90 RHD short characteristics tau-coupling
hd/rhd/rhd_shortrad_operator00.f90 RHD short characteristics operator
. . .
hd/rhd/rhd_shortrad_operator08.f90 RHD short characteristics operator
hd/rhd/rhd_vis_module.F90 RHD tensor viscosity routines

hd/mhd/rhd_mhd_module.F90 MHD magnetic fields

rad/hdrad/rhd_rad_module.F90 RAD interface for Matthias’ radiation routine
rad/hdrad/MSrad3D.F90 RAD Matthias’ radiation transport routines,

long characteristics, periodic sides

eos/f90/gasinter_routines.F90 EOS equation of state

opa/opta/cubit_module.f OPTA cubic interpolation
opa/opta/opta_par_module.f90 OPTA parameters for opacity routines
opa/opta/opta_routines.f OPTA opacity

hd/dust/rhd_dust_module.F90 DUST dust/molecule formation
hd/dust/dust_k3mon_module.f DUST 1 or 2 component dust model
hd/dust/dust_bins_module.f90 DUST multi-bin dust model
dust_momentc2_module.f DUST 4 moment dust model
C2.INC DUST dust include file: C2 molecule
C2H.INC DUST dust include file: C2H molecule
C2H2.INC DUST dust include file: C2H2 molecule
CHPAR_CT.INC DUST dust include file
DINDEX.INC DUST dust include file
DKSPLINT.INC DUST dust include file
H2.INC DUST dust include file: H2 molecule

chem_rn_module.F90 CHEM chemical reaction network
chem_rn_dvode.F90 CHEM chemical reaction network: solver

hion_main_module.f90 HION hydrogen ionization
hion_io_module.f90 HION hydrogen ionization: I/O
hion_def_module.f90 HION hydrogen ionization: definitions
hion_dvode_module.f90 HION hydrogen ionization: solver
hion_lineq_module.f90 HION hydrogen ionization: linear algebra
hion_util_module.f90 HION hydrogen ionization: utility package
hion_devel_module.f90 HION hydrogen ionization: developer kit
edens_module.f90 HION electron densities

Table 2: List of all high-level modules: the table shows the file name with part of its path, the
shortcut for the directory, and its description.
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File and path Abb. Description

hd/rhdb/rhd_action_module.f90 RHDB routines for control parameter passing
hd/rhdb/rhd_box_module.F90 RHDB box handling routines
hd/rhdb/rhd_dat_module.f90 RHDB handling of additional data (averages)
hd/rhdb/rhd_gl_module.f90 RHDB global parameters
hd/rhdb/rhd_io_module.F90 RHDB input/output routines
hd/rhdb/rhd_mean_module.f90 RHDB averaging routines
hd/rhdb/rhd_prop_module.f90 RHDB box properties
hd/rhdb/rhd_rec_module.f90 RHDB reconstruction routines
hd/rhdb/rhd_sub_module.f90 RHDB additional routines

con/f90/const_module.f90 CON physical and mathematical constants
mat/str/str_module.f90 STR string handling
time/f90/timing_module.F90 TIME timing routines

uio/f90/uio_base_module.f90 UIO I/O routines
uio/f90/uio_bulk_module.f90 UIO I/O routines
uio/f90/uio_filedef_module.f90 UIO I/O routines
uio/f90/uio_mac_module.F90 UIO I/O routines, machine-dependent part

Table 3: List of all low-level modules: the table shows the file name with part of its path, the
shortcut for the directory, and its description.

◦ scalar: no parallelization (default)

◦ openmp: OpenMP (appropriate for CO5BOLD)

◦ auto: auto-parallelization (not implemented for all machines)

• F90_DEBUG:
Debugging level:

◦ 0: No extra debugging information produced, full optimization is chosen (default)

◦ 1: standard debugging mode (typically switch ’-g’ instead of ’-fast’)

◦ 2: other debugging (or array checking) modes possible if implemented for the requested
machine

• F90_LHDRAD:
LHDrad radiation transport:

◦ 0: do not activate (compile and link) this module (default)

◦ 1: activate this radiation transport module

• F90_MSRAD:
MSrad radiation transport:

◦ 0: do not activate (compile and link) this module (default)

◦ 1: activate this radiation transport module

• F90_SHORTRAD:
SHORTrad radiation transport:

◦ 0: do not activate (compile and link) this module (default)

◦ 1: activate this radiation transport module

• F90_CHEM:
CHEM module (chemical reaction networks):

◦ 0: do not activate (compile and link) this module (default)
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◦ 1: activate this source step module

Setting this variable to 1 will set F90_DUST=1. The compiler is then called with
-Drhd_chem01.

• F90_HION:
HION module (time-dependent hydrogen ionization):

◦ 0: do not activate (compile and link) this module (default)

◦ 1: activate this source step module

Setting this variable to 1 will set F90_DUST=1. The compiler is then called with
-Drhd_hion01.

• F90_DUST:
DUST module:

◦ 0: do not activate (compile and link) this module (default)

◦ 1: activate this source step module

If this variable is set to 1 the compiler is called with -Drhd_box_quc01=1, see Sect. 3.6.

• F90_MHD:
MHD module:

◦ 0: do not activate (compile and link) this module (default)

◦ 1: activate this magnetohydrodynamics module (MHD HLL solver)

If CO5BOLD is compiled with the MHD module, your start model should include magnetic
fields, otherwise zero magnetic fields are created and used. In the latter case, the magnetic
field arrays are not written into the output files.

• F90_MACHINE:
Explicit machine specification. This is usually not necessary, use ’local’ or ” instead.

◦ ’’: local machine

◦ sun4u: Sun

◦ . . . : See the header of the configure script for an up-to-date list

◦ local: local machine (default)

◦ dummy: Do not use any machine dependent flags but use module selections

◦ empty: Compiler flags are composed from F90_PREFLAGS and F90_POSTFLAGS only

• F90_BASEPATH:
Path for CO5BOLD base directory.

◦ ’’: The configure script tries to determine the base-directory name automatically (de-
fault). This should work if the local directory is located somewhere below .../hd/rhd/

◦ otherwise: This string is used as base directory name (e.g. /home/user/for)

Some examples can be found in Sect. 3.2.
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3.6 Compiler Macros

Some of the modules of the CO5BOLD code (with suffix “.F90”) employ compiler macros to
switch between code versions during compile time. Typically you define at least one of the three
switches rhd_r01, rhd_r02, or rhd_r03 to choose a radiation transport module. The others have
reasonable default values. To find the combination with the optimal performance, you should
look into Sect. 3.7

The macros are sorted into different categories:
Some activate a certain feature (like a radiation transport module or the dust module). They

have to be selected by the user (typically via environment variables and the configure script, see
Sect. 3.5) each time the code is compiled for a certain purpose.

Other macros are meant to improve the performance by offering the choice between e.g.
different loop structures or case distinctions. These macros are set by the configure script to the
best knowledge of the author(s). Ideally, they should be checked and modified if necessary each
time CO5BOLD is compiled on a new machine. It should be save to modify these settings: the
results between runs with different settings should only differ slightly due to round-off errors.

Some macros select between different numerical approximations. A change here should be
visible in a (more or less drastic) change of the results of a simulation. Usually, the default values
should be accepted. Other settings typically only exist to allow the comparison with older versions
of CO5BOLD or because there are new developments going on which have not yet managed to
become the default.

A couple of macros only activate timing measurements and result in additional output . Some
of them are not thread-save und should only be activated for runs on one thread (as done by the
configure script). It is always save to switch any of them off (by removing or undefining them).

The macros in the category test mark parts of code under development. The default values
should only be changed with great care (typically by the author of that code segment). The
configure script does not touch these settings.
General:

• timing_c_factor:
in timing_module.F90, (“timing count factor”).
Category: account for property of machine.
To produce the timing statistics printed at the end of a simulation run the standard Fortran
routine SYSTEM_CLOCK is used. The macro timing_c_factor specifies by how much the
count rate of this routine is reduced when storing its count value. This does not prevent all
overflows but can make the output much more useful. Values:

◦ 1: (default) count rate of SYSTEM_CLOCK is used directly.

◦ otherwise: e.g. 1000, count rate of SYSTEM_CLOCK is reduced by this factor.

By a proper choice of this factor the timing measurements of individual routines can be
made meaningful: the reduction of the count rate prevents overflows due to the addition of
several measurements. An overflow during an individual measurement can not be prevented.
Therefore, the count rate for the entire program still tends to produce overflows.

• timing_c_range:
in timing_module.F90, (“timing counter range”).
Category: account for property of machine.
To produce the timing statistics printed at the end of a simulation run the standard Fortran
routine SYSTEM_CLOCK is used. The macro timing_c_range specifies the number of digits
(the “range”) used for the integers storing the counters. The value appears in the code e.g.
in
integer(kind=selected_int_kind(timing_c_range)) :: count_total.
Fortran standard is the use of 4-byte integers. However, that is often not sufficient and
can lead to overflows. Many compilers can use longer integers, though. That can be tried
by setting the timing_c_range not to 9 (the default) but e.g. to 15. If it works, overflows
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are essentially ruled out. If it does not work, the compilation stops with an error message.
Values:

◦ 9: (default) use standard 4-byte integers for timing counters.

◦ 15 or otherwise: use this number for the range of Fortran integers

By a proper choice of this number all the timing measurements can be made meaningful,
even for long runs on machines with fast counters.

• timing_r_type: in timing_module.F90, (“timing rate type”).
Category: account for property of machine.
During a CO5BOLD run, the total execution time is measured and printed after each time
step. The type of clock used can be chosen with:

◦ 1: Use call system_clock() (default).

◦ 2: Use call Date_and_Time().

◦ 3: Use t=etime() (Sun version, used in most cases).

◦ 4: Use call etime() (gfortran version).

◦ 5: Use call tremain() (Cray version).

◦ 6: Use call clock() (Hitachi version).

• gasinter_l01:
in gasinter_routines.F90, (“gas interpolation l01”).
Category: performance enhancement.
This switch determines how temporary arrays are handled to improve performance Values:

◦ 0: (default) Temporary coefficient arrays are actually copied.

◦ 1: Temporary coefficient arrays just get a pointer link into the big arrays.

◦ 2: No temporary coefficient arrays.

• gasinter_l02:
in gasinter_routines.F90, (“gas interpolation l02”).
Category: performance enhancement.
This switch determines how coefficient arrays are handled to improve performance Values:

◦ 0: Coefficients are stored as pointer arrays (old version).

◦ 1: (default) Coefficients are stored as allocatable arrays.

• rhd_box_arrays01:
in rhd_box_module.F90, (“rhd box arrays 01”).
Category: performance enhancement.
Switch to choose between the (“classical”) use of pointer arrays within the box structure
to store arrays, or the (“new”) version with allocatable arrays, that is potentially faster.
Values:

◦ 0: classical pointer arrays (default).

◦ 1: new allocatable arrays (probably faster)

• rhd_box_grav01:
in rhd_box_module.F90, (“rhd box gravitation 01”).
Category: feature activation.
Switch to activate the array for the gravitational potential in the box structure. If the
switch is set to 1, a 3D array for the potential is created, copied, removed, ... There is
no module to compute the gravitational potential, yet. Therefore the entire thing has no
practical value, yet. Values:



3.6 Compiler Macros 29

◦ 0: (default) no handling of array.

◦ 1: array handling activated.

• rhd_box_quc01:
in rhd_box_module.F90 and rhd.F90, (“rhd box quantity centered 01”).
Category: feature activation.
CO5BOLD is able to handle a number of further quantities (quc: “quantity centered”)
in addition to the basic hydrodynamics quantities (ρ, ei, ...) if this compiler switch is
activated. These additional quantities can be e.g. densities of dust distribution moments or
densities of molecules. They are required for the treatment of chemical reaction networks
and time-dependent hydrogen ionization. For the latter the quc arrays contain the number
densities of the atomic level populations. For the chemical reaction network, the arrays
contain the species number densities in cm−3 and with headers following this example:
”Number density of H2”.

Values:

◦ 0: (default) no handling of additional quantities (density arrays).

◦ 1: handling of additional density arrays is activated.

To actually include dust formation in a simulation, it is necessary to

1. set the switch -Drhd_box_quc01=1 during compilation (this is done by the configure
script if the environment variable F90_DUST is set to 1, see the description of the
variable in Sect. 3.5),

2. put arrays specifying the initial conditions of the additional density into the start
model (as real quc001, real quc002, ...),

3. select a proper model describing dust (or molecule) formation in the parameter file
(with character dustscheme).

• rhd_box_bmag01:
in rhd_box_module.F90 and rhd.F90, (“rhd box b magnetic 01”).
Category: feature activation.
CO5BOLD can handle magnetic field arrays if this compiler switch is set. Values:

◦ : (default) no handling of magnetic field arrays.

◦ : handling of magnetic field arrays is activated.

To actually account for magnetic fields in a simulation, it is necessary to

1. set the switch -Drhd_box_bmag01=1 during compilation (this is done by the configure
script if the environment variable F90_MHD is set to 1, see Sect. 3.5),

2. put arrays specifying the initial conditions of the boundary centered magnetic field
arrays into the start model (as real bb1, real bb2, real bb3),

3. select an hydrodynamics scheme that is able to handle magnetic fields in the parameter
file (with character hdscheme).

Input/output (UIO):

• uio_switch_system_l01: in uio_mac_module.F90, (“uio switch system list 01”).
Category: I/O, account for property of machine.
Sometimes, it is useful to have in the header of UIO file information about the system. that
wrote the file. How Fortran gets this information depends on the machine. Values:

◦ 0: Read information from file uioenvfile.txt. Don’t write or delete the file.

◦ 1: Call external function system() to produce the file uioenvfile.txt. Read and
delete the file (default).
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◦ 2: Call routine system() to produce uioenvfile.txt. Read and delete the file.

◦ 3: Call external routine HF_SH() to produce uioenvfile.txt. Read and delete it.

◦ 4: Call external function uname() to get system information.

◦ 5: Call external routine pxfuname() to get system information.

• uio_switch_native_l01: in uio_mac_module.F90, (“uio switch native list 01”).
Category: I/O, account for property of machine.
All machines can read and write their native format – only that it might differ from one to
the other. It is there, if needed, but should be avoided in practise. Values:

◦ 1: Get information about word lengths from uio_deform() (default).

◦ 0,2: Set word lengths explicitely.

• uio_switch_ieeebe_l01: in uio_mac_module.F90, (“uio switch ieee big endian list 01”).
Category: I/O, account for property of machine.
This is the standard for files read of written by CO5BOLD. All machine/compiler combi-
nations should support it – either natively or via some conversion process. Values:

◦ 0: Don’t include this conversion type (default).

◦ 1: Get information about word lengths from uio_deform().

◦ 2: Set word lengths explicitely.

• uio_switch_ieeele_l01: in uio_mac_module.F90, (“uio switch ieee little endian list 01”).
Category: I/O, account for property of machine.
Values:

◦ 0: Don’t include this conversion type (default).

◦ 1: Get information about word lengths from uio_deform().

◦ 2: Set word lengths explicitely.

• uio_switch_ieee_l01: in uio_mac_module.F90, (“uio switch ieee list 01”).
Category: I/O, account for property of machine.
This is a fallback for reading of UIO files, that should be activated for compilation if either
of the Endian formats above is allowed. It should not be used for writing. Values:

◦ 0: Don’t include this conversion type (default).

◦ 1: Get information about word lengths from uio_deform().

◦ 2: Set word lengths explicitely (4-byte words).

◦ 3: Set word lengths explicitely (8-byte words).

• uio_switch_crayxmp_l01: in uio_mac_module.F90, (“uio switch cray x-mp list 01”).
Category: I/O, account for property of machine.
This is the native format on old Cray X-MP and Cray TS machines. Values:

◦ 0: Don’t include this conversion type (default).

◦ 1: Get information about word lengths from uio_deform().

• uio_switch_open_l01: in uio_mac_module.F90, (“uio switch open list 01”).
Category: I/O, account for property of machine.
Many compilers support a transparent conversion between number representations during
reading and writing. This is not a Fortran standard, though, and has to be activated in
different ways:
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◦ 0: No conversion (default).

◦ 1: Use the’convert keyword in the open() statement (Intel and gfortran compilers
on Linux machines, standard compiler on Dec Alphas).

◦ 2: Use asnunit() Cray X-MP style.

◦ 3: Use asnunit() Cray TS style.

Hydrodynamics (Roe solver):

• rhd_hyd_gravcorr_p01:
in rhd_hyd_module.F90, (“rhd hydrodynamics gravitation correction parameter 01”).
Category: selection of approximation.
This parameter controls the way the Roe solver handles the source terms due to gravity.
A different choice results in different simulation results and not just in slightly faster (or
slower) code. The problem is that the original Roe solver interpretes the pressure gradient in
a hydrostatic stratification a fluctuation due to shock waves. In case of strong stratification
this can lead to weird effects. With activated correction the Roe solver treats only the
deviations from a hydrostatic stratification as due to waves (or shocks). Several correction
formulas have been tried. The latest is the recommended default. Values:

◦ 0: No pressure correction terms in Roe solver.

◦ 1: Simple correction with rhomean, no new average pressure.

◦ 2: Simple correction with rhomean, new average pressure.

◦ 3: Correction with local rho, limited, new average pressure.

◦ 4: Correction with local rho, new (different formula) average pressure.

◦ 5: (default) Correction with local rho, new limit, new average pressure.

◦ 6: Modification of 5 with different geometry factors in case of non-equidistant grid.

• rhd_hyd_entropyfix_p01:
in rhd_hyd_module.F90, (“rhd hydrodynamics entropy fix parameter 01”).
Category: performance enhancement.
The entropy fix can be done in one of two ways to get optimum performance (with essentially
the same results). Values:

◦ 0: (default) “if. . . then. . . else” construction

◦ 1: use a mask and the signum function

• rhd_hyd_upwind_p01:
in rhd_hyd_module.F90, (“rhd hydrodynamics upwind parameter 01”).
Category: performance enhancement.
The determination of the upwind direction can be done in one of two ways to get optimum
performance (with essentially the same results). Values:

◦ 0: (default) “if. . . then. . . else” construction

◦ 1: use a mask and the signum function

• rhd_roe1d_flux_l01:
in rhd_hyd_module.F90, (“rhd roe 1 dimension flux loop 01”).
Category: test.
By setting this switch an alternative way of computing the upwind centered Roe states is
activated (only for ’constant’ reconstruction, for performance test purposes only: do not
activate!). Values:

◦ undefined: (default) Use standard method to compute the Roe states.

◦ defined: Use non-standard method to compute the Roe states.
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• rhd_bound_t01:
in rhd_hyd_module.F90, (“rhd bound timing 01”).
Category: additional output.
Produce timing information for “inner boundary” routine (central potential) or lower and
upper boundary routines (constant gravitation). It can be used together with OpenMP.
Values:

◦ undefined: (default) no timing information.

◦ defined: call subroutines to measure elapsed time.

• rhd_roe1d_flux_t01:
in rhd_hyd_module.F90, (“rhd roe 1 dimension flux timing 01”).
Category: additional output.
Produce timing information for the routine which computes the Roe fluxes. It should not
be used in conjunction with OpenMP. Values:

◦ undefined: (default) no timing information

◦ defined: call subroutines to measure elapsed time

• rhd_roe1d_step_t01:
in rhd_hyd_module.F90, (“rhd roe 1 dimension step timing 01”).
Category: additional output.
Produce timing information for the routine which performs the Roe step. It should not be
used in conjunction with OpenMP. Values:

◦ undefined: (default) no timing information

◦ defined: call subroutines to measure elapsed time

Hydrodynamics (tensor viscosity):

• rhd_vis_density_p01:
in rhd_vis_module.F90, (“rhd viscosity density parameter 01”).
Category: selection of approximation.
Choose formula for density average at cell boundary in tensor viscosity routines. Values:

◦ 0: rhomean=min(rholeft,rhoright)

◦ 1: (default) rhomean=0.5 * (rholeft + rhoright)

• rhd_vis_t01:
in rhd_vis_module.F90, (“rhd viscosity timing 01”).
Category: additional output.
Produce timing information for 2D/3D tensor viscosity routines. It should not be used in
conjunction with OpenMP. Values:

◦ undefined: (default) no timing information

◦ defined: call subroutines to measure elapsed time

Radiation transport:

• rhd_r01:
in rhd.F90, (“rhd radiation 01”).
Category: feature activation.
Switch to include LHDrad radiation transport module. It uses long characteristics and
is restricted to an equidistant grid and open boundaries at all surfaces (old “supergiant
module”). Values:

◦ undefined: (default) LHDrad routines are deactivated.
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◦ 1: LHDrad routines are recognized by the compiler.

• rhd_r02:
in rhd.F90, (“rhd radiation 02”).
Category: feature activation.
Switch to include MSrad radiation transport module. It uses long characteristics. The
lateral boundaries have to be periodic. Top and bottom can be closed or open (“solar
module”). Values:

◦ undefined: (default) MSrad routines are deactivated.

◦ 1: MSrad routines are recognized by the compiler.

• rhd_r03:
in rhd.F90, (“rhd radiation 03”).
Category: feature activation.
Switch to include SHORTrad radiation transport module. It uses short characteristics and
is restricted to an equidistant grid and open boundaries at all surfaces (new “supergiant
module”). Values:

◦ undefined: (default) SHORTrad routines are deactivated.

◦ 1: SHORTrad routines are recognized by the compiler.

• rhd_rad3d_toray_l01:
in rhd_lhdrad_module.F90, (“rhd radiation 3 dimensions to ray loop 01”).
Category: performance enhancement.
There might be a performance gain by splitting the main loop in routine rhd_rad3d_toray

into three separate loops. Typically, one big loop is to be preferred. Values:

◦ undefined: (default) One big loop

◦ defined: Three smaller loops

• rhd_rad3d_fromray_l01:
in rhd_lhdrad_module.F90, (“rhd radiation 3 dimensions from ray loop 01”).
Category: performance enhancement.
There might be a performance gain by splitting a big loop in routine rhd_rad3d_fromray

into two separate loops. Typically, one big loop is to be preferred. Values:

◦ undefined: (default) One big loop

◦ defined: Two smaller loops

• rhd_rad3d_r02:
in rhd_lhdrad_module.F90, (“rhd radiation 3 dimensions radiation 02”).
Category: test.
Module rhd_lhdrad_module contains a routine for the handling of periodic boundaries. It
is in an experimental state and is deactivated by default. Values:

◦ undefined: (default) Skip routine rhd_rad3d_dirper during compilation

◦ defined: Compile routine rhd_rad3d_dirper

• rhd_rad3d_solve_t01:
in rhd_lhdrad_module.F90, (“rhd radiation 3 dimensions solve timing 01”).
Category: additional output.
Produce timing information for the routines which solves the 1D radiation transport equa-
tion along single ray. This routine is called very frequently. The timing measurement might
slow it down somewhat. It should not be used in conjunction with OpenMP. Values:

◦ undefined: (default) no timing information
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◦ defined: call subroutines to measure elapsed time

• rhd_rad3d_dir_t01:
in rhd_lhdrad_module.F90, (“rhd radiation 3 dimensions direction timing 01”).
Category: additional output.
Produce timing information for the routines which solves the radiation transport equation
for one direction field. The timing measurement are called very frequently and might slow
down the code. It should not be used in conjunction with OpenMP. Values:

◦ undefined: (default) no timing information

◦ defined: call subroutines to measure elapsed time

• rhd_rad3d_step_t01:
in rhd_lhdrad_module.F90, (“rhd radiation 3 dimensions step timing 01”).
Category: additional output.
Produce timing information with main 3D radiation transport routine. It can be used
together with OpenMP and should cause no noticeable performance loss. Values:

◦ undefined: (default) no timing information

◦ defined: call subroutines to measure elapsed time

• rhd_shortrad_operator_l01:
in rhd_shortrad_module.F90, (“rhd short-characteristics radiation operator loop 01”).
Category: performance enhancement, selection of approximation.
Choose type of short characteristics operator. The operators usually come in pairs (1/2,
3/4, 5/6). There is a development from 1/2 over 3/4 to 5/6 towards higher stability. Both
members of each pair should do the same operation but use different ways to do a case
distinction. The ’even’ operator has in some cases the better performance. But the ’odd’
operator might be saver to use. Values:

◦ 0: simple test operator, fast but results are utterly useless!

◦ 1: case distinction with “if..then..else” construct.

◦ 2: case distinction with masks (weights 0.0 or 1.0).

◦ 3: case distinction with “if..then..else” construct, slope reduction of source function.

◦ 4: case distinction with masks (weights 0.0 or 1.0), slope reduction of source function.

◦ 5: case distinction with “if..then..else” construct, modified slope reduction of source
function.

◦ 6: (default) case distinction with masks (weights 0.0 or 1.0), modified slope reduction
of source function.

◦ 8: test version.

• rhd_shortrad_operator_l02:
in rhd_shortrad_module.F90, (“rhd short-characteristics radiation operator loop 02”).
Category: performance enhancement.
Select the way the short characteristics operator is accessed. Values:

◦ 0: (default) The routine with the short characteristics operator is called within a loop
and should be inlined.

◦ 1: The program fragment with the short characteristics operator is included. No
inlining necessary.

• rhd_shortrad_dtauop_l01:
in rhd_shortrad_module.F90, (“rhd short-characteristics radiation delta tau operator loop
01”).
Category: performance enhancement.
Choose type of short characteristics tau coupling operator. Values:
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◦ 1: case distinction with “if..then..else” construct, default if
rhd_shortrad_operator_l01=1,3,5.

◦ 2: case distinction with masks (weights 0.0 or 1.0), default if
rhd_shortrad_operator_l01=2,4,6.

• rhd_shortrad_dtauop_l02:
in rhd_shortrad_module.F90, (“rhd short-characteristics radiation delta tau operator loop
02”).
Category: performance enhancement.
Select the way the operator for the tau coupling (short characteristics module) is accessed.
Values:

◦ 0: (default) The routine with the tau coupling operator is called within a loop and
should be inlined.

◦ 1: The program fragment with the tau coupling operator is included. No inlining
necessary.

• rhd_shortrad_formal_l01:
in rhd_shortrad_module.F90, (“rhd short-characteristics radiation formal loop 01”).
Category: performance enhancement.
Select version of loop splitting for exp(-dtau) computation. Values:

◦ 0: (default) dtauhalf, exp_mdtauhalf, expl2t_mdtauhalf are computed in a single
loop

◦ 1: (dtauhalf, exp_mdtauhalf), (expl2t_mdtauhalf) are computed in separate loops.
This prevents the SUN1 machine (Sunfire, Solaris, Forte 6.2) from doing some perfor-
mance degrading optimization

• rhd_shortrad_dir1_l01:
in rhd_shortrad_module.F90, (“rhd short-characteristics radiation direction 1 loop 01”).
Category: performance enhancement.
Choose routine version for rays in x1 direction. Values:

◦ 0: (default) Use routine with permuted indices for rays in x1 direction. In this case
the innermost loop index is the third array index. The transposition of arrays is not
needed but some machines (e.g. SUN1) do not like this index arrangement.

◦ 1: Transpose arrays and use routine rhd_shortrad_dir3 for rays in x1 direction. The
extra step for the transposition of some arrays (and the reverse procedure) needs some
time. But now the routine with the optimum index ordering can be used.

• rhd_shortrad_dir_l02:
in rhd_shortrad_module.F90, (“rhd short-characteristics radiation direction loop 02”).
Category: performance enhancement, OpenMP.
Determine position of PARALLEL statement relative to outer loop in rhd_shortrad_dirX.
Both settings give the same results but might show a different performance on a specific
machine. Values:

◦ 0: (default) PARALLEL statement inside of outer loop

◦ 1: PARALLEL statement outside of outer loop

• rhd_shortrad_lambda_l01:
in rhd_shortrad_module.F90, (“rhd short-characteristics radiation lambda loop 01”).
Category: feature activation.
Handling of extra arrays to allow partially implicit Lambda* iteration Values:

◦ 0: (default) Only fully implicit Lambda* iteration allowed (or fully explicit treatment).
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◦ 1: Also partially implicit Lambda* iteration allowed.

• rhd_shortrad_formal_t01:
in rhd_shortrad_module.F90, (“rhd short-characteristics radiation formal timing 01”).
Category: additional output.
Produce timing information for routine which gives the formal solution of the radiation
transport equation with the help of short characteristics. It can be used together with
OpenMP and should cause no noticeable performance loss. Values:

◦ undefined: (default) no timing information

◦ defined: call subroutines to measure elapsed time

• rhd_shortrad_step_t01:
in rhd_shortrad_module.F90, (“rhd short-characteristics radiation step timing 01”).
Category: additional output.
Produce timing information for main short characteristics routine. It can be used together
with OpenMP and should cause no noticeable performance loss. Values:

◦ undefined: (default) no timing information

◦ defined: call subroutines to measure elapsed time

• MSrad_raytas:
in MSrad3D.F90, (“Matthias Steffen radiation ray tau s”).
Category: performance enhancement.
Values:

◦ 0: (default) Loop with IF..THEN..ELSE

◦ 1: Loop with ABS,SIGN

◦ 2: Loop with MIN,MAX

3.7 Optimization, Compiler Switches

In this section some mandatory or useful compiler flags are described. These have different
functions:

• Enable necessary macro processing/expansion for the F90 files.

• Force proper handling of binary I/O.

• Choose module for radiative transfer.

• Activate module for dust formation and/or magnetic field transport.

• Enable parallelization with OpenMP directives.

• Choose a version of a subroutine or loop which is optimized for a specific architecture.

• Tell the compiler if and what to inline.

• Improve the general performance.
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3.7.1 General: OpenMP settings

To activate OpenMP you have to set the corresponding environment variable (see 3.5) before
calling the configure script like

export F90_PARALLEL=openmp

./configure

make

This will insert the corresponding compiler switch (e.g. -openmp, -omp, -mp,. . . confer the
following sections) into the compiler calls in the makefile (see Sect. 3.5).

The calls to the timing routines that would be executed in parallel are removed by (not)
setting the appropriate compiler macros (see Sect. 3.6).

In addition, the switch rhd_shortrad_dir_l02 (see 3.6) might be set, according to experience
about performance enhancements.

The user has to find optimum values for the parameters n_hydcellsperchunk (for the Roe
solver module, see Sect. 5.4.7) and n_viscellsperchunk (for the tensor viscosity module, see
Sect. 5.4.8) to optimize the size of the chunk given to one thread per time.

For several modules the environment variable OMP_SCHEDULE can be set (before running
CO5BOLD) to control its OpenMP scheduling behavior. Important parallel loops in the SHORT-
rad module have a SCHEDULE(RUNTIME) modifier that allows this external control. The old default
is achieved by not defining the variable or by setting

export OMP_SCHEDULE="STATIC,1"

On some machines (e.g. Intel Xeon with Linux and PGI compiler) a dynamic scheduling activated
with

export OMP_SCHEDULE="DYNAMIC,1"

is advantageous. The size of the individual chunks might be set to larger values than 1 (in
the examples above). The optimal value has to be found empirically. A good starting point
is number_of_grid_points_in_1D/Number_of_treads, which gives for a model with 1713 grid
points on a 4-processor machine

export OMP_NUM_THREADS=4

export OMP_SCHEDULE="STATIC,43"

The behavior of the other modules is not affected.
The number of threads should equal the number of available processors and has to be set at

run-time with the environment variable OMP_NUM_THREADS, e.g. with

export OMP_NUM_THREADS=16

3.7.2 General: Inlining

Candidate routines for inlining are (i.e. they should be inlined if anyhow possible):

• file rhd_hyd_module.F90:
rhd_hyd_avg, rhd_hyd_upwind, rhd_hyd_pred0, rhd_hyd_predm, rhd_hyd_predp,
rhd_hyd_alpha, rhd_hyd_constanteq, rhd_hyd_minmodeq, rhd_hyd_minmod,
rhd_hyd_vanleereq, rhd_hyd_vanleer, rhd_hyd_superbeeeq, rhd_hyd_superbee,
rhd_hyd_ppeq, rhd_hyd_pp, rhd_hyd_hdflux

• file rhd_lhdrad_module.F90:
rhd_rad3d_raylhd, rhd_rad3d_solve, rhd_rad3d_solveeq
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• file rhd_shortrad_module.F90:
rhd_shortrad_operator, rhd_shortrad_dtauop.

On some machines the makefile generated by the configure script contains this list explicitely.
On others, one has to rely on automatic inlining (see the following sections).

All routines that should be inlined are contained in the same modules as the calling routines.
Therefore, no “inter-procedure-inlining” is needed.

3.7.3 General: Single versus double precision

Usually, the files containing the hydrodynamics and EOS data use 4 byte to represent a single
number and most of the computations within CO5BOLD are performed in single precision –
except for certain routines in e.g. MSrad or some dust modules.

To switch to double precision everywhere one has to deal with the binary files and force the
transformation of single precision variables to double precision during the compilation. Compiling
all CO5BOLD files with such a switch produces problems with the UIO modules: there would be
a name conflict between the routines that usually deal with double precision reals and those that
are written to deal with single precision reals and are now forced to pretend to be also a double
precision version.

Therefore, one should compile the UIO routines and the rest with separate settings, e.g. for
the Intel compiler:

./configure

make UIO

export F90_PREFLAGS="-r8 -fpconstant"

./configure

make

Code compiled in this way cannot read anymore single precision binary UIO files. However,
there are no problems with the opacity tables (ASCII files) and formatted UIO files. To make
existing single precision binary UIO files readable one could transform them to the formatted
version with uiocat (see 4.6.3), e.g. like:

uiocat -f formatted -o rhd_ascii.sta rhd_binary.sta

New start models could be written in double precision binary UIO format directly using the
double_flag in the IDL routine rhd_wrboxdata.pro.

For the EOS table eos_mm00_l5.eos there exists a double precision binary version.

3.7.4 Cray: SV1

On craSHi in Kiel (a “CRAY SV1 20-32768 SN9542”, now out of service) CO5BOLD could use
all 4 processors per board. Documentation about the system and the compiler can be found with
the CRAYdoc1 system. The new configure script still includes a branch for this system even if
has never been tested on that machine.

In some cases the non-default versions of loops in the CO5BOLD code vectorize better and
are preferred over the standard ones:

• -F: Enable macro expansion

• -Otask1: Parallelization: Enable tasking (in this case OpenMP).

• -Oinline3: Optimization: enable (high level) of inlining.

• -Ovector3 -Oscalar3: General optimization

1http://www.cray.com/craydoc/

http://www.cray.com/craydoc/
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• -Drhd_hyd_roe1d_l01=1: Optimization: Choose non-standard set of routines for Roe
solver. See Sect. 5.4.17.

• -Drhd_hyd_entropyfix_p01=1: Optimization: version with masks (weights). See Sect. 3.6

• -Drhd_hyd_upwind_p01=1: Optimization: version with masks (weights).

• -Drhd_shortrad_operator_l01=2: Optimization: short characteristics operator with
masks (weights).

• -Drhd_shortrad_dir_l02=1: Optimization: OMP PARALLEL statement outside of outer loop
in rhd_shortrad_dirX.

3.7.5 Compaq: alpha

The UIO module allows the reading and writing of files in little_endian and big_endian

format. In 3.6 the preprocessor switches are listed, that control the modern – single – version
uio_mac_module.F90 of this file.

• -assume byterecl: Necessary for the UIO routines: specify that the length of a record is
measured in bytes (and not in words).

• -cpp: invoke the preprocessor on all source files.

• -inline speed -V: Force automatic inlining, optimized for speed.

• -O4: General optimization.

• -Drhd_hyd_roe1d_l01=0: Optimization: Choose standard set of routines for Roe solver.
See Sect. 5.4.17.

• -DMSrad_raytas=0: Optimization: choose default version of loop in SUBROUTINE raytas

in file MSrad3D.F90. See Sect. 3.6.

3.7.6 Hewlett-Packard: V2500

The 12-processor machine “zeipel” from Hewlett-Packard2 is a “V2500 PA 2.0” system. Now,
there is a first success to force the compiler to accept the OpenMP directives in CO5BOLD.
Yet, when running on several processors, only some routines (e.g. rhd_shortrad_dirsimple1) in
CO5BOLD can benefit while others (rhd_shortrad_dirsimple2, rhd_shortrad_dirsimple3)
are significantly slower than on one processor. In addition, the single-processor performance is
not very good, partly because the achievable optimization level is not very high.

Some macros, which seem to be necessary:

• +U77: Link proper library to make the machine understand e.g. call flush(6).

• +cpp=yes: Switch on the C preprocessor. Note that all Fortran90 files have to end with
“.f90”. The “.F90” suffix does not seem to work.

• +Oparallel +Oopenmp +Onoautopar: Try to enable parallelization with OpenMP direc-
tives, disable auto-parallelization.

• +Onoinline: Disables inlining. This can simplify things. With a proper choice of routine
versions inlining is not really necessary anymore.

• +O3 +Olimit: General optimization with limited resource usage during compilation. Some
modules should only be compiled with +O2, others compile even with +O3 +Onolimit.

2http://h21007.www2.hp.com/dspp/tech/tech TechDocumentDetailPage IDX/1,1701,1845,00.html

http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1701,1845,00.html
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The UIO modules and the string handling module should be compiled in debug mode. A
proposed compiling sequence is (MSrad does not compile; all other modules are activated):

export F90_LHDRAD=1

export F90_MSRAD=0

export F90_SHORTRAD=1

export F90_DUST=1

export F90_MHD=1

export F90_PARALLEL=openmp

export F90_DEBUG=1

./configure

make UIO STR

export F90_DEBUG=0

./configure

make

3.7.7 Hewlett-Packard: Itanium 2

The 2-processor system “gunnar” from Hewlett-Packard is a dual Itanium 2 machine with two
900MHz ia64 CPU modules, 4GB of RAM and 70GB user disk space.

The single-processor performance of CO5BOLD is very good. On two processor the code
runs even faster but just stops after a few time steps. The number of time steps varies even for
simulations with the very same start model and parameter file. Therefore, OpenMP should not
be activated currently.

The compiler settings are somewhat similar to the settings of the HP V2500 system in Sec-
tion 3.7.6:

• +U77: Link proper library to make the machine understand e.g. call flush(6).

• +cpp=yes: Switch on the C preprocessor. Note that all Fortran90 files have to end with
“.f90”. The “.F90” suffix does not seem to work.

• +Ofast: High optimization level. And +Ofaster is even higher.

• +Oopenmp +Onoautopar: Try to enable parallelization with OpenMP directives, disable
auto-parallelization. The code compiles and runs fast but crashes after a few time steps.

A proposed compiling sequence is (LHDrad, DUST, MHD do not compile):

export F90_MSRAD=1

export F90_SHORTRAD=1

./configure

make

3.7.8 Hitachi SR8000

Some information about the Hitachi compiler is here3.
In 3.6 the preprocessor switches are listed, that control the modern – single – version

uio_mac_module.F90.

• -conti199: Up to 199 continuation lines can be interpreted (otherwise not more than 39
continuation lines are accepted).

3http://www.hitachi.co.jp/Prod/comp/hpc/foruser/sr8000/tebiki-e/fort opt.html

http://www.hitachi.co.jp/Prod/comp/hpc/foruser/sr8000/tebiki-e/fort_opt.html
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• -limit: Limits the amount of time and memory for compilation.

• -opt=ss: use highest possible optimization level.

• -nopredicate: this option switches off a sub-option activated by opt=ss. It is necessary to
disable the -predicate option because the code crashes otherwise (segmentation violation).
The switch must appear after setting -opt=ss.

• -pvfunc=2: References the pseudo-vectorizing mathematical function and applies the tem-
porary array to reference the pseudo-vectorizing mathematical function.

• -omp -parallel=1: parallelize based on OpenMP directives only.

• -procnum=8: generated code for 8 processors on one node

• -orphaned=1: Checks if the regions sequentially executed contain orphaned directives dur-
ing run-time when PROCNUM=8 is specified. If a sequentially executed region contains
an orphaned directive, the system outputs a message and terminates the program.

• -nestcheck=1: Checks for nesting errors in parallel regions. If a parallel region is nested,
the system returns an error and terminates the program. Without this option, the code
aborts with an error message, indicating illegal nesting. Compiler bug?

• -pmpar: Collects the performance monitor information for each parallelization unit.

• -pmfunc: Collects the performance monitor information for each procedure.

• -Drhd_hyd_roe1d_l01=1: Optimization: Choose non-standard set of routines for Roe
solver. See Sect. 5.4.17.

• -DMSrad_raytas=0: Optimization: choose default version of loop in SUBROUTINE raytas

in file MSrad3D.F90. See Sect. 3.6.

• Important note: The UIO routines need in addition the compiler option -subchk: Array
bound checking. Without this checking option, some UIO routines are not working properly
(compiler bug?).

A proposed compiling sequence is (only default modules activated):

export F90_PREFLAGS="-subchk"

./configure

make UIO

export F90_PREFLAGS=

./configure

make

Performance tests on hwwsr8k

Some tests have been performed on the machine hwwsr8k at HLR Stuttgart in order to de-
termine the optimum chunk sizes which are set by the parameters n_hydcellsperchunk and
n_viscellsperchunk (see Sect. 5.4.7 and Sect. 5.4.8). Two different models have been used, one
consisting of 128x128x192 grid cells, the other of 252x252x188, respectively. Grey radiative trans-
fer has been performed with the MSrad module. Different values for the chunk size(s) have been
assumed where the hydrodynamics and the viscosity parameter were set equal. In all cases three
time steps have been computed. The results are shown in Fig. 2. The number of resulting chunks
for step HYD1 (the values for HYD2, HYD3, and VIS are very similar), total memory, perfor-
mance, and the wall clock duration of the hydrodynamics and the viscosity routines are shown as
functions of the chunk size parameter(s). Clearly, the number of chunks decreases towards larger
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Figure 2: Performance tests on Hitachi SR8000 at HLR Stuttgart. For models with 128x128x192
and 252x252x188 grid cells different values for the hydrodynamics and viscosity chunk size pa-
rameters were used. See text for more details.
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chunk sizes whereas the required memory increases – in particular for very large chunk size values.
Moreover, performance and CPU time can be optimized by choosing the right parameter values.
Interestingly, the optimum chunk size is different for hydrodynamics and viscosity. Based on these
tests, a larger value seems to be preferable for the viscosity (n_viscellsperchunk). In the case of
the smaller model, 50000 seems to be fine for the hydrodynamics whereas the optimum viscosity
chunk size is 200000. This difference explains the double-peaked structure of performance and
CPU time. Note that the optimum values do not only depend on the architecture used but also
on the dimensions of the model. We recommend to test some chunk size values since it might
lead to a higher performance.

3.7.9 IBM

Useful links:
IBM compiler documentation: “IBM: XL Fortran”4, especially “IBM AIX compiler information
center”5. Another source of the compiler documentation: “Documentation for AIX Systems”6,
especially “IBM XL Fortran for AIX Version 8.1.1 Library”7. Particularly useful hints: “Porting
Programs from the Crays to the SP”8.

The compiler to be used for OpenMP runs is called with xlf90_r which “binds the object files
to the thread-safe components” (IBM documentation). For scalar code xlf90 might be sufficient.

Important switches are:

• -qsuffix=f=f90 -qsuffix=cpp=F90: To tell the compiler about the existence of Fortran90
and to enable the preprocessing for files with suffix “F90”.

• -qextname=flush:etime: Append underscore to both routine names. In 3.6 the prepro-
cessor switches are listed, that control the modern – single – version uio_mac_module.F90.

• -WF,-Drhd_r03: The compiler does not send switches starting with -D to the preprocessor
but tries to interpret it itself – unlike all other compilers. Therefore, each switch (e.g.
-Drhd_r03) has to “escaped” with -WF, (as e.g. -WF,-Drhd_r03).

• -q64: Activate the 64-bit mode. In the default 32-bit mode a very small model (with total
memory requirements far below the 2 GByte limit) might run. However, experienced IBM
users might experiment instead with the compiler switches -bmaxstack, -bmaxdata, and
-qsmallstack, with the UNIX commands limit or ulimit, or with the settings in the
header of the batch script. . .

• -O3: Choose optimization level. Higher levels that involve interprocedural analysis cause
the compiler to stop with an error message.

• -qarch=auto -qtune=auto -qcache=auto: To allow optimization specific for the local
machine (default in the configure script). “Cross compilation” can be activated e.g. with
-qarch=pwr3 -qtune=pwr3 or -qarch=pwr4 -qtune=pwr4 (by setting an environment vari-
able, e.g. F90_MACHINE="(pwr3)" before calling configure).

• -Q -Q+...: To activate inlining and to specify the list of routines that should be inlined
(see Sect. 3.7.2).

• -qsmp=noauto:omp: Parallelization: OpenMP directives are activated.

A job script rhd.job on the Loadleveler batch system on io.cines.fr can be submitted with

llsubmit rhd.job

4http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/
5http://publib.boulder.ibm.com/infocenter/comphelp/index.jsp
6http://os.cc.biu.ac.il/documentation/
7http://os.cc.biu.ac.il/documentation/xlf 8.1.1/html/
8http://hpcf.nersc.gov/computers/SP/craytoSP.html/

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/
http://publib.boulder.ibm.com/infocenter/comphelp/index.jsp
http://os.cc.biu.ac.il/documentation/
http://os.cc.biu.ac.il/documentation/xlf_8.1.1/html/
http://hpcf.nersc.gov/computers/SP/craytoSP.html/
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The jobs in the queue for user testuser can be checked with

llq -u testuser

A job with ID n34.56789.0 can be canceled with

llcancel n34.56789.0

3.7.10 Linux: PGI Compiler

Under Linux the compiler of the Portland Group9 was first used to compile CO5BOLD. It is
called with pgf90.

Important switches are:

• -byteswapio: With this flag set, binary files in big_endian format (the standard for UIO
files) are automatically transformed to little_endian and vice versa.

• -fast: General optimization flag to choose (close to) optimum optimization for local ma-
chine.

• -Mvect=sse: Optimization: Allow Pentium III vector commands.

• -Mcache_align: Optimization: Align some data object on cache-line boundaries.

• -fastsse: From compiler version 4.0 on, this option can be used instead of the three
previous ones. It contains and supersedes them.

• -Minline=...: Optimization: the routines that should be inlined are listed in Sect. 3.7.2.

• -DMSrad_raytas=2: Optimization: choose non-default version of loop in
SUBROUTINE raytas in file MSrad3D.F90. See Sect. 3.6.

• -Drhd_hyd_roe1d_l01=0: Optimization: choose standard set of routines for Roe solver.
See Sect. 5.4.17.

• -Drhd_shortrad_operator_l02=1: Optimization: use the “manually inlined version” of
the short characteristics operator.

• -Drhd_shortrad_dtauop_l02=1: Optimization: use the “manually inlined version” of the
optical coupling operator.

3.7.11 Linux: Intel Compiler

With Version 7.0 and 7.1 of the Intel compiler10 CO5BOLD compiled (with tricks, see below).
Version 8.0 still caused trouble. With version 9.1 (and up) everything compiles smoothly.

The native format on Intel machines is little_endian. With

export F_UFMTENDIAN=big

(to be set at runtime after compilation before running CO5BOLD) the default can be changed
to big_endian. In 3.6 the preprocessor switches are listed, that control the modern – single –
version uio_mac_module.F90. The compiler is called with ifort (ifc on older compiler versions).

Important switches are:

• -Vaxlib: Link proper library to make the machine understand e.g. call flush(6).

• fpp: Activate the preprocessor (silently).

9http://www.pgroup.com/
10http://www.intel.com/software/products/compilers/flin/index.htm

http://www.pgroup.com/
http://www.intel.com/software/products/compilers/flin/index.htm
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• -O3: General optimization flag.

• -tpp6 -xK: Optimization especially for Pentium III (and Athlon, includes SSE vector com-
mands).

• -tpp7 -xW: Optimization especially for Pentium IV (includes SSE2 vector commands).

• -xP: Optimization especially for Core 2 Duo and simular architectures.

• -ip: Optimization: activate interprocedural optimization within each source file. This
enables inlining.

• -DMSrad_raytas=2: Optimization: choose non-default version of loop in
SUBROUTINE raytas in file MSrad3D.F90. See Sect. 3.6.

• -Drhd_shortrad_dir1_l01=1: Optimization: Transpose arrays and use routine
rhd_shortrad_dir3 for rays in x1 direction. See Sect. 3.6.

• -openmp: Parallelization: OpenMP directives are activated. Note that the for compiler
versions before 9.0 the UIO routines should be compiled without OpenMP support (even if
they do not contain any OpenMP directives themselves).

• -fast: General optimization flag to choose (close to) optimum optimization for the local
machine. However, on AMD machines this works less than perfect, because the features of
the processors are not well recognized.

• -i_dynamic: Helpful against “undefined reference to ‘__ctype_b’” errors.

• -r8 -fpconstant: Useful to force compilation in double precision (see 3.7.3).

On Macintosh machines the typical optimization flags are
-O3 -no-prec-div -fno-alias -ip. A big problem is the tiny stack size on those ma-
chines: large arrays taken from the stack should be avoided. For the SHORTrad module, this
can be achieved by setting -Drhd_arrays_l01=2 during compilation. In addition, relatively
small chunk sizes should be specified in rhd.par, see Sect. 5.4.7 and Sect. 5.4.8.

Using the Intel compiler (before version 9.1) there was a problem with the UIO modules when
OpenMP is activated. This was a bit weird because the UIO modules do not contain any OpenMP
directives. However, this means that OpenMP can be safely deactivated for these modules. A
proposed compiling sequence is (all modules activated):

export F90_LHDRAD=1

export F90_MSRAD=1

export F90_SHORTRAD=1

export F90_DUST=1

export F90_MHD=1

export F90_PARALLEL=scalar

./configure

make UIO

export F90_PARALLEL=openmp

./configure

make

For OpenMP (see Sect. 3.7.1), the number of threads can be set for instance with

export OMP_NUM_THREADS=16
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for a machine with 16 threads (e.g.: 2 processors, 4 cores per processor, 2 threads per core).
Experimenting with the scheduling, e.g., with

export OMP_SCHEDULE=DYNAMIC,1

or

export OMP_SCHEDULE=GUIDES,2

might improve the performance (see Sect. 3.7.1). The last two OpenMP variables are recognized
by several compiler. However, there are Intel-specific ones:

In some cases it might be helpful to set

export LD_ASSUME_KERNEL=2.4.19

when encountering problems with OpenMP. However, that seems not to be necessary with recent
compiler versions. Still, often the stack memory per thread is too small, which can be increased
e.g., with

export KMP_STACKSIZE=300000000

To optimize the performance, particularly on many-core systems, the thread affinity (see “Intel
Thread Affinity Interface”11) can specified e.g., with

export KMP_AFFINITY=verbose,granularity=core,compact

3.7.12 Linux: PathScale Compiler

Some experiments with the PathScale compiler12 have been made. It is called with pathf90. The
result is not entirely satisfying, yet.

Important switches are:

• -byteswapio: With this flag set, binary files in big_endian format (the standard for UIO
files) are automatically transformed to little_endian and vice versa.

• -O3: General optimization flag. More aggressive optimization can be activated with -Ofast

or -Ofast -ipa.

• -mp: Parallelization: OpenMP directives are activated.

3.7.13 Linux: GNU g95 Compiler

One of the available GNU Fortran compilers is the g95 compiler13 with the g95 home page14. It
is called with g95.

Important switches are:

• -fendian=big: With this flag set, binary files in big_endian format (the standard for UIO
files) are automatically transformed to little_endian and vice versa.

• -O3: General optimization flag.

In 3.6 the preprocessor switches are listed, that control the modern – single – version
uio_mac_module.F90.

OpenMP is not there yet. The binary I/O format (“unformatted”) is incompatible with the
one used before in CO5BOLD: no existing UIO files can be read.

11http://software.intel.com/sites/products/documentation/studio/composer/en-us/2009/compiler c/optaps/common/optaps openmp thread affinity.htm
12http://www.pathscale.com/docs.html
13http://g95.sourceforge.net/
14http://www.g95.org/

http://software.intel.com/sites/products/documentation/studio/composer/en-us/2009/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm
http://www.pathscale.com/docs.html
http://g95.sourceforge.net/
http://www.g95.org/
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3.7.14 Linux: GNU gfortran Compiler

The Fortran compiler15 of the GNU project16 is called with gfortran.
Important switches are:

• -fconvert=big-endian -frecord-marker=4: With this flag set, binary files in
big_endian format (the standard for UIO files) are automatically transformed to
little_endian and vice versa. In addition, the old 32-bit record marker convention is
maintained and existing UIO files can be read.

• -O3: General optimization flag.

• -fopenmp: Activates the OpenMP directives.

In 3.6 the preprocessor switches are listed, that control the modern – single – version
uio_mac_module.F90. I haven’t found out how to use the standard modules, yet.

OpenMP does not work, yet. And the scalar code is significantly slower than code compiled
e.g. with the Intel compiler (see Sect. 3.7.11. However, the factor is not prohibitive. For not too
demanding test runs the gfortran compiler can already be useful.

3.7.15 NEC SX-5, SX-6, SX-8

First attempts to compile CO5BOLD on neSH at the Rechenzentrum Kiel and on hwwsx5 at
HLR Stuttgart:

An environment variable has to be set to F_RECLUNIT=BYTE (before execution of a program) to
enable UIO to compute proper record lengths. The cross compiler (on sunsrv or crossi) is called
with sxf90. Thus, the environment variable F90_COMPILER=sx90 has to be set before running
the configure script.

No optimized version of CO5BOLD has been achieved yet.
Some maybe useful switches are

• sx5: generate instructions for SX-5. Use sx6 or sx8 when appropriate.

• C vopt: normal optimization in vector mode

• -Wf’-M noflunf -M noinv -M noinexact -M setall’: suppress some exceptions

• -P openmp: parallelization with OpenMP

• -Ep: call cpp preprocessor

• -pi exp=...: inlining of a list of routines (see Sect. 3.7.2)

• -dw -float0 (no special environment variable): use internally and in files the 4 Byte
big_endian format

For the SX-5 the compiler flags in the configure script are

F90FLAGS="-C hopt -sx5 -dw -float0

-Wf’-L nostdout -L fmtlist -L inclist -L mrgmsg -L transform -M noflunf

-M noinv -M noinexact -M setall’

-pi exp=rhd_shortrad_operator exp=rhd_shortrad_dtauop $F90MODULES

$F90TIME -DMSrad_raytas=1"

For the SX-8 the configure scripts gives the output

sxf90 -EP -P openmp -Chopt -sx8 -Wl’-Z 8G -m’ -dw -float0

-Wf’-L nostdout -L fmtlist map summary transform -L inclist -L mrgmsg -M noflunf -M noinv -M noinexact -M setall’

-Drhd_r03 -Drhd_shortrad_step_t01 -Drhd_shortrad_formal_t01 -DMSrad_raytas=1

-Drhd_hyd_entropyfix_p01=1 -Drhd_hyd_upwind_p01=1 -Drhd_hyd_roe1d_l01=1 -Dgasinter_l01=2

15http://gcc.gnu.org/fortran/
16http://www.gnu.org/

http://gcc.gnu.org/fortran/
http://www.gnu.org/
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3.7.16 SGI: Origin

CO5BOLD has been compiled and tested on up to 8 processors on the SGI 2000 machine at TAC
in Copenhagen and the SGI 3800 machine at the NSC17 in Linköping. The code was used on the
UKAFF machines (see Sect. 3.7.17) and the computers at CINES.

See e.g. the excellent SGI Fortran90 manual18

Information about the CINES machines can be found under CINES, or CINES : Introduction
au calcul scientifique.

Important switches are:

• -macro_expand: Enable macro expansion

• -mp: Enable parallelization with OpenMP directives

• -INLINE:aggressive=ON -INLINE:list -INLINE:preempt=ON: General keywords for in-
lining

• -INLINE:must=...: Optimization: routines that should be inlined (see Sect. 3.7.2).

• -Ofast -OPT:Olimit=0: General optimization. On older compiler versions -O3 was the
achievable optimum.

• -IPA:plimit=5500: Even more optimization. This option requires lots of memory (¿ 1
GByte). To get it it might be necessary to ask for more than one processor for the compi-
lation (especially on the CINES machines).

• -CG:longbranch_limit=60000: This switch limits needed compiler resources. It is sug-
gested by the compiler (on the CINES machines) itself.

• -Drhd_roe1d_step_l01=1: Slight performance improvement

3.7.17 SGI: Origin 2000/3800 at UKAFF

CO5BOLD has been also compiled and tested on up to 22 processors on the machines of the UK
Astrophysical Fluids Facility (UKAFF)19 in Leicester, England. UKAFF operates two machines:
an SGI Origin 3800 with 128 processors (named “ukaff”), and an older SGI Origin 2000 with
22 processors (named “grand”) which is mainly used for development and test purposes. Both
machines are binary compatible. At the time of testing (April 2003) the SGI MIPSpro Compilers
(Version 7.4) was installed.

Most of the compiler switches given in the previous section were used, except for the following
modifications which either gave empirically a better performance or were recommended by the
UKAFF Hints for users:

• -Ofast: Replaces -O3, gave better performance

• -LNO:cs1=32k:ls1=32:cs2=8M:ls2=128: Explicit cache architecture added

The option -Ofast is now the default selected by the configure script for all SGIs with IP35
architecture. The cache architecture settings are activated for the UKAFF machines only.

A glitch in the system libraries made it necessary to add a work-around to the source code
(file rhd.F90). A “bus error” occurred whenever the system routine “flush” was trying to flush
an empty file buffer. The temporary work-around was simply to add a write statement before
every call of “flush”. This made the log-file look less nice but did the job. Now, the few “flush”
statements that are not necessarily preceded by a write statement are removed.

The main goal was to investigate the scaling of the performance of CO5BOLD with the number
of processors. This was done only for the MSrad module, considering local surface convection

17http://www.nsc.liu.se/systems/sgi3k/
18http://techpubs.sgi.com/library/tpl/cgi-bin/init.cgi
19http://www.ukaff.ac.uk/

http://www.cines.fr/anglais0.html
http://www.cines.fr/textes/intro_scientif_futur2.htm
http://www.cines.fr/textes/intro_scientif_futur2.htm
http://www.nsc.liu.se/systems/sgi3k/
http://techpubs.sgi.com/library/tpl/cgi-bin/init.cgi
http://www.ukaff.ac.uk/
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models. Two model sizes were tested: a small one with 125x125x81 grid points employing non-grey
radiative transfer (4 frequency bands), and a large one with 315x315x81 grid points employing
grey radiative transfer. Rather short runs of 10 (small model) and 3 (large model) time steps
were performed. Even for the large model the memory demand was ca. 800Mb, which is very
modest considering that every sub-node of the machine — consisting of 4 processors — has 2Gb
of memory.

The results are summarized in the following three figures. The black lines give the scaling
of the total time, the green lines the scaling of the time needed by the hydrodynamics routines,
and the red lines the scaling of the radiative transfer routines. The scaling is presented as the
increase of processing time per processors as the problem is distributed among more and more
processors. The times are normalized to the time that is used in a scalar, i.e. single processor
setup. Ideally, one would like a constant behavior which stays close to one.

Figure 3: UKAFF: machine: grand; small model

The perhaps most interesting result is that the speedup on “ukaff” is about 11 for the large
model on 16 processors. Perhaps not ideal, but within the range of practical interest. In general,
the hydrodynamics routines scale more favorably than the radiation routines. This is perhaps sim-
ply related to the fact that in explicit hydrodynamics communication is restricted to neighboring
grid cells.

For those wondering: the black curves do not lie between the red and green curve since more
components than just radiation and hydrodynamics add up to the total time. Furthermore, the
normalization of the execution times given by CO5BOLD is not exact.

3.7.18 Sun: SunFire

CO5BOLD has been used on the SunFire machines“fire1”, “fire2”, and “fire3” in Uppsala with
compiler version “Sun WorkShop 6 update 2 Fortran 95 6.2 2001/05/15” and later. An older
version was not able to compile CO5BOLD properly. Information about Fortran and the Sun
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Figure 4: UKAFF: machine: grand; large model

Figure 5: UKAFF: machine: ukaff; large model
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compiler can be found on the Sun Fortran data sheet page20 under “Documentation”. Ångström
Sun cluster21

Important switches are:

• -openmp: Enable OpenMP.

• -fast -xvector=yes/no: General optimization. On the Sun the -fast option switches
on more or less all optimization features of the compiler. That works reasonable well.
However, during the compilation of gasinter_routines.f90 (and only there) the switch
-xvector=no is required! This is done automatically in the Makefile.

• -inline=...: Optimization: routines that should be inlined: see Sect. 3.7.2.

• -DMSrad_raytas=2: Optimization: choose non-default version of loop in
SUBROUTINE raytas in file MSrad3D.F90. See Sect. 3.6.

• -Drhd_shortrad_formal_l01=1: Optimization: split loop for exp(-dtau) computation into
two loops. See Sect. 3.6.

• -Drhd_shortrad_dir1_l01=1: Optimization: Transpose arrays and use routine
rhd_shortrad_dir3 for rays in x1 direction. See Sect. 3.6.

• -Drhd_hyd_entropyfix_p01=1: Optimization: version with masks (weights). See Sect. 3.6.

• -xarch=native64: Produces 64-bit code optimized for local machine.

20http://developers.sun.com/sunstudio/products/previous/fortran/datasheet.html
21http://www.uppmax.uu.se/ComputerSystems/AngstromSunCluster/SunCluster.html

http://developers.sun.com/sunstudio/products/previous/fortran/datasheet.html
http://www.uppmax.uu.se/ComputerSystems/AngstromSunCluster/SunCluster.html
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4 UIO Data Format

4.1 Quickstart: Introduction to UIO

The UIO (“Universal Input Output”) routines are a set of routines in Fortran90 and IDL to
manage I/O of scalars, arrays and a certain table type. Files can be formatted or unformatted.
The formatted (ASCII text) data representation is machine-independent and appropriate for
human reading (for short files).

The binary representation uses the Fortran “unformatted” read and write routines, provides
much faster I/O, gives smaller files, and the IEEE format is a quasi-standard among many
platforms/compilers. On all machines the native binary representation can be chosen. On some
platforms additional conversion types are offered (IEEE on most machines, CRAY format an
CRAYs).

The Fortran standard does not guarantee that unformatted (i.e. also UIO) files are readable
on all machines. But it is always possible to produce (formatted) UIO files on a machine which
are readable on all others. And with some fiddling with compile options or the call of machine-
specific subroutines provided by the compiler vendor it was up to now always possible to enable
the access to binary UIO files (of one common format: IEEE big_endian) on all machines and
compilers tested: Compaq alpha, Cray, Hitachi, HP V2500, HP Itanium2, IBM, Intel/AMD (with
Linux OS and PGI, Intel, or Pathscale compiler), NEC SX-5, SGI, and Sun. Problems might
arise with the transition to records larger than 2 GByte which require an extension of the current
standard. The GNU Fortran compilers (particularly g95) might introduce a 64-bit system that
does not allow to read older 32-bit files (even small ones).

Each file entry is a header-data-unit. The header contains information to identify the entry
and to specify the format and size of the following data block. This block usually consists of
a scalar or an array. In some cases it is empty (e.g. for labels) or it contains more complex
information (for tables).

The first version of UIO routines was written in FORTRAN77. It still exists. However, further
development was done with the Fortran90 versions. Therefore, the use of the FORTRAN77
routines is not recommended anymore. The current Fortran version of the UIO routines is a set
of Fortran90 modules.

To allow a communication between Fortran and IDL programs, an IDL version of the UIO
routines has been written. The correspondence between Fortran and IDL routines is rather close.
But in detail, there are differences. Currently, IDL Version 6.0 is used. Amazingly, the UIO
routines also used to work under PV-WAVE (Version 6.01, sun4 solaris sparc).

So far, there exist three UNIX shell scripts (calling Fortran routines) useful to quickly examine
data sets or to change the format or conversion type of files. The installation of these scripts with
a “configure-make-make install” sequence is described in Sect. 4.6.1.

Without these scripts an UIO file in ASCII format can be examined with any text editor or
with more. To get an overview about the contents of a binary file the command

strings -30 uio_example_file.dat

can be useful.

4.2 Example of UIO Data File

To give a first impression about the data structure, here follows a simple test file, which contains
the header, a label, a couple of scalars, an array, and a short table:

fileform uio form=formatted convert=native version=0.1.1997.11.29 &

date=’29.11.1997 21:23:39.835’ system=IRIX machine=atlas osrelease=6.3 &

osversion=12161207 hardware=IP32 language=Fortran90 program=uiotst

label testdata n=’sample test data field’ date=’29.11.1997 21:23:39.835’

integer ia f=I3 b=4 n=’This is the answer’
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42

complex ca f=’’’(’’,E13.6,’’,’’,E13.6,’’)’’’ b=8 n=’This is a complex answer’

( 0.400000E+01, 0.200000E+01)

real da f=E23.15 b=8 n=’precise answer’

0.420000000000000E+02

real answer f=F4.0 b=4 n=answer u=1

42.

real real2d d=(100:103,200:204) f=E13.6 p=4 b=4

0.100000E+01 0.200000E+01 0.300000E+01 0.400000E+01

0.500000E+01 0.600000E+01 0.700000E+01 0.800000E+01

0.900000E+01 0.100000E+02 0.110000E+02 0.120000E+02

0.130000E+02 0.140000E+02 0.150000E+02 0.160000E+02

0.170000E+02 0.180000E+02 0.190000E+02 0.200000E+02

table f77table d=(1:5,1:7) f=1X b=1 n=’test table to test the table routines’

integer int1 f=I5 b=4 n=’Integer: 1. column’

real real1 f=F5.1 b=4 n=’Real: 2. column’

character char1 f=A16 b=16 n=’Char: 3. column’

real real2 f=E13.6 b=4 n=’Real: 4. column’

integer int2 f=I5 b=4 n=’Integer: 5. column’

int1 real1 char1 real2 int2

1 2.0 a 0.100000E+02 1

2 4.0 ab 0.200000E+02 2

3 6.0 abc 0.300000E+02 3

4 8.0 abcd 0.400000E+02 4

5 10.0 abcde 0.500000E+02 5

6 12.0 abcdef 0.600000E+02 6

7 14.0 abcdefg 0.700000E+02 7

4.3 Structure of UIO Files

4.3.1 Data Representation: ASCII or Binary

While opening a file for writing, the file format (“formatted” or “unformatted”) and the conversion
type (“native”, e.g. “ieee 4”, . . . ) have to be specified.

The formatted ASCII data representation allows I/O independent of platform or compiler. It
is useful for parameter files which can be read and edited by hand, for the direct inspection of
data, the transfer between very different systems, or for the import of data which exist e.g. in
a table format. From the specified conversion type only the default output format for numbers
(e.g. “E13.6” for 4 byte reals) is determined.

The unformatted binary I/O is much faster and gives usually more compact files with higher
accuracy (ideally exact) in the numerical data representation. But – in principle – the file format
is machine dependent. Fortunately, the IEEE format turns out to become a quasi-standard
among a variety of machines. Most workstations work internally with this format. Some CRAYS
which have a different internal data representation allow the hidden transformation between the
internal and IEEE format during the I/O process. The UIO routines support this feature of CRAY
FORTRAN compilers by means of a module (uio_mac_module), individually designed for (two
types of) CRAY machines using certain CRAY specific system calls (CRAY FFIO assign logic).
Nevertheless, there is also a machine independent version of this module, written completely in
standard Fortran90 but providing less features than the machine-dependent versions.

Besides the format, the conversion type (see table 4) has to be specified. The “native”
conversion type is the internal binary-data representation, which is also standard for unformatted
Fortran output. If this representation happens to be conformal with the IEEE standard the
conversion type “ieee 4” should be used. It gives the same data format, but in the header of the
file the term “convert=ieee 4” instead of “convert=native” describes the data format precisely –
in a way also understandable by other machines. On CRAY machines the native format is equal
to the conversion type “crayxmp 8”, but also the conversion types “ieee 4”, and “ieee 8” can
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be chosen. The last two conversion types correspond to the CRAY internal types “ieee 32” and
“ieee 64”, respectively.

On a machine with an internal data representation not within the list in the existing
uio_mac_module.F90 file, one could use the “native” conversion type only. But it is better
to invent an appropriate name for the new data format and to build a proper machine-dependent
branch with its own compiler switch. However, it was possible in all cases so far to activate some
internal conversion process, which allowed the handling of UIO files in the standard Big-Endian-
IEEE format.

conversion type I R D description

native ? ? ? internal data format on all machines
(sometimes useful but not recommended)

ieee_4 4 4 8 standard IEEE big_endian format (recommended)
ieeele_4 4 4 8 IEEE little_endian format
ieee_8 8 8 16 double precision IEEE big_endian format

(on some machines possible)
crayxmp_8 8 8 16 CRAY internal data format
idl 4 4 8 IDL format (but IDL also supports ieee_4)
xdr 4 4 8 format possible with IDL

ieee_4_limit 4 8 8 standard IEEE format → ieee_4

ieee ? ? ? IEEE format, unknown length (not recommended)

Table 4: UIO conversion types with length of integers, single precision reals, and double precision
reals in bytes, and an explanation.

Some attention has to be paid if weird compiler switches (as e.g. -r16 -i2) are used to modify
the accuracy and standard memory size of variables.

If an existing file is opened for reading, the file format and conversion type are determined
automatically from the file if the conversion type of the data in the file is among the conversion
types supported by the compiler. If the file has a conversion type “native” but is created on a
machine with different internal data representation, the file header might be readable, but an
error will probably occur during the reading of a real variable.

4.3.2 Data File Structure

The UIO routines only handle sequential files. Each file consists of a list of entries. The first
entry describes the file format, conversion type, and the machine who is responsible for it. The
following entries contain data (scalars and 1D . . . 4D arrays of type integer, real (single & double
precision), complex (single precision), character; tables with columns of type integer, real (single
precision), or character), or structuring information (labels).

Each entry consists of the header and the (possibly empty) data block.
Each header is a list of at most 20 terms separated by blanks or linefeeds. The first term is

the entry type (e.g. real, see table 5), followed by an identifier. This identifier should follow the
standard rules for variables (lowercase letters, numbers, underscore; starting with letter). It is a
name as e.g. rho, v_1. The rest of the terms come in the form “keyword=value”. See Tab. 6 for
some pre-defined keywords.

A header line has a maximum length of 80 characters. A continuation line is indicated by  &

at the end of the line. A header consists of 20 lines at maximum. It can be preceded by empty
lines (except for the file header entry). Example:

real time f=F9.2 b=4 n=’Time’ u=s c0=’Simulation time in seconds’ &

c1=’Time count starts at 0.0’

12.34

The entry header is followed by the entry data block. This block is empty for labels and the
fileform entry but non-empty otherwise.
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entry type entry contents

fileform file description (first entry)
integer scalars, 1D . . . 4D arrays
real scalars, 1D . . . 4D arrays, single & double precision
complex scalars, 1D . . . 4D arrays, single precision
character scalars, 1D . . . 4D arrays
table table with integer, real, character columns
label label entry for file structuring

Table 5: UIO entry types

In an unformatted file each header line is an individual record containing a string with exactly
80 characters. The following data block (scalar or array) is one single record.

In a formatted file each header line is a string of at most 80 characters delimited by a LINEFEED

of whatever the operating system decided to be appropriate as EOL character (sequence). The
following data block is written as sequence of lines. The number of items per line is specified by
the “p=?” keyword in the header.

4.3.3 Tables

For a table the entry header is followed by a list of headers for the individual table columns, a
single table header line consisting of (abbreviations of) the table entry identifiers and the table
itself (see the example in section 4.2). The dimension keyword gives the number of columns and
rows in the form “d=(1:columns,1:rows)”.

The Holweger-Müller-Atmosphere is chosen as the following “real world” example for a file
with a table in UIO format:

fileform uio form=formatted convert=ieee_4 version=0.0.1996.10.29 &

date=’20-Feb-1997 18:40:45’ system=SunOS machine=saturn osrelease=4.1.3 &

osversion=3 hardware=sun4m language=’IDL 4.0’ program=’by hand’

character description d=(0:3) f=A80 p=1 b=80 d=’13-Nov-1996 18:29:48’

Holweger-Mueller-Atmosphere,

Hartmut Holweger & Edith Mueller (1974) Solar Physics 39, 19-30, table II,

empirical solar temperature stratification to fit solar spectral lines and

limb darkening

character history d=(0:3) f=A80 p=1 b=80 d=’13-Nov-1996 18:29:52’

Holweger-Mueller-Atmosphere, from 1974

uio-form: 13-Nov-1996 18:29:52

conversion type added: 20-Feb-1997 18:21:01

xi -> vmicro: 20-Feb-1997 18:23:43

real teff f=F6.1 b=4 n=’effective temperature’ u=K texa=’T_ eff’
5780.0

table atmosphere d=(1:7,1:29) f=X b=1 n=Holweger-Mueller-Atmosphere &

c0=’Hartmut Holweger & Edith Mueller (1974) Solar Physics 39, 19-30, table II’ &

c1=Teff(Sun)=5780K

real tauross f=E9.2 b=4 n=’optical depth (Rosseland)’ u=1

real tau5000 f=F7.3 b=4 n=’optical depth (lambda5000)’ u=1 t=log10

real t f=F7.0 b=4 n=temperature u=K

real pgas f=F6.3 b=4 n=’gas pressure’ u=dyn/cm^2

real pel f=F6.3 b=4 n=’electron pressure’ u=dyn/cm^2

real vmicro f=F4.2 b=4 n=microturbulence u=km/s

real q f=F8.5 b=4 n=’Hopf function’ u=1 c0=’q=((T(tau)/Teff)^4)/0.75)-tau’

tauross tau5000 t pgas pel vmic q

2.00E-07 -6.539 3900. 0.769 -3.140 0.00 0.27637
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keyword description example descriptor info. necessary

b byte number 4 format yes
d dimension (0:9) format yes (arrays)
ds dimension shift (1:1) yes
f Fortran format E13.6 format yes
p values per line 4 format yes (arrays)
t transformation log10 format
n name density yes
u unit g/cm^3 yes
date date 1.1.98 yes
c0. . . 9 comment Dichte yes

form file format formatted file yes (file header)
convert conversion ieee 4 file yes (file header)
version version 0.1.1997.11.29 yes
system system IRIX yes
machine machine name atlas yes
osrelease OS release 6.3 yes
osversion OS version 12161207 yes
hardware machine hardware IP32 yes
language program. language Fortran90 yes
program program uiotst yes

xyz. . . user defined source yes

Table 6: Standard UIO entry header keywords: The keyword is given with a short description and
an example. The fourth, fifth, and sixth column indicate if the keyword is a mandatory descriptor
(in the file header or for the format of an entry) or if it gives only additional information and is
optional and therefore not necessary to specify.

2.50E-07 -6.279 3920. 1.171 -2.752 0.00 0.28208

5.00E-07 -5.868 3970. 1.598 -2.342 0.00 0.29675

1.00E-06 -5.588 4030. 1.842 -2.105 0.00 0.31510

2.00E-06 -5.334 4080. 2.042 -1.910 0.00 0.33103

5.00E-06 -5.001 4160. 2.279 -1.674 0.00 0.35776

1.00E-05 -4.747 4210. 2.450 -1.508 0.00 0.37527

2.00E-05 -4.486 4270. 2.618 -1.341 0.00 0.39712

5.00E-05 -4.131 4340. 2.835 -1.128 0.00 0.42377

1.00E-04 -3.856 4400. 2.999 -0.967 0.50 0.44765

2.00E-04 -3.577 4460. 3.162 -0.804 0.50 0.47248

5.00E-04 -3.200 4530. 3.377 -0.596 0.50 0.50256

1.00E-03 -2.912 4590. 3.541 -0.437 0.50 0.52925

2.00E-03 -2.621 4640. 3.704 -0.279 0.50 0.55173

5.00E-03 -2.233 4720. 3.919 -0.070 0.50 0.58792

1.00E-02 -1.939 4800. 4.083 0.094 0.50 0.62415

2.00E-02 -1.645 4900. 4.245 0.266 0.65 0.66867

5.00E-02 -1.256 5080. 4.460 0.504 0.85 0.74558

1.00E-01 -0.961 5260. 4.622 0.705 1.00 0.81447

2.50E-01 -0.571 5560. 4.830 1.002 1.25 0.89163

4.00E-01 -0.371 5850. 4.926 1.251 1.40 0.99911

7.00E-01 -0.133 6260. 5.022 1.613 1.50 1.13453

1.00E+00 0.019 6570. 5.070 1.879 1.60 1.22581

1.50E+00 0.191 6880. 5.114 2.140 1.70 1.17659

2.00E+00 0.312 7160. 5.140 2.363 1.80 1.13964

4.00E+00 0.597 7920. 5.191 2.889 1.80 0.70033

6.00E+00 0.761 8250. 5.213 3.092 1.80 -0.46595

8.00E+00 0.877 8420. 5.229 3.196 1.80 -1.99552

1.00E+01 0.967 8500. 5.242 3.245 1.80 -3.76404
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4.3.4 Recommendations for Standard File Structure

The very first entry in an UIO file is always the fileform uio entry, containing information
about the file format and conversion type. Afterwards, entries can follow in any order. But it is
perhaps a good idea to start the file with three special entries (file_id, description, history)
as in

fileform uio form=formatted convert=ieee_4 ...

character file_id f=A80 b=80 n=’File identification’

uio-demofile

character description d=(1:2) f=A80 p=1 b=80 n=’File description’

This is a file to demonstrate the recommended start entries for all

UIO files.

character history d=(1:1) f=A80 p=1 b=80 n=’File history’

UIO demo file: 22-Dec-1997 14:15:15

A recommended format for sets of multi-dimensional arrays (e.g. hydrodynamics: x-axis, y-
axis, z-axis, density, velocities, energy, . . . ) is shown in Sect. 5.1.

4.4 Files & Directories & Paths

All UIO-routines are located in sub-directories of a common directory (called e.g. uio), which
also contains a old Readme file. The subdirectories and their contents are
bin : shell scripts: uiolook, uiocat, uioinfo
f90 : Fortran90 source codes, object files, executables
idl : IDL routines
man/man1: manual pages for shell scripts: uiolook, uiocat, uioinfo
tex : old description files in LATEX, the most recent version is part of this document

To use the UNIX scripts and the makefile you need a global system variable UIOPATH
pointing to this directory. The path to the shell scripts and to the man-pages should be added
to your shell path variables e.g. in one of the login scripts:

C-shell (.cshrc):

# --- uio ---

setenv UIOPATH "$HOME/uio"

setenv PATH "$PATH:$UIOPATH/bin"

setenv MANPATH "$MANPATH:$UIOPATH/man"

# --- *** ---

Korn-shell (.kshrc):

# --- uio ---

UIOPATH=$HOME/uio

export UIOPATH

PATH=$PATH:$UIOPATH/bin

export PATH

MANPATH=$MANPATH:$UIOPATH/man

export MANPATH

# --- *** ---
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File contents

uio_base_module.f90 Collection of basic modules
uio_mac_module.F90 Machine-dependent routines for all machines, current
uio_bulk_module.f90 Main part of UIO routines
uio_filedef_module.f90 Standard file descriptors and labels

uio_table_module.f90 Table manipulation routines

uio_var_module.f90 definition and handling of UIO flexible variable
uio_varfile_module.f90 definition and handling of file structure of

UIO flexible variables

uiocop.f90 Program to copy and transform UIO files
uiolok.f90 Program to look into UIO files
uioinf.f90 Program to give information about conversion types
uiotst.f90 Program to produce test UIO file

Table 7: UIO Fortran90 files

module contents

uio cst module channel status information
uio cvl module convert type list of current machine
uio inf module information about environment
uio nam module definition of names
uio siz module string length, table size
uio base module basic set of UIO-routines: string processing,

header handling, I/O channel management

Table 8: Contents of uio base module.f90

4.5 Fortran90

4.5.1 Files

The Fortran UIO package is a collection of Fortran90 modules and programs described in Table 7.

The file uio_base_module.f90 contains the basic set of modules (see Table 8).

In older version of CO5BOLD, the files uio_mac*_module.f90 (Tab. 7) contained machine-
dependent routines collected in the module uio mac module (see Tab. 9).

routine purpose

uio getenv Get information about environment
uio mkcvls Make list with possible conversion types
uio uopen Open file with special handling for conversion type
uio uclose Close file with special handling for conversion type

Table 9: Contents of uio mac module

In the current version of CO5BOLD, there is only one file uio_mac_module.F90 – with a
capital F90 – that can be changed during the compilation by preprocessor switches, see 3.6.

The main set of routines is contained in uio_bulk_module.f90 in the module
uio bulk module.

The three files uio_base_module.f90, uio_mac_module.F90, and uio_bulk_module.f90

comprise the standard set of UIO routines.

Additionally there exists a file uio_table_module.f90 with the single module
uio table module which permits the I/O and manipulation of a certain table format (see the
example in section 4.2).

The latest extension comes within the modules uio_var_module.f90 and
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uio_varfile_module.f90. The module uio_var_module.f90 contains a type definition
for a variable (“uio flexible variable”) of general type (i.e. it may be a scalar integer value or a
1D character array or a 3D real array. . . ) together with some routines for the basic handling of
the variables (I/O in UIO format, construction and modification of variables. . . ). The module
uio_varfile_module.f90 contains a type definition for a file built of UIO flexible variables
together with routines for the handling of these files.

4.5.2 Use of UIO Modules in Fortran90

To make the UIO routines available in a Fortran program the appropriate modules have to be
specified in a USE statement.

At maximum five modules play a role: The uio_bulk_module contains the main part of the
UIO routines (and also uses the relevant sub-modules). Instead of uio_bulk_module the module
uio_table_module is used if the UIO table routines are needed. The modules uio_siz_module

and uio_nam_module contain specifications about the size of some arrays and the length of strings,
and the names of types and keywords, respectively. The module uio_filedef_module contains
some definitions in addition to the basic UIO standard as e.g. the label names which delimit a
data set (label dataset and label enddataset).

A typical case for the use of UIO modules is

use uio_bulk_module

use uio_siz_module

use uio_nam_module

4.5.3 Compiling and Makefiles

For a certain platform, it was necessary to change the name of the module file with the machine-
dependent routines (uio_mac*_module.f90) in a Makefile for the UIO routines. For this purpose
the environment variable UIOMAC had to be set to the name of the appropriate routine (see
Sect. 3.3).

In the current version of CO5BOLD, there is only one file uio_mac_module.F90 – with a
capital F90 – that can be changed during the compilation by preprocessor switches, see 3.6.

For CO5BOLD or the UIO Unix scripts the respective configure script takes care of either
of these steps. Many compilers generate module information files with suffixes like .M, .mod, or
.kmo. To clean up information files with other suffixes, they have to be included in the cleaning
step.

Calling examples:

make

make UIO

make UIO "F90FLAGS=-g"

make clean

make cleanall

make remove

make removeall

A section of a typical makefile using the UIO routines may be

...

# --- Compiler options ---

F90C=f90

F90FLAGS=

# --- Libraries ---

UIOMAC=uio_mac_module

...
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# --- Dependencies of exe-files on object files and libraries ---

test.exe: test.o

$(F90C) $(F90FLAGS) -o $@

$(UIOPATH)/f90/uio_base_module.o $(UIOPATH)/f90/$(UIOMAC).o

$(UIOPATH)/f90/uio_bulk_module.o

test.o: $(UIOPATH)/f90/UIO test.f90

$(F90C) -c $(F90FLAGS) -M$(UIOPATH)/f90 test.f90

...

# --- Dependencies on used modules ---

$(UIOPATH)/f90/UIO:

cd $UIOPATH/f90 ; make UIO "F90FLAGS=$F90FLAGS"

4.5.4 Sample Calls of Fortran UIO Routines

The needed modules have to be declared by a use statement like:

use uio_bulk_module

In the initial phase of the program the UIO routine package has to initialized by exactly one
call of the uio_init routine with the name of the program as optional parameter:

call uio_init(progrm=’uiotst’)

The internal list of logical I/O unit numbers may be changed with calls of uio_chunit and
uio_chconv.

A file can be opened for writing with

file=’test.txt’

form=’formatted’ ! or: ’unformatted’

conv=’ieee_4’ ! or: ’native’, ’crayxmp_8’,...

call uio_openwr(ncout, file, form=form,conv=conv)

Header and data block are written together with one command as e.g. in:

call uio_wr(ncout, time, ’time’, name=’time’, unit=’s’ )

call uio_wr(ncout, rho(1:10), ’rho’, name=’density’, unit=’g/cm^3’)

There are two different routines to close a file after reading or writing. A file opened for
writing is closed by:

call uio_closwr(ncout)

To open a file for reading, only the file name has to specified. File form and conversion type
are determined automatically:

file=’test.txt’

call uio_openrd(ncin, file)

In contrast to the writing of an entry by one routine call the reading is performed in two
separate sub-steps for the header and the data part. After the reading of the header e.g. with

use uio_siz_module

use uio_nam_module

...

integer :: ntt

character*(let) :: termt(2,nttmx)

...

call uio_rdhd(ncin, termt,ntt)
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the identifier, type, and dimension (if any) of the entry is contained in the character array
termt with ntt entries and special actions may be taken: The data part may be skipped with

uio_skipda(ncin, termt,ntt)

or it can be read with:

call uio_rd(ncin, termt,ntt, time, ident)

If the entry is an array it may be necessary to allocate memory:

call uio_exkeyw(termt,ntt, dimna,dimstr)

call uio_st2dim(dimstr, ilow, iup, ndim=ndim)

allocate(rho(ilow(1):iup(1)))

call uio_rd(ncin, termt,ntt, rho, ident, ilb=ilow(1:1))

Alternatively, it is possible to search in the file for a special entry or to search in a specially
generated entry list with:

call uio_srhd(ncin, termt,ntt, type=’real’,ident=’rho’,outstr=outstr,ierr=ierr)

Additionally, the module uio_var_module makes it possible to read any entry into an UIO
flexible variable, and the module uio_varfile_module allows the reading of a complete file into
a special file structure of UIO flexible variables.

To close a file after reading use

uio_closrd(ncin)

There are several examples of programs with UIO routines like uio_var_test.f90,
uio_varfile_test.f90, uiotst.f90, (uio_demo.f90) and – of course – CO5BOLD.

4.6 UNIX Scripts

So far, there exist three UNIX shell scripts useful to quickly examine data sets (uiolook), to
change the format or conversion type of files (uiocat), or to print some information about the
conversion types possible on the local machine (uioinfo).

4.6.1 Installation of UIO UNIX Scripts

The installation procedure for the UIO scripts has been updated to make use of its own configure
script. Therefore, the procedure should now look like

tar -zxvf for.tar.gz

cd for/uio/f90/YOUR_MACHINE

./configure

make

make install

or

tar -zxvf for.tar.gz

cd for/uio/f90

mkdir YOUR_MACHINE

cd YOUR_MACHINE

ln -s ../conf/configure .

./configure

make

make install
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Some of the environment variables that control the CO5BOLD configure script are also rec-
ognized (see the header of the UIO configure script). The command

make install

generates a directory ${HOME}/local and sub-directories. An init script is put into
${HOME}/bin. And the resource files .cshrc and .bashrc are modified to call it. Therefore,
this installation step is potentially dangerous, because its effect is not restricted to the local
directory!

4.6.2 Quick Examination of Files: uiolook

The shell script uiolook calls the Fortran program uiolok.f90. The man-page:

UIOLOOK(1V) Misc. Reference Manual Pages UIOLOOK(1V)

NAME

uiolook - print entry headers of file in uio form

SYNOPSIS

uiolook [ -h ] [ -p ] [ filename ... ]

AVAILABILITY

DESCRIPTION

The routine uiolook reads each filename (file in uio form)

in sequence and displays the headers of the entries in

pretty form.

OPTIONS

-h Print usage of uiolook.

-p Entry header keywords in (long) pretty form

SunOS 5.5.1 Last change: 27 November 1996 1

4.6.3 Transformation of Files: uiocat

The shell script uiocat calls the Fortran program uiocat.f90. The man-page:

UIOCAT(1V) Misc. Reference Manual Pages UIOCAT(1V)

NAME

uiocat - concatenate file(s) in uio form

SYNOPSIS

uiocat [ -c conversion ] [ -f format ] [ -h ] [ -l copylist

] [ -o outputfilename ] [ filename ... ]

DESCRIPTION

The routine uiocat reads each filename (file in uio form) in

sequence and displays its contents formatted on standard

output or writes it into a file. In the latter case the

format change from ’formatted’ to ’unformatted’ or vice

versa is possible.

OPTIONS

-c Conversion type: ’native’, ’ieee_4’, ... (machine

dependent), its specification is only relevant, if an

output file is specified with the -o option and output
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format=’unformatted’.

-f Output format: ’formatted’ or ’unformatted’. Its

specification is only relevant, if an output file is

specified with the -o option.

-h Help: print usage of uiocat.

-l List of entries to be copied. E.g.

uiocat ... -l"real rho"

uiocat ... -l"real rho,integer i"

uiocat ... -l"label *,real rho,integer i"

uiocat ... -l"label *,real rho,* i"

Here, copylist is a list, separated by ",". Each item

consists of exactly two items, separated by a blank. No

additional blanks are allowed. Use copylist with "" as

above.

-o Output file name. If omitted, standard output is used

and "-c" and "-f" are meaningless.

SunOS 5.5.1 Last change: 12 January 1998 1

4.6.4 Information about Conversion Types: uioinfo

The shell script uioinfo calls the Fortran program uioinf.f90. The man-page:

uioinfo(1V) Misc. Reference Manual Pages uioinfo(1V)

NAME

uioinfo - print machine dependent information

SYNOPSIS

uioinfo

DESCRIPTION

The routine uioinfo prints information about its environment

and a list of possible conversion types.

OPTIONS

SunOS 5.5.1 Last change: 12 January 1998 1

4.7 IDL UIO Routines

The UIO package in IDL comes as a list of routines with names quite similar to the Fortran90
version. Instead of using global variables as in Fortran90 there are now common blocks in Include-
files.

;******************************************************************************

; Routines, functions : uio_*.pro:

; (!: most important, +: user-routine, -: comfortable, .:useful)

; . adkey1: Add one keyword to term table, keyword-value=’ ’, no link character

; . adkey2: Add one keyword to term table with keyword-value

; . adkey3: Add one keyword to term table with keyword-value or default

; . chconv: Actualize list of conversion types for all channels

; + chpos: Give current file position or jump to specified position

; . chunit: Initialize, store and actualize a list of free and occupied unit

; numbers
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; + closrd: Close file after reading

; + closwr: Close file after writing

; - cpentr: Copy entry from one file to another

; + d: Read data from uio-file(s) in quasi direct access mode

; + data: Handle uio-file(s) in quasi direct access mode

; ! dataset_rd: Read uio file and put data into anonymous structure

; ! datasetlist_rd: Read data from list of files and put it into an. structure

; deform: Determine the default output format for numbers

; dim2st: Compose dimension string

; . exkeyw: Extract value of keyword from table

; ex1trm: Extract one term from the input line

; exmtrm: Transform a list of items into its components

; . filcon: Determine file contents: list of all entries with its positions

; getenv: Get information about environment

; ! init: Initialization procedure for input/output routines

; me1trm: Merge the input term: ’keyword’, ’value’ -> ’keyword=value’

; memtrm: Merge a list of terms (keywords and their values) into a line table

; mkcvls: Make list with possible conversion types

; . nc2nt: From column number or entry name find table entry number

; + openrd: Open file for reading, read header

; + openwr: Open file for writing, write header

; - pptrmt: Print term table in pretty form

; qmaadd: Transform a string into a string with quotation marks if necessary

; qmadel: Parse string "inline" and remove quotation marks if necessary

; + rd: Reading scalar and array data of all types

; . rdfifo: Read file header

; + rdhdex: Read header of variable and extract keywords

; rdhead: Read header

; + rdlabl: Read label

; + rdtab: Read table of integer, real, and/or character data from file

; + skipda: Skip data block

; - slhdex: Search header of variables given by list and extract keywords

; . st2dim: Parse dimension string

; ! struct_rd: Read uio file and put data into anonymous structure

; . tab0: Create empty table structure

; + tabc: Change and modify table contents: rearrange lines.

; + tabm: Merge two tables in different ways

; + tabr: Read 1d array from 2d table array (all types)

; + tabw: Write 1d array into table (all types)

; uclose: Close file with special handling for conversion type

; uopen: Open file with special handling for conversion type

; vnanrm: Transform a string to give a correct name of a variable

; wf2rf: Produce from write format string corresponding read format string

; + wr: Writing scalar and array data of all types

; . wrfifo: Write file header

; wrhdme: Write header of variable, input: term table.

; wrhead: Write header of variable, input: line table.

; + wrlabl: Write label

; + wrtab: Write table of integer, real, and/or character data to file

;******************************************************************************

; Include-Files uio_*.pro:

; filedefinc:

; uiocstinc: channel status information (common uio_chainf)

; uiocvlinc: convert type list of current machine (common uio_cvlist)

; uionaminc: names of types, keywords, identifiers; default formats

; (common uio_defnam)

; uiosizinc: length of strings, size of tables (trmtab, lintab)

; uiotabinc: empty table structure (common uio_taborg)

;******************************************************************************

Most of the routines are low-level ones and do not have to be worried about because they
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rarely will be used directly.

For accessing data in UIO format within IDL the initialization routine uio_init (see
Sect. 4.7.1) and the high-level reading routines (uio_struct_rd.pro, uio_dataset_rd.pro, and
uio_datasetlist_rd.pro, see Sect. 4.7.3) might suffice.

4.7.1 Initialization of UIO Routines under IDL

The directory containing the IDL UIO routines should be added to the IDL variable !PATH. This
could be done by a program segment in the startup procedure, like:

; --- Try to determine language ---

if (n_elements(!X.TICKV) eq 150) then langua=’WAVE’ else langua=’IDL’

;

; --- Add user IDL directory to search path ---

if (langua eq ’IDL’) then begin &$

addpath=expand_path(’+$UIOPATH/idl’) &$

endif else begin &$

addpath=’/home/supas024/uio/idl’ + ’:’ + ’/home/supas024/wave’ &$

endelse

if strtrim(addpath,2) ne ’’ then !path=addpath+’:’+!path

delvar, addpath

Alternatively, one might want to set the IDL path variable accordingly like

export IDL_PATH="+$UIOPATH/idl"

for example in the .bashrc file. Or one just copies or links the UIO IDL routines to a location
in the standard IDL search path.

It is reasonable to include the UIO initialization in the startup procedure as e.g.:

; --- Initialize uio-routines ---

uio_init, progrm=’by hand’

IDL can handle the conversion types native, ieee_4, ieeele_4, ieee, idl, xdr (compare
Tab. 4 in Sect 4.3.1). Here, ieee_4 is the default and should be used as a standard.

Attention: The IDL type “long” corresponds to the standard Fortran type “integer”. The
IDL types “byte” and “integer” are not known in standard Fortran and are therefore transformed
to the IDL type “long” before writing (in the IDL routine uio_wr).

Be aware of: The parsing and interpretation of the entry headers can only be done by scalar
operations which are comparatively slow in IDL.

4.7.2 Reading Data with uio data.pro

The IDL routine uio_data and the IDL function uio_d were the first set of “high-level” routines
to read UIO data in IDL. They were useful for the easy reading of not too complex data files.
By now, they are replaced by the routines uio_struct_rd and uio_dataset_rd (see see next
Section and Sect 7).

The old routines allow the opening,

uio_data, mode=’open’, filename=’model.dat’

uio_data, mode=’open’, filename=’model*.txt’

uio_data, mode=’open’, filename=’model.dat’, family=’mod1’

uio_data, mode=’open’, filename=’model*.txt’, family=’mod2’

examination,

uio_data, mode=’content’

uio_data, mode=’files’



66 4 UIO DATA FORMAT

reading,

uio_data, mode=’read’, value=rho, ’rho’

uio_data, value=temp, ’temp’

uio_data, value=p, ’p’, filename=’model.dat’

uio_data, value=p, ’p’, family=’mod1’

plot_oi, uio_d(’p’), uio_d(’t’)

and closing,

uio_data, mode=’close’, filename=’model.dat’

uio_data, mode=’close’, filename=’model*.txt’

uio_data, mode=’close’, family=’mod2’

uio_data, mode=’allclose’

of UIO files.

4.7.3 Reading Data with uio dataset rd.pro or uio datasetlist rd.pro

For a detailed description of how to handle UIO files in IDL see Sect 7.
With the new IDL routines uio_struct_rd.pro, uio_dataset_rd.pro, and

uio_datasetlist_rd.pro files are not read entry by entry anymore but in larger blocks
(or “data sets”).

With uio_struct_rd all entries in a file are read and put into an IDL structure variable. This
is appropriate for the CO5BOLD parameter file or for the UIO table file in Sect. 4.3.3, e.g.

par=uio_struct_rd(’st35gm04n05_03.par’)

atm=uio_struct_rd(’holmu.atm’)

When groups of entries in an UIO file are properly marked with label dataset and
label enddataset delimiters (confer the example in Sect. 5.1) each group can be accessed with
uio_dataset_rd. The first block can be read with

ful=uio_dataset_rd(’st35gm04n05_03.full’)

or

ful=uio_dataset_rd(’st35gm04n05_03.full’, ndataset=0)

Dataset number i+1 (counting starts at zero) can be read with

ful=uio_dataset_rd(’st35gm04n05_03.full’, ndataset=i)

If a dataset with that number does not exist, an empty structure is returned. In this case,
when called with additional keywords like

ful=uio_dataset_rd(’st35gm04n05_03.full’, ndataset=i, outstr=outstr,ierr=ierr)

an error message is returned in outstr and ierr is set to a value larger than 0.
To read all entries in a list of files in sequence the routine uio_datasetlist_rd.pro is con-

venient, as in the short example

ierr=0

delvar, listdata

;

; --- Loop over all datasets ---

while (ierr eq 0) do begin &$

; --- Read the next dataset ---

ful=uio_datasetlist_rd(’testmodel_0?.full’, listdata=listdata, ierr=ierr) &$

if (ierr eq 0) then begin &$
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print, ’--- ’, ful.z.time, format=’(A,E15.8)’ &$

;

; --- Now do the data handling (demo) ---

print, ’Mean density: ’, avg(ful.z.rho) &$

endif &$

endwhile

or in the more detailed example

model=’st33gm06n03’ & modelident=’_??’ & parmodelident=’_01’

modeldisk=getenv(’HOME’) + ’/dat/rhd/d’ + model + ’/’

;

modelfile=modeldisk + model + modelident + ’.full’

parfile =modeldisk + model + parmodelident + ’.par’

;

; --- Read parameter file ---

par=uio_struct_rd(parfile)

;

; --- Open first dataset to get some information about array sizes ---

delvar, listdata

ful=uio_datasetlist_rd(modelfile, listdata=listdata, ierr=ierr)

uio_closrd, listdata.channel

delvar, listdata

;

nxc1=n_elements(ful.z.xc1)

nxc2=n_elements(ful.z.xc2)

nxc3=n_elements(ful.z.xc3)

;

n_timestep=1000 ; --- Some huge value to get everything. Reduce for tests! ---

ierr=0

i=0

;

; --- Loop over all datasets ---

while ((ierr eq 0) and (i lt n_timestep)) do begin &$

; --- Read the next dataset ---

ful=uio_datasetlist_rd(modelfile, listdata=listdata, ierr=ierr) &$

if (ierr eq 0) then begin &$

print, ’--- ’, i, ful.z.itime, ful.z.time, format=’(A,I4,I6,E15.8)’ &$

;

; --- Now do the data handling (demo) ---

print, ’Mean density: ’, avg(ful.z.rho) &$

;

i=i+1 &$

endif &$

endwhile

All necessary counter information is stored in the structure listdata.
Note, that you can specify an entire group of files with e.g. modelident=’_*’,

modelident=’_??’, modelident=’_3?’, or modelident=’_{29,3[0-2]}’.
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5 Control and Data Files

Table 10 shows a list of all files necessary to run CO5BOLD. Figure 6 gives similar information
but is not quite up to date. Executing the makefile produces an executable rhd.exe. Its name can
of course be changed afterwards. The names of the control files rhd.par, rhd.stop, rhd.cont,
and rhd.dump and of the status file rhd.done cannot be changed (without modification of the
source code). The names of EOS, opacity, and CO5BOLD data files can be chosen freely in the
parameter file rhd.par. Table 10 only contains dummy names.

File Sect. I/O Type Description

rhd.exe 3.2 executable main program

rhd.par 5.4 I control/data: UIO central control file
rhd.stop 5.5 I control file to force controlled stop of simulation
rhd.cont 5.5 I control file to force continuation after stop

rhd.dump 5.5 I control file to request output of current model

data.eos I data: UIO tabulated equation of state
data.opta I data tabulated opacities

rhd.sta 5.1 I data: UIO start model (e.g. end file of last run)
rhd.done 5.5 O status exit status: written if run was successful
rhd.end 5.1 O data: UIO end model
rhd.full 5.1 O data: UIO sequence of (2D or 3D) snapshots, large
rhd.mean 5.3 O data: UIO derived data: mean flux, intensity
rhd.chu1 5.2 O data: UIO small chunk of full dataset, written often
rhd.snap 5.5 O data: UIO file with model snapshot if requested

rhd.out 5.6 O data: text human readable text output

data.dat 5.7 I data: text chemical reaction data

data.atom 5.8 I data: text HION data file (model atom)
edens.dat 5.8 I data: UIO HION data file(electron density table)
abundance.input 5.8 I data text HION data file(abundances)
pf_kurucz.dat 5.8 I data: UIO HION data file(partition functions)
HION.time.H.*.out 5.9 O data: UIO HION: additional output
HION.step.H.*.out 5.9 O data: UIO HION: additional output

Table 10: List of all control and data files of CO5BOLD

5.1 Model Files: rhd.sta, rhd.end, rhd.full

If the UIO scripts (Sect. 4.6) are properly installed, you can view the contents (more precisely
the headers of the data entries) of an UIO file with uiolook filename, e.g.

uiolook st35gm04n05_03.end

gives the output (slightly edited)

fileform uio form=unformatted convert=ieee_4 version=0.1.2000.11.26 &

date=’02.01.2002 16:17:26.036’ system=craSHi machine=craSHi osrelease=10.0.0.6 &

osversion=UoK.4 hardware=’CRAY SV1’ language=Fortran90 program=RHD

character file_id f=A8 b=8 n=’File identification’

character description d=(1:1) f=A24 p=1 b=24 n=’File description’

character history d=(1:20) f=A80 p=1 b=80 n=’File history’

character version f=A80 b=80 n=’Program version’

label dataset n=’RHD model’ date=’02.01.2002 16:17:26.043’

character dataset_id f=A10 b=10 n=’Type of box hierarchy’
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real modeltime f=E13.6 b=4 n=time u=s

real modeltime_db f=E23.15 b=8 n=time u=s

integer modelitime f=I11 b=4 n=’time step number’ u=1

real dtime f=E13.6 b=4 n=’time step’ u=s

real time_out_full_last f=E13.6 b=4 n=’Time of last output of full model’ u=s

real time_out_mean_last f=E13.6 b=4 n=’Time of last output of averaged data’ &

u=s

label box date=’02.01.2002 16:17:26.049’

character box_id f=A80 b=80 n=’Block identification’

integer dimension d=(1:2,1:3) f=I7 p=6 b=4

real time f=E13.6 b=4 n=time u=s

real time_db f=E23.15 b=8 n=time u=s

integer itime f=I11 b=4 n=’time step number’ u=1

real xc1 d=(-63:63,-63:-63,-63:-63) f=E13.6 p=4 b=4 &

n=’x1 coordinates of cell centers’ u=cm ds=(0:0,0:1,0:1)

real xc2 d=(-63:-63,-63:63,-63:-63) f=E13.6 p=4 b=4 &

n=’x2 coordinates of cell centers’ u=cm ds=(0:1,0:0,0:1)

real xc3 d=(-63:-63,-63:-63,-63:63) f=E13.6 p=4 b=4 &

n=’x3 coordinates of cell centers’ u=cm ds=(0:1,0:1,0:0)

real xb1 d=(-63:64,-63:-63,-63:-63) f=E13.6 p=4 b=4 &

n=’x1 coordinates of cell boundaries’ u=cm ds=(0:1,0:1,0:1)

real xb2 d=(-63:-63,-63:64,-63:-63) f=E13.6 p=4 b=4 &

n=’x2 coordinates of cell boundaries’ u=cm ds=(0:1,0:1,0:1)

real xb3 d=(-63:-63,-63:-63,-63:64) f=E13.6 p=4 b=4 &

n=’x3 coordinates of cell boundaries’ u=cm ds=(0:1,0:1,0:1)

real rho d=(-63:63,-63:63,-63:63) f=E13.6 p=4 b=4 n=Density u=g/cm^3

real ei d=(-63:63,-63:63,-63:63) f=E13.6 p=4 b=4 n=’Internal energy’ u=erg/g

real v1 d=(-63:63,-63:63,-63:63) f=E13.6 p=4 b=4 n=’Velocity 1’ u=cm/s

real v2 d=(-63:63,-63:63,-63:63) f=E13.6 p=4 b=4 n=’Velocity 2’ u=cm/s

real v3 d=(-63:63,-63:63,-63:63) f=E13.6 p=4 b=4 n=’Velocity 3’ u=cm/s

label endbox

label enddataset date=’02.01.2002 16:17:43.322’

The UIO format is described in some detail in Sect 4. Each entry has a type (e.g.
“label”, “real”, “character”), an identifier (e.g. “box”, “time”, “description”), and ad-
ditional information about array size (e.g. “d=(-63:63,-63:63,-63:63)”), data format (e.g.
“f=E13.6 p=4 b=4”), and properties of the quantity (e.g. “n=Density u=g/cm^3”).

Each start (“rhd.sta”) or final (“rhd.end”) model file has a structure as shown above. The
(“rhd.full”) file usually contains a sequence of these data sets, which of course can also be used
as start model of a simulation.

The axes xc1, xc2, and xc3 describe the positions of the cell centers. The axes xb1, xb2,
and xb3 contain the positions of the cell boundaries: they have one element more than the
corresponding cell centered quantity.

Cell boundaries should be centered in the middle between cell centers for the best represen-
tation of radiative fluxes with MSrad3D.

5.2 Files with additional chunks of data: rhd.chu1

If specified, the file “rhd.chu1” contains (parts of) full data sets, written with the same sampling
rate as mean files (see below).

5.3 File with Additional Data: rhd.mean

A “rhd.mean” file contains derived data (averaged fluxes, other averaged quantities, surface
intensities) in addition to the complete data sets in “rhd.full” files. It has more entries than
a full model file. However, they are much smaller. Therefore, one can afford a higher output
sampling rate.

Its format is usually Fortran “unformatted” (binary).
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5.3.1 Organization of rhd.mean File

A mean file usually consists of several datasets. The overall structure is

fileform uio form=unformatted convert=ieee_4

character file_id f=A8 b=8 n=’File identification’

character description d=(1:1) f=A14 p=2 b=14 n=’File description’

character history d=(1:20) f=A80 p=1 b=80 n=’File history’

character version f=A80 b=80 n=’Program version’

label dataset n=’RHD model’

...

label enddataset

label dataset n=’RHD model’

...

label enddataset

.

.

.

Each dataset has the following structure (for a supergiant simulation):

label dataset n=’RHD model’ date=’25.05.2001 09:41:29.405’

...

label box date=’25.05.2001 09:41:29.408’

character box_id f=A80 b=80 n=’Block identification’

rad

...

label endbox

label box date=’25.05.2001 09:41:29.983’

character box_id f=A2 b=2 n=’Block identification’

z1

...

label endbox

label box date=’25.05.2001 09:41:30.078’

character box_id f=A2 b=2 n=’Block identification’

z2

...

label endbox

label box date=’25.05.2001 09:41:30.170’

character box_id f=A2 b=2 n=’Block identification’

z3

...

label endbox

label box date=’25.05.2001 09:41:30.260’

character box_id f=A1 b=1 n=’Block identification’

r

...

label endbox

label box date=’25.05.2001 09:41:30.359’

character box_id f=A80 b=80 n=’Block identification’

z

...

label endbox

label enddataset date=’25.05.2001 09:41:30.489’
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There a six sub-blocks delimited with box and endbox labels. They contain surface intensity and
flux arrays (rad), averages in the 23-plane (z1), the 13-plane (z2), the 12-plane (z3), and over
spherical shells (r), and a 2D slice through the model (z).

5.3.2 Contents of Individual rhd.mean File Entry

An individual box inside a dataset entry in a mean file can have e.g. the following contents
describing horizontal averages in a plane-parallel model. With

uiolook chro2D03co08_01.mean | less

you get this (and more):

label box date=’06.11.2002 17:58:05.533’

character box_id f=A2 b=2 n=’Block identification’

integer dimension d=(1:2,1:3) f=I7 p=6 b=4

real time f=E13.6 b=4 n=time &

u=s

real time_db f=E23.15 b=8 n=time &

u=s

integer itime f=I10 b=4 n=’time step number’ &

u=1

real xc1 d=(1:1,1:1,1:1) f=E13.6 p=4 b=4 n=’x1 coordinates of cell centers’ &

u=cm &

ds=(0:0,0:1,0:1)

real xc2 d=(1:1,1:1,1:1) f=E13.6 p=4 b=4 n=’x2 coordinates of cell centers’ &

u=cm &

ds=(0:1,0:0,0:1)

real xc3 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=’x3 coordinates of cell centers’ &

u=cm &

ds=(0:1,0:1,0:0)

real xb1 d=(1:2,1:1,1:1) f=E13.6 p=4 b=4 n=’x1 coordinates of cell boundaries’ &

u=cm &

ds=(0:1,0:1,0:1)

real xb2 d=(1:1,1:2,1:1) f=E13.6 p=4 b=4 n=’x2 coordinates of cell boundaries’ &

u=cm &

ds=(0:1,0:1,0:1)

real xb3 d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 n=’x3 coordinates of cell boundaries’ &

u=cm &

ds=(0:1,0:1,0:1)

real rho_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=Density &

u=g/cm^3

real v1_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Velocity x1’ &

u=cm/s

real v2_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Velocity x2’ &

u=cm/s

real v3_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Velocity x3’ &

u=cm/s

real v1_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Velocity x1’ &

u=cm/s

real v2_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Velocity x2’ &

u=cm/s

real v3_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Velocity x3’ &

u=cm/s
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real rhov1_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Mass Flux x1’ &

u=g/cm^2/s

real rhov2_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Mass Flux x2’ &

u=g/cm^2/s

real rhov3_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Mass Flux x3’ &

u=g/cm^2/s

real bc1_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Magnetic field 1’ &

u=G

real bc2_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Magnetic field 2’ &

u=G

real bc3_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Magnetic field 3’ &

u=G

real bc1_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Magnetic field 1’ &

u=G

real bc2_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Magnetic field 2’ &

u=G

real bc3_xmean2 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Magnetic field 3’ &

u=G

real ei_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=’Internal energy’ &

u=erg/g

real rhoei_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Internal energy’ &

u=erg/cm^3

real rhoek_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Kinetic energy’ &

u=erg/cm^3

real rhoeg_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Gravitational energy’ &

u=erg/cm^3

real t_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=Temperature &

u=K

real t_xmean4 d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=Temperature &

u=K

real t_xmeankapparho d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=Temperature &

u=K

real p_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=Pressure &

u=dyn/cm^2

real s_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 n=Entropy &

u=erg/K/g

real rhos_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=Entropy &

u=erg/K/cm^3

real gamma1_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’1st Adiabatic Coefficient’ &

u=1

real gamma3_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’3rd Adiabatic Coefficient’ &

u=1

real delta_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Expansion coefficient’ &

u=1
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real kapparho_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Absorption Coefficient’ &

u=1/cm

real quc001_xmean d=(1:1,1:1,1:120) f=E13.6 p=4 b=4 &

n=’Number density of CO’ &

u=1/cm^3

rreal rhovb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Mass flux’ &

u=g/cm^ &

ds=(0:0,0:0,0:1)

real frhov13b_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Momentum x1 flux x3 direction’ &

u=erg/cm^3 &

ds=(0:0,0:0,0:1)

real frhov23b_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Momentum x2 flux x3 direction’ &

u=erg/cm^3 &

ds=(0:0,0:0,0:1)

real frhov33b_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Momentum x3 flux x3 direction’ &

u=erg/cm^3 &

ds=(0:0,0:0,0:1)

real feipb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Enthalpy Flux’ &

u=erg/cm^2/s &

ds=(0:0,0:0,0:1)

real fekb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Kinetic Energy Flux’ &

u=erg/cm^2/s &

ds=(0:0,0:0,0:1)

real fegb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Gravitational Energy Flux’ &

u=erg/cm^2/s &

ds=(0:0,0:0,0:1)

real fepb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Pressure Energy Flux’ &

u=erg/cm^2/s &

ds=(0:0,0:0,0:1)

real fevb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Viscous Energy Flux’ &

u=erg/cm^2/s &

ds=(0:0,0:0,0:1)

real ferb_xmean d=(1:1,1:1,1:121) f=E13.6 p=4 b=4 &

n=’Radiative Energy Flux’ &

u=erg/cm^2/s &

ds=(0:0,0:0,0:1)

label endbox

The above list was slightly edited (by adding blanks) to improve readability.
The identifier of an entry together with the name (n=’. . . ’) and the unit (u=’. . . ’) should give

a first hint about the meaning of the quantity. The suffix ’_xmean’ indicates a simple average.
The suffix ’_xmean2’ indicates the root-mean-square average (note: the simple average is not
subtracted).

Some entries (e.g. ferb_xmean) have a hidden b in their name, have one element more (e.g.
121 instead of 120) than most of the others, and are characterized by the ds keyword (see
Table 6). These quantities are located at the cell boundaries in contrast to the usual cell-centered
quantities. Clearly, there are also two sets of axes (e.g. xc3 and xb3) corresponding to the cell-
or boundary-centered quantities.
Note: The total energy flux can be written as sum

feb_total = feipkgvrb = feipb+fekb+fegb+fevb+ferb .



74 5 CONTROL AND DATA FILES

The flux fepb is already part of feipb.

5.4 Parameter File: rhd.par

The parameter file rhd.par also has the UIO format. But it will be usually Fortran “formatted”
(ASCII).

It contains a list of parameter entries. which are collected in groups to make it easier to find an
entry. Otherwise, the order is arbitrary (except for the very first fileform uio entry). If there
are more than one entry with the same name, the first occurrence will be used by CO5BOLD. But
the doubling of entries is strongly discouraged because it will almost certainly lead to confusion at
some time. In addition, the IDL routine to read the parameter file will fail with an error message.

Additional entries can be added if the names differ from the standard ones described below.
Theses entries will be ignored by CO5BOLD but read by the IDL input routine. They can be
used to provide comments, additional information about the model, or control parameters for
further processing.

5.4.1 Quickstart: How to Make a Proper Parameter File

You will never write a new parameter file from scratch. Typically, you take an old file (e.g. the
one controlling the simulation which produced the model which is used to start the new run) and
edit it:

1. Take the parameter file corresponding to the model you want the new simulation to start
with.

2. Most of the parameters should be already OK. E.g. most of the parameters controlling the
boundaries do not have to be changed.

3. Write a brief description of the purpose of the planned simulation into the
character description array. You might but a remark about the parent file of the pa-
rameter file under construction and the current date into the character history array
(see Sect. 5.4.2).

4. Check/modify the name of start model and output files: infile_start, outfile_end,
outfile_full, outfile_mean. On a system with batch queue this has not to be done in
the parameter file itself but in the external command file (see Sect. 5.4.16).

5. Check/modify the fundamental parameters including boundary condition specifiers (see
Sections 5.4.3 and 5.4.4, respectively)

• effective temperature control (s_inflow, teff, luminositypervolume,
C_radHtautop)

• gravity (grav_mode, grav, mass_star, . . . )

• abundances (eosfile, opafile, check the paths!)

6. If the gravity of the new model (and therefore the characteristic time scale) signifi-
cantly deviates from the old one, the time specifications controlling the output frequency
(dtime_out_full, dtime_out_mean), the total length of the simulation (if specified as stel-
lar time: endtime, plustime), and absolute boundaries/specifications for the time step
(dtime_min, dtime_min_stop, dtime_max, dtime_start) have to be scaled. Look for pa-
rameters with units u=s (see Sections 5.4.15 and 5.4.16).

7. The rest of the parameters controls additional details. Most of the constants are specified
in dimensionless form and keep their value in a class of related simulations. The previously
used values will probably be reasonable for the new simulation, too.

Of course, a complete control of CO5BOLD is only possible after studying of the meaning
of the parameters in detail (e.g. by reading the following pages) AND – unfortunately – an
accompanying look into the source code itself.
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5.4.2 Header

The header of the parameter file contains information about the file format and contents. The
description array can be used to specify the goal of the simulation, special model characteristics,
or important parameter changes compared to a previous or standard model. The history array
may contain the predecessor of the parameter file to simplify a tracing of parameter changes.

• fileform uio:
The header of the parameter file, e.g.

fileform uio form=formatted convert=ieee_4 date=’01.01.2002’ &

program=’by hand’

can be abbreviated to

fileform uio form=formatted convert=ieee_4

which indicates that the file is in UIO form and Fortran “formatted” (ASCII). The speci-
fication of the conversion type (“convert=ieee_4”) is more relevant for unformatted files.
These terms should not be changed. But it can be of interest to append e.g. the date of the
last modification (e.g. “date=’01.01.2002’”).

• character file_id:
The file identification string

character file_id f=A80 b=80 n=’File identification’

rhd-parameter

indicates the intended use of the file as parameter file for the RHD code CO5BOLD. Do
not edit!

• character description:
The header of the file can (should) contain a short description of the simulation, as in e.g.

character description d=(1:4) f=A80 p=1 b=80 n=’File description’

Parameter file for RHD code:

Full size 3D Betelgeuse model: 5 M_Sun, 650 R_Sun

Start with st35gm04n03_09.end (127^3 -> 171^3)

Run with SHORTrad

This entry is optional (it can be omitted completely) but it is recommended to put at least
some relevant keywords into this array. If you change the number of lines (between 1 and
20) you have to adjust the size specification (“d=(1:4)” in the example above).

• character history:
The file history has a similar purpose as the previous entry. It can be used to keep infor-
mation about the “parent” parameter file, as in

character history d=(1:2) f=A80 p=1 b=80 n=’File history’

Taken from st35gm04n03_09.par

Last Modification: 01.01.2002

Its use is optional.
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5.4.3 Fundamental Model Parameters

• real teff:
The effective temperature is one of the basic model parameters and is specified e.g. with

real teff f=F13.3 b=4 n=’Effective Temperature’ u=K

3500.0

(for a relatively cool star). Note that the actual effective temperature can only be deter-
mined a posteriori and that the entropy of the instreaming entropy (see below) is more
important than teff itself. In fact, teff is only used to control material properties at
the outer boundary. Its value should be close to the expected effective temperature of the
model.

• character grav_mode:
Gravity is another characteristic of a stellar atmosphere. The type (or geometry) of the
external gravity field has to be specified e.g. with

character grav_mode f=A80 b=80 n=’Type of gravity field’ &

c0=’constant/central’

central

Three values are possible so far:

◦ constant: In the standard “solar” case the constant gravity specified with real grav

is directed downward in x3 direction.

◦ localboxtide: This activates a simple model for the action of a tidal wave on con-
vection in a local box model. It adds to the case of constant gravity a potential Φ̂ex

which is harmonic in space and time according to

Φex = Φ̂ex cos(khx1 + ωt). (96)

It is intended to mimic a travelling tidal wave. Since the setup is considered experi-
mental the parameters are set by the C_test parameters according:
Φ̂ex = C_test1 (amplitude of potential variations)
kh = C_test2 (horizontal wavenumber)
ω = C_test3 (frequency)

Boundary conditions: in order to be compatible with periodic lateral boundaries kh
should be an integer multiple of 2π times the inverse lateral box size.

◦ central: For the “supergiant” case a central potential is assumed with an origin at
x=0. The stellar mass as well as inner and outer smoothing radius have to be specified.

• real grav:
In the case of a constant gravity the amount of the acceleration has to specified with

real grav f=E15.8 b=4 n=’Gravity’ u=cm/s^2

27500.0

Setting this value to zero switches off gravity (oh wonder).

• real mass_star:
In the case of a central the mass (in cgs units) of the star has to be specified with

real mass_star f=E15.8 b=4 n=’Stellar Mass’ u=g

9.94500e+33

• real r0_grav:
To avoid the central singularity in a 1/r potential it is smoothed in the center to give a
central potential of 1/r0_grav, specified with
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real r0_grav f=E15.8 b=4 n=’Inner Smoothing Radius’ u=cm

9.45833e+12

This parameter should always be non-zero for a central potential.

• real r1_grav:
The density in an atmosphere in hydrostatic equilibrium can decline to very low values. To
artificial enlarge the pressure (and density) scale height in the outer layers of the star (the
corners of the box) the gravity can be reduced by defining the potential at infinity to be
1/r1_grav, specified with

real r1_grav f=E15.8 b=4 n=’Outer Smoothing Radius’ u=cm &

c0=’0.0: Not used’

11.35000e+13

Setting this parameter to zero gives the usual 1/r behavior of the potential in the outer
layers but also chooses another smoothing formula in the central part (where real r0_grav

is relevant). But a value somewhat larger than the remotest corner of the box effectively
cancels this artificial smoothing in the outer layers without changing the formula for the
potential.

• real r2_grav:
Using real r2_grav instead of real r1_grav means that a potential function more ap-
propriate for a polytropic stellar interior model is used. It can be set, e.g. with

real r2_grav f=E15.8 b=4 n=’Outer Smoothing Radius’ u=cm &

c0=’0.0: Not used’

11.35000e+13

Setting this parameter to zero means the potential parametrized with real r1_grav is used.
This parameter is similar to real r1_grav, i.e., it enlarges the pressure scale hight in the
outer layers but does not change the smoothing formula in the center. This parameter is
only effective if real r1_grav is set to zero.

• real r1_rad:
For a “Star-in-a-Box” and particularly when only “simple” ray directions are allowed in
the radiation transport step the temperature in the outer corners of the box tends to
become very small. To artificially increase the effect of radiative heating the parameter
real r1_rad can specify a radius beyond which only positive contributions of the radiative
energy transport to the energy budget are taken into account. This ruins the conservativity
of the code in these layers and should be applied only in very remote corners which are then
considered only as sort of extended boundary region but not as part of the “real” model.
The parameter can be specified e.g. with

real r1_rad f=E15.8 b=4 n=’Outer radiation transport radius’ u=cm &

c0=’0.0: Not used’

8.00000e+13

A value of 0.0 (default) or below deactivates this feature.

• real r0_core:
To insert energy in a sphere different with a radius other than r0_grav, the heating radius
r0_core can be specified separately, e.g. with

real r0_core f=E15.8 b=4 n=’Core Radius’ u=cm

9.45833e+12

If this parameter is not specified r0_grav is used as the radius of the core.

• character centrifugal_force:
Usually, a centrifugal force is applied if nu_rotation 6=0. To switch it off even for non-zero
rotation rate, the parameter centrifugal_force can be used, e.g. by setting
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character centrifugal_force f=A80 b=80 n=’Switch on/off the centrifugal force’ &

c0=’on: default, off: no centrifugal force, even for non-zero nu_rotation’

off

Three values are possible so far:

◦ on: This is the default and can be set even for non-rotating objects.

◦ off: This skips the application of the centrifugal force in case of a non-zero rotation
rate. In this case, only the Coriolis force is applied.

By default, the centrifugal force is activated.

• real nu_rotation:
To transform onto a coordinate system rotation around the x3 axis, a rotation rate can be
specified with e.g.

real nu_rotation f=E15.8 b=4 n=’Rotation frequency’ u=1/s

0.0

The potential is modified by adding terms due to a centrifugal force unless
centrifugal_force is set to off. In addition, a Coriolis force are applied during the
hydrodynamics step.

• real ar_RotationAxis:
The radii of the dust grains are specified with e.g.

real ar_rotationaxis f=E10.4 b=4 p=1 d=(1:3) n=’Rotation axis’ u=1

1.0

0.0

0.0

The default value is (0.0,0.0,1.0).

5.4.4 Boundary Conditions

The boundary conditions at the six sides of the computational box cannot be specified indepen-
dently. For the naming convention of the boundaries a gravitational acceleration in -x3 direction
is assumed. Accordingly, there is a bottom and a top boundary, and four side boundaries.

All boundary conditions of the hydrodynamic case are available in the MHD module.

• character side_bound:
The boundary condition at all four sides is given by e.g.

character side_bound f=A80 b=80 n=’side boundary conditions’ &

c0=’closed, transmitting, periodic’

transmitting

Possible values are:

◦ reflective: closed wall, no gravity, no radiation. The velocity vector is mirrored at
the boundary.

◦ constant: open boundary with constant extrapolation of all values, no gravity, no
radiation

◦ closed, closedtop: closed wall, can handle gravity, open for outward radiation.

◦ closedbottom: closed wall, handles gravity, radiation in diffusion approximation.

◦ periodic: periodic boundaries for hydrodynamics, radiation.

◦ transmitting: transmitting boundary for hydro and outward radiation.
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Any of these values can be specified. But in fact, not all of them are recognized by all
modules. Therefore some parameters are for test purposes (e.g. shock calculations) only. In
simulations of a solar-like star with the MSrad radiation transport module the side bound-
aries have to be periodic. In simulations of a red supergiant all boundaries (including the
sides) will typically be transmitting. As an alternative, closed boundaries can be chosen
in this case.

• character top_bound:
The boundary condition at the top of the model is given by for instance

character top_bound f=A80 b=80 n=’top boundary conditions’

transmitting

Possible values are:

◦ reflective: closed wall, no gravity, no radiation. The velocity vector is mirrored at
the boundary.

◦ constant: open boundary with constant extrapolation of all values, no gravity, no
radiation

◦ closed, closedtop: closed wall, can handle gravity, open for outward radiation.

◦ periodic: periodic boundaries for hydrodynamics, radiation.

◦ transmitting: transmitting boundary for hydro and outward radiation: exponential
decrease of density (standard open boundary condition).

◦ transmitting2: transmitting boundary for hydro and outward radiation: exponential
decrease of density and extra velocity treatment.

◦ transmitting3: transmitting boundary for hydro and outward radiation: constant
density extrapolation.

In almost every simulation of stellar convection a transmitting top boundary will be
selected, the closed one is an alternative. The periodic condition is only recognized by
the hydrodynamics routines and not by any radiation transport routine.

• character bottom_bound:
The boundary condition at the bottom of the model is given for instance by

character bottom_bound f=A80 b=80 n=’bottom boundary conditions’ &

c0=closedbottom

transmitting

Possible values are:

◦ reflective: closed wall, no gravity, no radiation. The velocity vector is mirrored at
the boundary.

◦ constant: open boundary with constant extrapolation of all values, no gravity, no
radiation.

◦ closed, closedtop: closed wall, can handle gravity, open for outward radiation.

◦ closedbottom: closed wall, handles gravity, radiation in diffusion approximation.

◦ closedbottom2: closed wall, handles gravity, radiation in diffusion approxima-
tion. In this version, the extrapolation of quantities should be smoother than for
closedbottom.

◦ periodic: periodic boundaries for hydrodynamics, radiation.

◦ transmitting: transmitting boundary for hydro and outward radiation. The parame-
ters real c_tchange, real c_tsurf, and real c_hptopfactor have to be specified.
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◦ inoutflow: ”classical” open lower boundary for deep convection, gravity and radiation
possible. The parameters real s_inflow, real c_schange, and real c_pchange

have to be specified.

◦ inoutflow2: variant of the open lower boundary condition. The parameters
real s_inflow, real c_schange, real c_pchange have to be specified. In this ver-
sion, the extrapolation of quantities should be smoother than for inoutflow.

In simulations of a solar-like star with the MSrad radiation transport module the bot-
tom boundary is typically of type “inoutflow”. A supergiant simulation will have a
transmitting lower boundary.

• character heat_mode:
The mode in which energy is supplied can be adjusted with this parameter. The classical
choice is to leave it empty, in which case the mode is chosen from s_inflow (see Sect. 5.4.4)
and luminositypervolume (see Sect. 5.4.4). Example:

character heat_mode f=A80 b=80 n=’Heating mode’ &

c0=’-/bottom_entropy1/bottom_energy1’

bottom_entropy1

Possible values, so far:

◦ : (empty). The classical value. For local models the energy comes through the lower
boundary, either by radiation (for a closed bottom boundary closedbottom) or by
convection + radiation (for an open bottom boundary inoutflow).

◦ bottom_entropy1: The entropy in the bottom layers (defined as being less than
r0_grav above the bottom of the model) is adjusted towards s_inflow on a rate
given by c_schange.

◦ bottom_energy1: Energy in the bottom layers is added according to
luminositypervolume.

◦ core_entropy1: The entropy in the core is adjusted towards s_inflow on a rate given
by c_schange.

◦ core_energy1: Energy in the core is added according to luminositypervolume.

◦ core_energy2: Energy in the core is added according to luminositypervolume with
a Gaussian distribution of the energy source.

• real luminositypervolume:
The luminosity of a “Star-in-a-Box” or a local model with the appropriate heat_mode can be
set with this parameter. To avoid numbers that do not fit into a 4 Byte real the luminosity
per volume has to be specified as e.g. in

real luminositypervolume f=E15.8 b=4 n=’Luminosity per core volume’ &

u=’erg/cm^3/s’

4.5E-02

Reference volume is 4/3π r03grav. If this parameter is set to a value of 0.0 or below the
entropy of the material within the core (defined by as all cells within radius r0_grav) is
adjusted instead.

• real s_inflow:
The entropy of the material streaming through an open boundary of type “inoutflow” into
the model can be specified e.g. with

real s_inflow f=E15.8 b=4 n=’Entropy of core material’ &

u=erg/K/g

3.25E+09
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In the case of a central potential the entropy in a sphere with radius r0_grav is adjusted
towards this entropy value. In both geometry (supergiant as well as solar) this value is very
important as it finally (but indirectly) determines the luminosity and effective temperature
of the star. A value of 0.0 (default) or below disables this energy input.

• real c_schange:
The entropy s_inflow of the material in the bottom layer (solar case, inoutflow boundary
condition) or the central region of the model (supergiant case) is not just set to the specified
but adjusted towards it. The adjustment rate can be controlled with e.g.

real c_schange f=E15.8 b=4 &

n=’Rate of entropy change for open lower boundary’ u=1

0.3

Guide values are

◦ 1.0: fast adjustment

◦ 0.3: typical value

◦ 0.1: slow adjustment

◦ <=0.0: not allowed

• real c_pchange:
The inoutflow boundary condition not only controls entropy and velocity but also the
pressure in the bottom layers: It is locally adjusted towards the global average to damp out
possible instabilities. The adjustment rate can be specified e.g., with

real c_pchange f=E15.8 b=4 &

n=’Rate of pressure change for open lower boundary’ u=1

1.0

• real c_v3changelinbottom:
For the open lower boundary condition (inoutflow and inoutflow2), a damping of the
vertical velocity at the open boundary can be specified, e.g., with

real c_v3changelinbottom f=E15.8 b=4 &

n=’Linear velocity reduction rate at bottom’ u=1

0.0025

The open lower boundary condition tends to produce a slight reduction of the horizontal
velocities at the very bottom. As the HD solver does not apply any extra viscosity at the
bottom layers (the MHD solver has this option), there is a tendency to produce a slight
predominance of vertical velocities in the regions where matter enters the computational
box through the lower boundary. By introducing a little bit of damping of the vertical
velocity component, this tendency can be significantly reduced. Guide values are

◦ 0.0: off: no linear damping

◦ 0.002: small reasonable value

◦ 0.005: large, possible useful value

• real c_v3changesqrbottom:
For the open lower boundary condition (inoutflow and inoutflow2), an additional damp-
ing of the vertical velocity at the open boundary can be specified, e.g., with

real c_v3changesqrbottom f=E15.8 b=4 &

n=’Quadratic velocity reduction rate at bottom’ u=1

0.002

This damping is stronger for velocities that exceed the rms value of the velocities averaged
over the entire bottom layers.
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• real c_rhochangetop:
The transmitting upper boundary condition can smooth density fluctuations with this
parameter. It is locally adjusted towards the global average to damp out possible instabil-
ities. It appears to be useful for the HLLMHD solver. For simulations without magnetic
fields, there is no need to set this parameter, so far. The adjustment rate can be specified
e.g. with

real c_rhochangetop f=E15.8 b=4 &

n=’Rate of density change for open upper boundary’ u=1

0.2

• real c_tchange:
In the case of a transmitting upper or outer boundary the temperature of the material
streaming into the model is adjusted with a rate given e.g. by

real c_tchange f=E15.8 b=4 &

n=’Rate of temperature change for open upper boundary’ u=1

0.3

• real c_tsurf:
In the case of a transmitting upper or outer boundary the temperature of the material
streaming into the model is adjusted towards a temperature teff*c_tsurf. This temper-
ature can be specified as fraction of the effective temperature e.g. with

real c_tsurf f=E15.8 b=4 n=’Temperature factor for open upper boundary’ u=1

0.62

The value depends on where the outer boundary is located relative to the photosphere: If
the boundary lies at a point where the solar photospheric minimum temperature is located,
it can be fairly small. If the boundary is far away from the photosphere of a red supergiant,
the value can be even smaller. On the other hand, if the boundary lies somewhere within
the solar chromosphere even values above 1.0 might be reasonable.

• real c_hptopfactor:
In the case of a transmitting upper or outer boundary the density stratification outside the
model has to be extrapolated properly. Assumptions about this density affects the amount
of mass flowing into the model. For the extrapolation it is assumed that the density scale
Hρ scales with the pressure scale height Hp as Hρ=Hp/c_hptopfactor.

real c_hptopfactor f=E15.8 b=4 &

n=’Correction factor for surface pressure scale height’ u=1

0.8

Possible values are

◦ C < 0.0: No effect (actually, a value of 1.0 is chosen).

◦ 0.0 ≤ C < 1.0: The density scale height is enlarged to account for possible effects
of turbulent pressure on the scale height: The density decays less rapidly with height
than in an (isothermal) hydrostatic stratification.

◦ C = 1.0: Density scale height is pressure scale height.

◦ C ≥ 1.0: Density scale height is smaller than pressure scale height. Not really useful.

• real c_radhtautop:
The MSrad radiation transport module needs the specification of the scale height of the
optical depth at the upper boundary, e.g. with

real c_radhtautop f=E15.8 b=4 n=’Scale height of optical depth at top’ u=’1’

60.0E+05
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Possible values are

◦ C > 0.0: Older version: τ0(x1, x2) = C ∗ κ(x1, x2).

◦ C ≤ 0.0: New version: τ0(x1, x2) = abs(C) ∗ Hp(x1, x2) ∗ κ(x1, x2). In this case, a
value of C_radHtautop=-1.0 might be a good choice.

• real rho_min:
During long periods of matter infall the density at an open outer boundary can become
very low. To limit the decrease of the density a lower limit in the extrapolated ghost cells
can be set e.g. with

real rho_min f=E15.8 b=4 n=’Minimum boundary density’ u=g/cm^3

1.0E-25

The density within the model will typically not fall much below this value. A value of 0.0
(default) or below deactivates this feature.

• real c_coredrag:
To damp the flow in the core of models with central potential a drag force restricted to the
inner part of the model (r<r0_grav) can be applied. It is controlled e.g. with

real c_coredrag f=E15.8 b=4 n=’Core drag force parameter’ u=1

1.0

A value of 0.0 (default) or below deactivates this feature.

The following parameters are specific to MHD simulations. For MHD calculations they must
be set additional to the hydrodynamic boundary parameters.

• character side_bound_mag_x1 and character side_bound_mag_x2:

The boundary condition at the sides perpendicular to the x1 direction and perpendicular
to the x2 direction, respectively. They are given by e.g.

character side_bound_mag_x1 f=A80 b=80 n=’side boundary conditions magnetic x1’

fixed

character side_bound_mag_x2 f=A80 b=80 n=’side boundary conditions magnetic x2’

periodic

Possible values are:

◦ constant: constant extrapolation of all magnetic field components into the ghost cells.

◦ periodic: periodic continuation of all magnetic field components into the ghost cells.

◦ fixed: the component normal to the boundary is kept fixed at its inital value. Con-
stant extrapolation applies for the transversal components.

◦ vertical: constant extrapolation for the vertical component. The transversal cell-
centered field is mirrored, with the opposite sign. That should result in transversal
components of the boundary-centered field being zero at the boundary.

◦ vertical2: constant extrapolation for the vertical component. The transversal cell-
centered field is set to zero.

◦ reflective: The magnetic field is mirrored at the boundary. This boundary condition
is unphysical, because the magnetic field is an axial vector and because it violates the
divergence free property of the magnetic field. Therefore, this boundary condition
should be used with caution.

The fixed conditions are realized by setting the electric field at those cell edges that coincide
with the physical boundary zero. This is done in the constrained transport module.
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• character top_bound_mag:
The boundary condition at the top of the model is given by for instance

character top_bound_mag f=A80 b=80 n=’bottom boundary conditions magnetic’

vertical

Possible values are:

◦ constant: constant extrapolation of all magnetic field components into the ghost cells.

◦ periodic: periodic continuation of all magnetic field components into the ghost cells.

◦ fixed: the component normal to the boundary is kept fixed at its inital value. Con-
stant extrapolation applies for the transversal components.

◦ vertical: constant extrapolation for the vertical component. The transversal cell-
centered field is mirrored, with the opposite sign. That should result in transversal
components of the boundary-centered field being zero at the boundary.

◦ vertical2: constant extrapolation for the vertical component. The transversal cell-
centered field is set to zero.

◦ oblique: magnetic fields with a given inclination at the boundary. The inclination is
specified through parameters C_magthetaB and C_magphiB.

• character bottom_bound_mag:
The boundary condition at the bottom of the model is given by for instance

character bottom_bound_mag f=A80 b=80 n=’bottom boundary conditions magnetic’

inoutflow

Possible values are:

◦ constant: constant extrapolation of all magnetic field components into the ghost cells.

◦ periodic: periodic continuation of all magnetic field components into the ghost cells.

◦ fixed: the component normal to the boundary is kept fixed at its inital value. Con-
stant extrapolation applies for the transversal components.

◦ vertical: constant extrapolation for the vertical component. The transversal cell-
centered field is mirrored, with the opposite sign. That should result in transversal
components of the boundary-centered field being zero at the boundary.

◦ vertical2: constant extrapolation for the vertical component. The transversal cell-
centered field is set to zero.

◦ oblique: magnetic fields with a given inclination at the boundary. The inclination is
specified through parameters C_magthetaB and C_magphiB.

◦ inoutflow: magnetic field can be advected into the computational domain by ascend-
ing material flow. Its strength can be specified with the parameter b1_inflow. The
boundary condition for the hydrodynamic variables must be set to inoutflow too,
otherwise this boundary condition is the same like constant.

In the case of inoutflow the magnetic field, which is advected into the computational
domain has a unique component which is in the x1 direction and it is only present where a
velocity in the positive x3 direction exists. In all other places, the magnetic field components
are constantly extrapolated into the ghost cells.

• real b1_inflow:
This parameter controls the strength of the inflowing horizontal magnetic field at the lower
boundary in connection with bottom_bound_mag=inoutflow. The default value is 0.0.
Example:
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real b1_inflow f=E15.8 b=4 &

n=’Strength of inflowing horizontal magnetic field’ u=G

10.0

The unit of this parameter is gauss (no factor
√

4π!).

• real C_magthetaB:
This parameter specifies the angle between the magnetic field vector and the x3-axis (in
radians) in the case of oblique boundary conditions. The default value is 0.0. Example:

real c_magthetab f=E15.8 b=4 &

n=’angle magnetic field w.r. to the vertical direction’ &

u=rad c0=’used in combination with oblique conditions’

0.523598775598299

• real C_magphiB:
This parameter specifies the angle between the horizontal component of the magnetic field
vector and the x1-axis (in radians) in the case of oblique boundary conditions. The default
value is 0.0. Example:

real c_magphib f=E15.8 b=4 n=’angle magnetic field w.r. to the x-axis’ &

u=rad c0=’used in combination with oblique conditions’

0.0

5.4.5 Equation of State

• character eosfile:
The equation of state file together with the opacity file implicitly determine the chemical
composition. The EOS file can be specified for instance with

character eosfile f=A80 b=80 n=’EOS file name’ &

c0=eos_gamma140.eos/eos_mm20_l.eos/eos_mm00_l3.eos

eos_mm00_l5.eos

There exists an increasing number of files:

◦ eos_mm00_l3.eos: Standard EOS file for solar composition with extra large density
range (towards low densities). There exist two other files for the same composition
but smaller density range (eos_mm00.eos, eos_mm00_l.eos)

◦ eos_XXXX_l4.eos: Several EOS tables for various compositions.

◦ eos_mm00_l5.eos: EOS file for solar composition, with temperature range extended
to very low values by keeping µ fixed below 500 K. The number of points for the density
sampling has been reduced. The number of points for the energy sampling has been
increased.

◦ eos_mm20_l.eos: Standard EOS file for metal-poor star ([M/H]=-2.0) with ex-
tended range in internal energy and density (towards lower values). The older file
(eos_mm20.eos) did not reach far enough.

◦ eos_gamma140.eos: EOS table for simple gas with constant Γ=1.4. In this case all
quantities could be faster computed than by interpolation in a table. Nevertheless, for
compatibility reasons (to be able to use the existing EOS Fortran routines), the table
is provided.

◦ eos_gamma166.eos: EOS table for simple gas with constant Γ=5/3.

◦ cpheos_mm00.eos: Copenhagen EOS for (their) solar composition.

• character eospath:
The equation of state file does not have to be in the working directory. Instead, its path
can be specified e.g. with

character eospath f=A80 b=80 n=’path of EOS file’ &

c0=/astro/b/bf/for/eos/dat

/home/a_bf/for/eos/dat
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5.4.6 Opacities

• character opafile:
The opacity file can be specified with e.g.

character opafile f=A80 b=80 n=’opacity file name’ &

c0=g2va.opta/big_grey.opta &

c1=’empty -> no radiation transport’

phoenix_opal_grey.opta

So far, there exist already a couple of files:

◦ davmf.opta:

◦ f5v.opta:

◦ g2va.opta:

◦ g2v_lowhe.opta:

◦ g2v_m20.opta:

◦ g2v.opta:

◦ hmin_p00.opta:

◦ opal_lowhe.opta:

◦ opal_m05.opta:

◦ opal_m10.opta:

◦ opal_m20.opta:

◦ phoenix_dust_grey.opta:

◦ phoenix_dust_ob4.opta:

◦ phoenix_opal_grey.opta:

◦ ross_m05.opta:

◦ ross_m10.opta:

◦ ross_m20.opta:

◦ sunur1.opta:

◦ sunur2.opta:

◦ t5000g44mm20.opta:

◦ t5000g47mm20.opta:

◦ t6300g40mm20.opta:

◦ t6500g44mm20.opta:

◦ zzceti1g.opta:

◦ zzceti1.opta:

• character opapath:
The opacity file does not have to be in the working directory. Instead, its path can be
specified e.g. with

character opapath f=A80 b=80 n=’path of opacity file’ &

c0=/astro/b/bf/for/opa/dat

/home/a_bf/for/opa/dat
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hdScheme hdTimeIntegrationScheme hdSplit CCour CSndCour comment

Roe Single 123 1 old default
Roe Single unsplit 1/D
Roe Single CTU 1 1/2 for D=3 recommended
Roe RungeKutta2 unsplit 1/D
Roe RungeKutta3 unsplit 1/D
HLLMHD Hancock 123
HLLMHD Hancock unsplit
HLLMHD RungeKutta2 unsplit
HLLMHD RungeKutta3 unsplit

Table 11: List of reasonable combinations of options for HD and MHD solver. The columns
are the type of the (M)HD scheme, see Sect. 5.4.7, the time-integration scheme, see Sect. 5.4.7,
the (directional) splitting method, see Sect. 5.4.7, the maximum Courant number (where D is
the dimension of the computational box), see Sect. 5.4.15, the maximum sound-Courant number
(where D is the dimension of the computational box) only specified for the case where it is actually
a new constraint in addition to the normal Courant condition, see Sect. 5.4.15, and a comment.

5.4.7 Hydrodynamics Control (HD and MHD)

Many parameters in the parameter file that are valid for the HD module also apply for the
MHD module. Only a few parameters for the hydrodynamics control (character hdscheme:
Sect. 5.4.7, character reconstruction: Sect. 5.4.7, real c_slopered: Sect. 5.4.7) are slightly
modified or extended for the MHD module.

• character hdscheme:
With this parameter the type of the hydrodynamics scheme can be specified as in

character hdscheme f=A80 b=80 n=’Hydrodynamics scheme’ &

c0=’Roe (approximate Riemann solver of Roe type)’ &

c1=’RoeMagKin (Roe solver + kinetic magnetic field transport)’ &

c2=’RoeMHD/HLLMHD (MHD solver)’ &

c3=’None (skip hydrodynamics step entirely)’

Roe

Possible values are

◦ None: The hydrodynamics step is skipped entirely (for test purposes). Note that in
this case some initializations necessary for the generation of the mean file are omitted,
too.

◦ Roe: (default) The standard approximate Riemann solver of Roe-type is activated.
This value will be chosen in most cases.

◦ RoeMagKin: The standard Roe solver is extended to transport passively a magnetic
field. This is a test implementation to check, if the general magnetic field handling
works. For proper MHD simulations use HLLMHD instead.

◦ RoeMHD: Use the MHD Roe solver.

◦ HLLMHD: Use the MHD HLL solver (the current recommend value for MHD simula-
tions).

• real c_hydlowmachcsfactor:
For very low Mach numbers the over-sensitive sound-wave detection of
the Roe solver (for 2D and 3D cases) can be suppressed by choos-
ing a non-zero value for real c_hydlowmachcsfactor. This is in fact
a tiny modification of the Roe solver but changes its behavior signifi-
cantly and requires (for C_hydLowMachcsFactor>0.0) hdsplit=unsplit and
hdtimeintegrationscheme=RungeKutta2 or hdtimeintegrationscheme=RungeKutta3.
The value can be set e.g. with
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real c_hydlowmachcsfactor f=E15.8 b=4 &

n=’Low-Mach-Number sound-speed reduction parameter’ &

c0=’<=0.0: off (old settings, recommended default)’ &

c1=’1.0: small value; 2.0: reasonable value; 5.0: large value’

2.0

Typical choices are

◦ 0.0: The extra reduction factor is not applied. This is the standard Roe scheme. It is
still the recommended default, excepd for very-low-Mach-number flows.

◦ 1.0: Smallest meaningful value to switch on the reduction.

◦ 2.0: Reasonable value

◦ 5.0: Rather large value

The (recommeded) default is not to use this reduction and leave the parameter at 0.0. This
parameter is not recognized by the MHD module.

• character hdtimeintegrationscheme:
With this parameter the type of the time-integration scheme can be specified as in

character hdtimeintegrationscheme f=A80 b=80 n=’Time-integration scheme’ &

c0=’Single/Hancock/Euler1/RungeKutta2/RungeKutta3’

Single

Possible values are

◦ Single: (default for HD Roe) Compute all updates in one single step. Terms higher or-
der in time are provided by the Roe solver depending on the order of the reconstruction
scheme.

◦ Hancock: (default for MHD HLLE) Terms of second order in time are approximated
by a Hancock predictor step.

◦ Euler1: (only for MHD) A single Euler step is used, which is only first order in time.

◦ RungeKutta2: A two-step (predictor-corrector) Runge-Kutta step is used.

◦ RungeKutta3: A three-step Runge-Kutta step is used.

For possible combinations see 11.

• character hdsplit:
With this parameter the type of the hydrodynamics operator (directional) splitting scheme
can be specified as in

character hdsplit f=A80 b=80 n=’Hydrodynamics directional splitting scheme’ &

c0=’123: directional splitting (default)’ &

c1=’unsplit: unsplit (direct) operator’ &

c2=’CTU: Colellas Corner Transport Upwind scheme (1990)’

123

Possible values are

◦ 123: (default) The standard directional splitting is activated, where the 1D operators
for the individual directions are applied in the given order. So far, only the order 123
is possible.

◦ unsplit: The standard solver is applied. However, the changes from the individual
steps are computed from (and applied to) the same model configuration. The result is
an unsplit scheme.
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◦ CTU: Use Colella’s ”Corner Transport Upwind” scheme (’CTU’, 1990). It first com-
putesand stores the changes from hydrodynamics in x1, x2, and x3 direction. Then
(half of) the contributions from the steps in x1 and x2 direction are used as sort of
a predictor step for the full (’corrector’) step in x3 direction (and accordingly for the
two other directions). At the end, the three corrector-step contributions are added.
That means, that two hydrodynamics steps have to be performed in each direction
with some overhead for copying and adding the contributions. Still, together with e.g.,
reconstruction=FRweno, there is a dramatic improvement for convection at small
Mach numbers compared to 123, vanLeer.

This parameter is recognized by hdscheme=Roe and hdscheme=HLLMHD, although
hdscheme=HLLMHD does not know hdsplit=CTU.

• character hdcheckflux:
With this parameter the CheckFlux routine of the HLLMHD solver can be (des)activated,
as e.g. in

character hdcheckflux f=A80 b=80 n=’Switch to activate checking of MHD fluxes’ &

c0=’on/off’

off

This parameter is only recognized by the HLLMHD scheme. Leaving it on might be safer but
is definitely (slightly) slower.

• character reconstruction:
This parameter determines the order and “aggressiveness” of the reconstruction scheme
with e.g.

character reconstruction f=A80 b=80 n=’Reconstruction method’ &

c0=Constant c1=Minmod/VanLeer/Superbee c2=PP/PPmimo &

c3=FRmimo,FRmono(2),FRweno(2),FRcont

FRweno

Possible values are

◦ Constant: The run of the partial waves inside the cells is assumed to be constant. A
highly dissipative first order scheme results. This values will usually only be used for
test (or comparison) purposes.

◦ Minmod: Chooses the smallest slope which still results in a second order scheme. It is
the most diffusive (and most stable) one in this class.

◦ VanLeer: (default) The recommended first-order reconstruction method.

◦ Superbee: The “most aggressive” first-order reconstruction method. It results in the
steepest shocks, which works well in some test cases but tends to turn smooth gradients
into steps and might be to difficult for the radiation transport module to handle.

◦ PPmimo: MinMod reconstruction based on boundary values from PP

◦ PP: Chooses the piecewise parabolic reconstruction of the PPM scheme (“Piecewise
Parabolic Method”, [Colella and Woodward (1984)]). Results in 3rd order accuracy
for the advection.

◦ FRmimo: MinMod reconstruction based on boundary values from FRmono

◦ FRmono: 2nd-order monotonic reconstruction derived from PP, WENO, and MinMod:
“Frankenstein’s Method”

◦ FRmono2: 2nd-order monotonic reconstruction derived from PP, WENO, and Min-
Mod. It is identical to FRmono if real c_slopered=0.0 (the usually adopted default
choice, see Section. 5.4.7). However, for real c_slopered$>$0.0, it uses Constant

reconstruction as fallback, instead of
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◦ Minmod as

◦ FRmono does. This is the recommended version for low-resolution red-supergiant mod-
els.

◦ FRweno: 2nd-order non-monotonic version of FR

◦ FRweno2: 2nd-order non-monotonic version of FR. It is identical to FRweno if
real c_slopered=0.0 (the usually adopted default choice, see Section. 5.4.7). How-
ever, for real c_slopered$>$0.0, it uses Constant reconstruction as fallback, instead
of

◦ Minmod as

◦ FRweno does. This is the recommended version for low-resolution red-supergiant mod-
els.

◦ FRcont: 2nd-order continuous version of FR, unstable except for low Mach numbers.

Usually, the VanLeer reconstruction has been a good choice. If a more stable (and diffusive)
scheme is needed, take Minmod. However, the variants of the new 2nd-order “Frankenstein’s
Method” are a better choice, if the additional computational cost is acceptable. The PP

reconstruction gives the highest accuracy. However, there is the possibility that it produces
somewhat “noisy” models with small wiggles e.g. in the velocity for extreme cases – solar
models look fine with PP.
The options Constant, SuperBee, and FRcont are just for testing purposes: they have
either too much, sometimes the wrong sign of, or too little diffusion, respectively.
The order of decreasing diffusivity and increasing accuracy is roughly (schemes on a line
are similar; schemes in brackets are for testing only):
(Constant)
MinMod

FRmimo, PPmimo, vanLeer
FRmono

FRweno, (Superbee,) PP
(FRcont).
However, there are differences how the increase in accuracy is achieved: vanLeer uses
(potentially dangerous) anti-diffusion (in contrast to MinMod) but needs only a 3-point
stencil, whereas PPmimo and FRmimo don’t have anti-diffusion but need a (more expensive)
5-point stencil. FRweno achieves actually a 2nd-order-accurate reconstruction also near
extrema for reasonably resolved structures (e.g., sufficiently long wavelengths of sine waves).
I.e., it gives up strict monotonicity, whereas PP is strictly monotonic and achieves low
dissipation from avoiding jumps at cell boundaries wherever possible. However, it chops
off (flattens) extrema like all TVD schemes and it shows Gibbs wiggles near a jump that
is not surrounded by constant plateaus but lies in a slope. The new 2nd-order scheme
FRmono is designed to suppress these wiggles, too. The highest-resolution scheme is PP. It
is implemented in the MHD module, too.
By specifying e.g., reconstruction=FRweno PP it is possible to use the FRweno scheme
for the hydrodynamics scheme as such and the monotonic PP only for the advection of
additional quc quantities.

• real c_slopered:
A new extra stabilization mechanism can be activated that reduces the slope and flattens the
reconstruction function in case of a strong density contrast (ρoneside/ρotherside > 2 between
neighboring cells). This value can be set e.g. with

real c_slopered f=E15.8 b=4 &

n=’Slope reduction parameter in case of strong density contrast’ u=1 &

c0=’0.00: off (default), 0.02: reasonable value, 0.10: large value’

0.02

Typical choices are
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◦ 0.0: Slope reduction switched off. Original reconstruction is used.

◦ 0.02: Moderate slope reduction in case of large density jumps.

◦ 0.10: More pronounced slope reduction in case of strong density contrast.

The default is not to use this trick and leave the parameter at 0.0. However, if numerical
problems occur close to strong density jumps one can try to cure them by setting it e.g., to
0.02 or so. One could even think off other criteria (e.g., low temperatures, very high Mach
numbers,...) to activate this slope reduction. That could be implemented if if would deem
beneficial.

• real c_reccontshift:
The second-order reconstruction schemes except FRcont have the option to make the re-
construction even more continuous in the case of very low Mach numbers, controlled with
C_RecContShift and C_RecContSteep. The value can be set e.g. with

real c_reccontshift f=E15.8 b=4 &

n=’Enhanced reconstruction continuation parameter 1 for shifting’ &

c0=’0.0: off; 1.0: reasonable value’

0.2

Typical choices are

◦ 0.0: No attempt is made to make the reconstruction more continuous. The original
reconstruction is used.

◦ 0.1: Make the transition to a smoother reconstruction at lower Mach numbers.

◦ 1.0: Reasonable value.

◦ 10.0: Make the transition to a smoother reconstruction at higher Mach numbers.

While the resulting scheme works for solar simulations, the parameters are really of benefit
only in the case of brown dwarfs or exoplanets or the deep layers of M dwarfs.

• real c_reccontsteep:
The second-order reconstruction schemes except FRcont have the option to make the re-
construction even more continuous in the case of very low Mach numbers, controlled with
C_RecContShift and C_RecContSteep. The value can be set e.g. with

real c_reccontsteep f=E15.8 b=4 &

n=’Enhanced reconstruction continuation parameter 1 for steepening’ &

c0=’0.0: off; 0.1: reasonable value’

0.5

Typical choices are

◦ 0.0: No attempt is made to make the reconstruction more continuous. The original
reconstruction is used.

◦ 0.01: Make the transition to a smoother reconstruction steeper (at even lower Mach
numbers)

◦ 0.1: Reasonable value.

◦ 1.0: Make the transition to a smoother reconstruction smoother

While the resulting scheme works for solar simulations, the parameters are really of benefit
only in the case of brown dwarfs or exoplanets or the deep layers of M dwarfs.

• character hdtransvelomode:
This parameter controls the treatment of advection of transverse velocities. It can be set

e.g. with:
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character hdtransvelomode f=A80 b=80 &

n=’Mode for transverse velocity advection’ &

c0=’Normal(default)/CA1/CA2/CA3/CA4’

CA4

The choices are

◦ Normal, ’ ’: Compute flux of transversal momentum with standard Roe treatment
(old, default)

◦ CA1: Compute flux of transversal momentum with consistent advection, version 1. Use
mass flux and upwind density to determine flow speed. Actually recompute transversal
velocities.

◦ CA2: Compute flux of transversal momentum with consistent advection, version 2.
Use mass flux and Roe-mean density (ρ̃) to determine flow speed. Actually recompute
transversal velocities.

◦ CA3: Compute flux of transversal momentum with consistent advection, version 3.
Use mass flux and upwind density to determine flow speed. Compute transversal
momentum fluxes from mass flux and diffusive momentum flux.

◦ CA4: Compute flux of transversal momentum with consistent advection, version 4. Use
mass flux and Roe-mean density (ρ̃) to determine flow speed. Compute transversal
momentum fluxes from mass flux and diffusive momentum flux, (recommended).

For instance for a 2D Sedov blast wave problem, the new modes give less artifacts close to
the axes than the old mode Normal. The four new advection types are made of to choices for
the way to compute the effective flow speed across a cell boundary (different density values
can be used) and two ways to compose the final transversal momentum fluxes. Version CA4

is recommeded. This parameter is not recognized by the MHD module.

• character hdentropywavemode:
This parameter controls the computation of the Roe correction flux for the entropy wave.

It can be set e.g. with:

character hdentropywavemode f=A80 b=80 &

n=’Mode for entropy wave type’ &

c0=’Normal/Entropy1/Entropy2/Entropy3M/Entropy3Ms/Entropy3gMps(recommended)’

Entropy3gMps

The choices are

◦ Normal, ’ ’: Compute entropy-wave flux with standard Roe treatment from pressure
and density, (old, default).

◦ Entropy1: Compute entropy-wave flux from entropy. This only works well for small
Mach numbers.

◦ Entropy2: Compute entropy-wave flux from entropy and pressure.

◦ Entropy3M: Compute entropy-wave flux from entropy, pressure, and density. In fact,
an cases Normal and Entropy1 are interpolated according to the Mach number.

◦ Entropy3Ms: Compute entropy-wave flux from entropy, pressure, and density. In fact,
an cases Normal and Entropy1 are interpolated according to the Mach number and
entropy fluctuations.

◦ Entropy3gMps: Compute entropy-wave flux from entropy, pressure, and density. In
fact, an cases Normal and Entropy1 are interpolated according to the Mach number
and fluctuations in pressure (directly and after subtracting the hydrostatic pressure
correction) and entropy. This case is recommended.
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The Normal computation with the standard Roe procedure is optimized for shocks and works
also for small fluctuations in density and pressure. However, in the case of a nearly adiabatic
stratification, the density and pressure fluctuations between adjacent depth points induce
some spurious fluxes. These are avoided by reconstructing the entropy directly (Entropy1).
However, that does not work well for shocks. Therefore, an interpolation between the
standard reconstruction based on pressure and density and another one based on entropy
is recommended (Entropy3gMps). This parameter is not recognized by the MHD module.

• character hdenthalpyavgmode:
This parameter controls the type of averaging used to get from the cell-centered enthalphy

(flux) the boundary-centered enthalphy (flux). To this flux, the Roe corrections are added.
It can be set e.g. with:

character hdenthalpyavgmode f=A80 b=80 &

n=’Mode for enthalpy averaging’ &

c0=’Normal(old default)/CA1/CA1g/CA1gMps(recommeded)/CA1M/CA1Ms/CA1p/CA1s’ &

c1=’CA2/CA2g/CA2M/CA2p/CA2s/CA3/CA4’

CA1gMps

The choices are

◦ Normal, ’ ’: Use the standard Roe-averaging of the enthalpy + kinetic-energy fluxes,
(old, default).

◦ CA1: Average the enthalpy and multiply with the average mass flux. Average the
kinetic energy fluxes as in the standard Roe case.

◦ CA1g: Use the consistent-advection centering for the average enthalpy flux as in CA1

for small fluctuations. Switch smoothly to the Normal Roe averaging for large non-
hydrostatic pressure fluctuations.

◦ CA1gMps: Use the consistent-advection centering for the average enthalpy flux as in CA1

for small Mach numbers. Switch smoothly to the Normal Roe averaging for large Mach
numbers or large fluctuations fluctuations in pressure (directly and after subtracting
the hydrostatic pressure correction) and entropy. This case is recommended.

◦ CA1M: Use the consistent-advection centering for the average enthalpy flux as in CA1 for
small Mach numbers. Switch smoothly to the Normal Roe averaging for large Mach
numbers.

◦ CA1Ms: Use the consistent-advection centering for the average enthalpy flux as in CA1

for small Mach numbers. Switch smoothly to the Normal Roe averaging for large Mach
numbers or large entropy fluctuations.

◦ CA1p: Use the consistent-advection centering for the average enthalpy flux as in CA1

for small pressure fluctuations. Switch smoothly to the Normal Roe averaging for large
pressure fluctuations.

◦ CA1s: Use the consistent-advection centering for the average enthalpy flux as in CA1

for small entropy fluctuations. Switch smoothly to the Normal Roe averaging for large
entropy fluctuations.

◦ CA2: Average the enthalpy plus kinetic energy and multiply with the average mass
flux.

◦ CA2g: Use the consistent-advection centering for the average enthalpy plus kinetic
energy flux as in CA2 for small fluctuations. Switch smoothly to the Normal Roe
averaging for large non-hydrostatic pressure fluctuations.

◦ CA2M: Use the consistent-advection centering for the average enthalpy plus kinetic
energy flux as in CA2 for Mach numbers. Switch smoothly to the Normal Roe averaging
for large Mach numbers.
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◦ CA2p: Use the consistent-advection centering for the average enthalpy plus kinetic
energy flux as in CA2 for small pressure fluctuations. Switch smoothly to the Normal

Roe averaging for large pressure fluctuations.

◦ CA2s: Use the consistent-advection centering for the average enthalpy plus kinetic
energy flux as in CA2 for small entropy fluctuations. Switch smoothly to the Normal

Roe averaging for large entropy fluctuations.

◦ CA3: Take the Roe tilde average enthalpy plus kinetic energy and multiply with the
computed mass flux. This is a more experimental version and not generally recom-
mended.

◦ CA4: Averaging the enthalpy and multiply with the computed mass flux. This is a
more experimental version and not generally recommended.

Here, ’CA1’ and ’CA2’ behave in a similar way, whereas’CA3’ and ’CA4’ are essentially
just for tests. I prefer the CA1 variant for the time being. However, both CA1 and CA2

work only well for small fluctuations and Mach numbers. Therefore, one of the modified
schemes should be used. Again, they are rather similar even if the implemented creteria
are rather different. While most of the versions work for “ordinary” main-sequence models,
the comparably pooly resolved red-supergiant models (with large entropy step and Mach
numbers) require a combination of the criteria above. Therefore, CA1gMps is recommended
(for all type of models in general). This parameter is not recognized by the MHD module.

• real c_hydpredfactor:
The ”hydrostatic pressure correction” terms in the two acoustic waves are always present.
However, for the entropy wave and the ”ionization wave” it is not quite clear if the terms
should be there (the classical default) or if they should be set to zero. The value of a factor
in front of these terms can be set e.g. with

real c_hydpredfactor f=E15.8 b=4 &

n=’hydrostatic pressure reduction in waves 3 and 6’ u=1 &

c0=’0.0: Deactivation of pressure reduction terms’ &

c1=’1.0: Activation of pressure reduction terms (default)’

0.0

Possible choices are

◦ 0.0: Deactivation of pressure reduction terms in waves 3 and ”6” in Roe solver

◦ 1.0: Activation of pressure reduction terms in waves 3 and ”6” in Roe solver (default)

This parameter is not recognized by the MHD module.

• real c_hydsdiffvelo:
With this parameter an extra energy diffusion down an entropy step (after reconstructing
the entropy) can be activated. For the diffusion velocity all three velocity components are
used, i.e., there is a diffusion even transversal to the flow speed. This makes the diffusion
more isotropic and lets numerical solutions to the Sedov-blast-wave problem look smoother.
The value can be set e.g. with

real c_hydsdiffvelo f=E15.8 b=4 &

n=’Parameter for energy diffusion down an entropy step’ u=1 &

c0=’typically 1.0’

1.0

Possible choices are for example

◦ 0.0: No extra energy diffusion down an entropy gradient (default).

◦ 0.2: Small value

◦ 1.0: Reasonable value
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◦ 3.0: Large value

It acts on the entropy but only on the fraction of the jump that is still there after the
reconstruction – unlike C_hydTdiffLin and C_hydTdiffMach that act on local temperature
minima (see below). This parameter is not recognized by the MHD module.

• real c_hydvdiffvelo:
With this parameter an extra diffusion of the transversal velocities (after reconstructing
them) can be activated. For the diffusion velocity all three velocity components are used,
i.e., there is a diffusion even transversal to the flow speed. This makes the diffusion more
isotropic and lets numerical solutions to the Sedov-blast-wave problem look smoother. The
value can be set e.g. with

real c_hydvdiffvelo f=E15.8 b=4 &

n=’Parameter for transversal momentum diffusion down a velocity step’ u=1 &

c0=’typically 1.0’

1.0

Possible choices are for example

◦ 0.0: No extra energy diffusion down an entropy gradient (default).

◦ 0.2: Small value

◦ 0.5: Reasonable value

◦ 1.0: Reasonable value

◦ 3.0: Large value

The type of dissipation that can be added with this option is similar to that provided by the
tensor viscosity (Sect. 5.4.8). Therefore, I recommend to use only small values (0.5 to 1.0)
to reduce the directional dependence of the dissipation applied by the Roe solver and to
use an explicite tensor viscosity (Sect. 5.4.8) in case of emergencies. This parameter is not
recognized by the MHD module (but in fact, the HLLE solver applies a somewhat similar
– but stronger – dissipation by construction).

• real c_hydtdifflin:
The Roe-solver correction does not have any dissipation for standing waves and very little
for slowly moving ones – unlike the MHD-HLLE solver that always has quite some minimum
dissipation (depending on the reconstruction, though). The small amount of dissipation is
a positive feature when it comes e.g., to convection with smaller Mach numbers in the
deeper layers of a solar model, or (the absence) of vertical net mass fluxes in a hydrostatic
atmosphere. However, it can be a drawback, e.g., in the case of a transsonic rarefaction
wave, where an entropy fix is applied (since the beginning, see Leveque “Numerical Methods
for Conservation Laws”), or in the (rather quiet) center of a Sedov blast wave where a cross-
like structure with comparably low temperature is visible. This artefact can be removed
by applying the standard tensor viscosity including the energy dissipation down an entropy
gradient (controlled with C_visPrturb) of by the new, rather simple option to the Roe
solver to apply additional energy dissipation down a temperature gradient but only in cells
adjacent to a local temperature minimum (in 1D). It works nicely for the Sedov blast wave
and does not have any visible adverse impact in any other cases, so far. I don’t expect it to
do any harm for convection simulations and recommend to activate it per default. Cautious
people might not like it and see how well it works without, though. Still, unlike the tensor
viscosity with turbulent Prandtl number there is no viscous flux down the subphotospheric
temperature or entropy gradient (unless there is a local minimum at the bottom). The
linear diffusion can be set e.g. with

real c_hydtdifflin f=E15.8 b=4 &

n=’Parameter 1 for energy diffusion near local temperature minimum’ u=1 &

c0=’typically 0.2, if activated; usually 0.0’

0.0
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It just acts on the temperature gradient (in the neighborhood of a local minimum), whereas
C_hydTdiffMach (see below) has an additional factor, that takes velocity gradients into
account, which prevent this type of diffusion from acting in deeper convective layers. I rec-
ommend as a default C_hydTdiffLin=0.0 and non-zero values only in case of an emergency
and C_hydTdiffMach=1.0 or 2.0 as a default. These parameters are not recognized by the
MHD module.

• real c_hydtdiffmach:
Analogously to c_hydtdifflin, an additional energy dissipation down a temperature gra-
dient but only in cells adjacent to a local temperature minimum (in 1D) can be applied,
that has a scaling factor derived from the Mach number. This Mach-number-dependent
diffusion can be set e.g. with

real c_hydtdiffmach f=E15.8 b=4 &

n=’Parameter 1 for energy diffusion near local temperature minimum’ u=1 &

c0=’typically 0.2, if activated; usually 0.0’

1.0

I recommend as a default C_hydTdiffLin=0.0 and non-zero values only in case of an emer-
gency and C_hydTdiffMach=1.0 or 2.0 as a default. These parameters are not recognized
by the MHD module.

• integer n_hyditer:
After each complete hydiative time step the recommendation for the next time step will be
chosen so that n_hyditer iterations will (probably) needed. The parameter can be set e.g.
with

integer n_hyditer f=I4 b=4 &

n=’Number of hydrodynamics iterations’ c0=10

8

For a simulation of a solar-type star it will typically be set to 1. E.g. for brown dwarfs with
shorter hydrodynamical time scales values around 10 may be considered. Note, that the
hydrodynamics iteration works somewhat differently than the radiation transport iteration:
in the latter case the size of the actual time step can be determined after computing the
fluxes, whereas the hydrodynamics step is (possibly) of at least second order in time and
the time step has to be known in advance.

In case of the MHD module, this can reduce the computation time significantly because the
MHD time step is often much smaller than the other timestep limits. However, this pa-
rameter does not determine the nuber of substeps directly. Instead, the number of substeps
is determined by the requested timestep and the timestep of each MHD substep which is
determined by the standart Courant condition. So, the number of MHD substeps varies
during the simulation. So, the exact value of this parameter has no direct influence on the
number of substeps. If this parameter is set to zero, this features is turned of. (See also
parameter va_max for speeding up MHD simulations.)

• integer n_hydmaxiter:
The absolute maximum number of hydro iterations can be specified e.g. with

integer n_hydmaxiter f=I4 b=4 &

n=’Maximum number of hydro iterations’ c0=14

0

If more iterations are needed the computation for the current time step is stopped and
resumed with a smaller one. Usually, n_hydmaxiter will either be set to a value somewhat
larger than the recommended number of iterations (n_hyditer) or to 0 which disables the
check for too many iterations completely. This can be safely allowed in many cases. To
disable the iteration of the hydrodynamics sub-step set n_hyditer=0.

In case of the MHD module, this parameter sets the maximum number of MHD-substeps.
If this parameter is set to zero, the number of MHD substeps is not limited.
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• integer n_hydcellsperchunk:
In every directional sub-step neighboring 1D columns are independent from each other.
They can be grouped and computed in chunks of arbitrary size. The approximate number
of grid cells per chunk can be specified e.g. with

integer n_hydcellsperchunk f=I9 b=4 &

n=’Number of cells per hydro chunk’ &

c0=’0 => one 2D slice at a time’ &

c1=’1 => minimum chunk size (inefficient)’ &

c2=’2500: reasonable value’ &

c3=’1000000000: maximum chunk size (inefficient and memory intensive)’

20000

The exact number is determined at run time to get (approximately) equal sizes of the
individual chunks. The choice of this parameter does not affect the result of the computation
but the memory usage and performance: Smaller (and more) chunks may result in an
optimum cache usage and need the smallest amount of memory, but result in additional
overhead due to frequent subroutine calls. Bigger (and less) chunks are to be preferred for
vector machines and processors with large caches. Very rough guide values may be

◦ 2500: Pentium III, Core 2 Duo processor

◦ 20000: RISC processor

◦ 100000: Vector machine

Note: For simulations with activated OpenMP on a parallel machine the chunk size has
to be made small enough to allow at least as many chunks as processors available. This is
particularly important for models with a small number of grid points (e.g. 2D models). An
example is given for the Hitachi SR8000 in Sect. 3.7.8.

• real c_visbound:
An additional drag force can be added locally in inflow cells in the outer layer when the
transmitting boundary condition is chosen. The value can be set e.g. with

real c_visbound f=E15.8 b=4 &

n=’Boundary drag viscosity parameter’ u=1

0.001

This extra drag force is usually not necessary and should be switched off (with
c_visbound=0.0).

The following parameters apply only to the MHD module (see also Sect. 2.2 for details).

• integer n_orderconstrainedtransport:
Order of reconstruction of the electric field in the constrained-transport step. The parameter
can be set e.g. with

integer n_orderconstrainedtransport f=I4 b=4 &

n=’Number of hydrodynamics iterations’ &

c0=’order of reconstruction of electric field in constrained-transport step’ &

c1=’1: Simple arithmetic average (default), 2: Quadratic interpolation’

2

Possible values:

◦ 1: Simple arithmetic average of fluxes (default).

◦ 2: Quadratic interpolation of fluxes to the cell edges

This parameter is only recognized by the hdscheme=HLLMHD.
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• integer n_rescellsperchunk:
The approximate number of grid cells per chunk in the 3D resistivity scheme can be specified
e.g. with

integer n_rescellsperchunk f=I9 b=4 &

n=’Number of cells per chunk in resistivity routine’ &

c0=’0 => one 2D slice at a time’ &

c1=’1 => minimum chunk size (inefficient)’ &

c2=’10000: typical value’

20000

The exact number is determined at run time to get (approximately) equal sizes of the
individual chunks. The choice of this parameter does not affect the result of the computation
but the memory usage and performance: Smaller (and more) chunks may result in an
optimum cache usage and need the smallest amount of memory, but result in additional
overhead due to frequent subroutine calls. Bigger (and less) chunks are to be preferred for
vector machines and processors with large caches.

• real c_rescourant:
The tensor resistivity routines have their own time-step restriction. The recommended
typical time step can be set e.g. with

real c_rescourant f=E15.8 b=4 n=’resistivity Courant factor’ u=1 &

c0=’range: 0.0 < C_resCourant, typically: 0.5’

0.5

• real c_rescourantmax:
The absolute upper limit for the resistivity time scale can be set with

real c_rescourantmax f=E15.8 b=4 n=’maximum resistivity Courant factor’ u=1 &

c0=’range: C_resCourant <= C_resCourantmax, typically 1.0’

0.95

Its value should be slightly above c_rescourant.

• real c_resB:
This parameter specifies the electric resistivity. Values between 0.0 and 1.0 may be rea-
sonable. Higher values are possible but drastically reduce the time step. The default value
is 0.0. Example:

real c_resb f=E15.8 b=4 &

n=’Parameter for numerical resistivity’ u=1

0.0

The artificial electric resistivity of [Stone & Pringle (2001)] is used. It is given by ηB =
c_resB · |j| · (∆x)2/

√
ρ, where ηB is the magnetic diffusivity, j the current density, ∆x a

mean width of the grid cell, and ρ is the density. Values ≤ 0 disactivate this feature.

• real c_resBconst:
This parameter specifies a constant magnetic diffusivity ηm. The default value is 0.0.
Example:

real c_resbconstant f=E15.8 b=4 &

n=’Parameter for constant magnetic diffusivity’ u=cm^2/s

0.1

A reasonable value can be found by choosing a reasonable value for the magnetic Reynolds
number Remag = (`0v0)/ηm. Values ≤ 0 disactivate this feature.
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• real c_resepsilon:
This parameter controls an additional numerical energy diffusion. Typical values are be-
tween 0.0 and 1.0. The default value is 0.0. Example:

real c_resepsilon f=E15.8 b=4 &

n=’Parameter for additional energy diffusion’ u=1

0.5

The diffusion coefficient of the additional energy diffusion is given by ηE = c_resepsilon ·
|j|·(∆x)2/

√
ρ, analog to the magnetic diffusivity c_resB. Values ≤ 0 disactivate this feature.

• real beta_inv:
This parameter is used for the dual energy method. It determines which cells are updated
with the thermal energy equation. Example:

real beta_inv f=E15.8 b=4 &

n=’1/beta dual energy parameter’ u=1

-1.0

The criterion is as follows:
if β < 1/beta_inv the equation for the thermal energy is used.
if β > 1/beta_inv the equation for the total energy is used.
β is the plasma β, i.e., the ratio of the gas pressure to the magnetic pressure. If beta_inv
is set to zero, the thermal energy equation is used for all cells. A reasonable value may
be 100.0. To deactivate this feature, set beta_inv to a negative value. If not specified,
this parameter is set to -1.0. This parameter works only with hdscheme=HLLMHD. When
va_max > 0 then a reasonable value is given by beta_inv / vAmax2/cs2, where cs is the
speed of sound in the region where β < 1/beta_inv.

• real va_max:
This parameter limits the Alfvén speed to va_max by an arbitrary reduction of the Lorentz
force. Example:

real va_max f=E15.8 b=4 &

n=’maximum Alfven speed’ u=cm/s &

-1.0

This parameter is only recognized in conjunction with hdscheme=HLLMHD. va_max=5.0E+06
might be a reasonable value for some specific applications to the solar photosphere. If not
specified this parameter is set -1.0. Values ≤ 0 disactivate this feature. See also Eq. 19.

• integer N_magDiffSide:
Increases the diffusivity of the scheme near the side boundaries within a thickness of the
diffusion layer of N_magDiffSide computational cells. Example:

integer n_magdiffside f=I9 b=4 &

n=’Number of cells of diffusive side boundary layer’ &

c0=’0 => deactivates this feature’ &

c1=’10: reasonable value’

0

• integer N_magDiffTop:
Increases the diffusivity of the scheme near the top boundary within a thickness of the
diffusion layer of N_magDiffTop computational cells. Example:

integer n_magdifftop f=I9 b=4 &

n=’Number of cells of diffusive top boundary layer’ &

c0=’0 => deactivates this feature’ &

c1=’10: reasonable value’

0
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• integer N_magDiffBottom:
Increases the diffusivity of the scheme near the bottom boundary within a thickness of the
diffusion layer of N_magDiffBottom computational cells. Example:

integer n_magdiffbottom f=I9 b=4 &

n=’Number of cells of diffusive bottom boundary layer’ &

c0=’0 => deactivates this feature’ &

c1=’10: reasonable value’

0

5.4.8 Tensor Viscosity Control

In many test problems it is not necessary to activate the 2D/3D tensor viscosity. But when strong
slow shock fronts are aligned with the grid the Roe solver runs into problems and at least some
additional 2D or 3D viscosity is necessary. And even if the Roe solver can handle sharp shocks by
its own, the radiation transport algorithm might cause trouble because of the enormous opacity
variations across a shock front. Here the tensor viscosity is useful, too.

• real c_vissmagorinsky:
A turbulent viscosity of Smagorinsky type can be activated e.g. with

real c_vissmagorinsky f=E15.8 b=4 &

n=’Turbulent eddy viscosity parameter (Smagorinsky type)’ u=1

1.2

In many cases values around 0.5 are sufficient to stabilize the code. Larger values (1.2 in
the example above) are only necessary for some nasty under-resolved supergiant models.
Setting c_vissmagorinsky = c_visartificial = c_visexpansion = c_vislinear =
c_visp2pcoeff = 0.0 skips the tensor viscosity step entirely.

• real c_visartificial:
A standard artificial viscosity can be activated e.g. with

real c_visartificial f=E15.8 b=4 &

n=’Artificial viscosity tensor parameter’ u=1

1.2

In many cases values around 0.5 are sufficient to stabilize the code. Larger values (1.2 in
the example above) are only necessary for some nasty under-resolved supergiant models.

• real c_visexpansion:
An additional viscosity can be activated e.g. with

real c_visexpansion f=E15.8 b=4 &

n=’Expansion viscosity tensor parameter’ u=1

1.2

While the standard artificial viscosity acts on compressed regions, this viscosity acts in
expansion areas. Ususally, it is not activated (c_visexpansion = 0.0). However, it might
be useful in cases were strong localized expansions cause problems.

• real c_vislinear:
Another viscosity can be activated e.g. with

real c_vislinear f=E15.8 b=4 &

n=’Linear viscosity tensor parameter’ u=1

1.2
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In the formulae for the standard (artificial, compression, Smagorinsky) viscosity velocity
gradients appear. That means that in regions with smooth small-amplitude flows these
types of viscosity essentially vanish. Here, the linear viscosity comes in. It uses

√
RgasT as

approximation for the sound speed that is used in the formula for the kinematic viscosity.
Ususally, it is not activated (c_vislinear = 0.0). It might be useful to damp small-
amplitude almost linear waves.

• real c_visprturb:
The Prandtl number for turbulent mixing can be specified e.g. with

real c_visprturb f=E15.8 b=4 &

n=’Turbulent Prandtl number’ u=1

8.0

Values between 1.0 and 10.0 appear reasonable. Note that larger values lead to smaller
amounts of turbulent mixing! A value of 0.0 switches off the turbulent mixing terms (but
not the entire tensor viscosity).

• real c_vistensordiag:
The factor in the stress tensor in front of of the diagonal terms can be set with

real c_vistensordiag f=E15.8 b=4 &

n=’Diagonal factor for viscous stress tensor’ u=1 &

c0=’typically 1.0

1.0

This is not really parameter one would try to adjust. The total amount of viscosity should
be controlled with parameters like real c_vissmagorinsky and real c_visartificial.
But the parameter can be used to tentatively switch off the diagonal terms completely or
to change its importance compared to the other terms.

• real c_vistensoroff:
The factor in the stress tensor in front of of the off-diagonal terms can be set with e.g.

real c_vistensoroff f=E15.8 b=4 &

n=’Off-diagonal factor for viscous stress tensor’ u=1 &

c0=’typically 0.5

0.5

This is not really parameter one would try to adjust. The total amount of viscosity should
be controlled with parameters like real c_vissmagorinsky and real c_visartificial.
But the parameter can be used to tentatively switch off the off-diagonal terms completely
or to change its importance compared to the other terms.

• real c_vistensordiv:
The factor in the stress tensor in front of of the divergence terms (also on the diagonal) can
be set with e.g.

real c_vistensordiv f=E15.8 b=4 &

n=’Divergence factor for viscous stress tensor’ u=1 &

c0=’typically -1./3.

0.0

This is not really parameter one would try to adjust. The total amount of viscosity should
be controlled with parameters like real c_vissmagorinsky and real c_visartificial.
But the parameter can be used to switch off the divergence terms completely or to change
its importance compared to the other terms. These divergence terms can be used to reduce
the effect of the tensor viscosity in the case of isotropic compression. But this reduction
(c_vistensordiv = -0.333333 in 3D, c_vistensordiv = -0.5 in 2D) is usually switched
off.
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• integer n_viscellsperchunk:
The number of cells per box (or “chunk”) treated by the tensor viscosity scheme at one call
(and by one thread) can be set e.g. for an Intel Macintosh with

integer n_viscellsperchunk f=I9 b=4 &

n=’Number of cells per viscosity chunk’ &

c0=’0 => old chopping’ &

c1=’12000: reasonable value’

32000

It can be adjusted to improve cache efficiency and to modify the work load distribu-
tion onto the threads (in case of parallel runs with OpenMP). Due to the special han-
dling of boundary cells the overhead per call increases significantly for small chunks.
Typically, larger chunk sizes (compared the the hydrodynamics chunk sizes set with
integer n_hydcellsperchunk, see Sect. 5.4.7) are adequate. On the other hand they
should not be too large to limit the usage of temporary memory and to allow parallelization
(the distribution of chunks to threads): For simulations with activated OpenMP on a par-
allel machine the chunk size has to be made small enough to allow at least as many chunks
as processors available. This is particularly important for models with a small number of
grid points (e.g. 2D models). An example is given for the Hitachi SR8000 in Sect. 3.7.8.

In addition to the standard tensor viscosity described above, there is a ”point-to-point” vis-
cosity.
It relies on a completely different discretization. It should conserve angular momentum exactly
and guarantee positivity of dissipated energy (for sufficiently small time steps). The current
version should only be used for equidistant grids (same spacing in all directions, as for the su-
pergiant models) by experienced users. The ”point-to-point” viscosity can be used in addition to
the standard one – or without.

• real c_visp2pcoeff:
The strength of the viscosity can be controlled with e.g.

real c_visp2pcoeff f=E15.8 b=4 &

n=’Point to point viscosity coefficient’ u=1

0.20

This parameter is somewhat analogous to real c_visartificial, see 5.4.8. But it acts
on compression, expansion, and shear flows. A value of 0.0 switches it off.

• real c_visp2phypsmagorinsky:
This parameter can be set with e.g.

real c_visp2phypsmagorinsky f=E15.8 b=4 &

n=’Smagorinsky parameter for point-to-point viscosity’ u=1

0.3

This parameter is equivalent to real c_vissmagorinsky (see 5.4.8) with the classical im-
plementation of the viscosity tensor. A value of 0.0 switches it off. Values of 0.3 or 0.5 are
reasonable. Although the underlying formula (and theory) is more complex, the effects are
rather similar to that of real c_visp2pcoeff. If additional smoothing is required, either
of these parameters (or both) can be set to non-zero values.

• real c_visp2phypartificial:
This parameter can be set with e.g.

real c_visp2phypartificial f=E15.8 b=4 &

n=’Artificial point-to-point tensor viscosity parameter’ u=1

0.0
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This parameter is equivalent to real c_visartificial (see 5.4.8) with the classical imple-
mentation of the viscosity tensor. A value of 0.0 switches it off. Values of 0.3 to 1.0 are
reasonable. The viscosity controlled with this parameter is meant to act mostly on shocks.

• real c_visp2phypexpansion:
This parameter can be set with e.g.

real c_visp2phypexpansion f=E15.8 b=4 &

n=’Parameter for point-to-point expansion tensor viscosity’ u=1

0.0

This parameter is equivalent to real c_visexpansion (see ??) with the classical implemen-
tation of the viscosity tensor. A value of 0.0 switches it off. The viscosity controlled with
this parameter is meant to limit or smooth strong expansion events where density, pressure,
temperature, and/or entropy can drop significantly. This parameter is not frequently set to
non-zero values.

• real c_visp2phypdivrhov:
This parameter can be set with e.g.

real c_visp2pdivrhov f=E15.8 b=4 &

n=’Point-to-point mass-flux-divergence viscosity coefficient’ u=1

0.0

A value of 0.0 switches it off. Values of 0.5 or even 2.0 are reasonable. The viscosity
controlled with this parameter acts only on compressible flow configurations, i.e., in near-
incompressible low-Mach-number flows it should have hardly any effect. Still, it can be used
in exacly such a case to dampen spurious sound waves for example at the very top of the
computational box.

• real c_visp2pincl1:
The interaction with the edge neighbor cells with indices (±1± 1 + 0) can be specified with
e.g.

real c_visp2pincl1 f=E15.8 b=4 &

n=’Point to point viscosity inclined cell factor 1’ u=1

1.0

Common values are 1.0 (interaction is considered) and 0.0 (no interaction with these cells).
The usual value is 1.0.

• real c_visp2pincl2:
The interaction with the corner neighbor cells with indices (±1 ± 1 ± 1) can be specified
with e.g.

real c_visp2pincl2 f=E15.8 b=4 &

n=’Point to point viscosity inclined cell factor 2’ u=1

0.0

Common values are 1.0 (interaction is considered) and 0.0 (no interaction with these cells).
The usual value is 0.0 to save some computation time.

5.4.9 Dust/Molecules/Hydrogen Ionization: General

CO5BOLD can now handle a number of additional density arrays. They can be used to describe
e.g. the mass density of dust distribution moments or number densities of molecules. These
species are properly advected with the gas density. There is also already a small number of
dust/molecule formation models available. These models have to be improved in the future and
the influence on the radiation field (opacities, radiation pressure on dust) has to be taken into
account.
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• character dustscheme:
A scheme for dust or molecule formation and transport can be selected e.g. with

character dustscheme f=A80 b=80 n=’Dust model’ &

c0=’none (default), nosource, dust_simple_01, co_component01_01’ &

c1=’dust_k3mon_01, dust_k3mon_02’

dust_k3mon_01

The following values are currently possible:

◦ none, None: No handling of any dust/molecule density at all.

◦ nosource: Skip source term step for dust/molecules entirely, but do the transport.

◦ dust_simple_01: Simple and unrealistic ’dust’ formation model (only for testing of
the numerics).

◦ co_component01_01: Simple CO formation (from Matthias Steffen) with one compo-
nent only but realistic time scales.

◦ dust_k3mon_01: Simple C-rich dust formation (routines from Susanne Höfner) with
one component only but realistic time scales.

◦ dust_k3mon_02: Simple C-rich dust formation (routines from Susanne Höfner) with
two components for dust density and free carbon density.

◦ dust_k3mon_03: Simple Forsterite dust formation (based on routines from Susanne
Höfner) with two components for dust density and free ”Forsterite monomer” density.

◦ dust_bins_01: Multi-size-bin Forsterite dust formation (based on Rossow’s equations)
with one bin for the monomers and several bins for the different grain sizes.

◦ dust_moment04_c2: C-rich dust chemistry, 4 moments (routines from Susanne
Höfner).

◦ chemreacnet: chemical reaction networks (routines from Sven Wedemeyer-Böhm and
Inga Kamp).

◦ hiontd: time-dependent hydrogen ionization (routines from Jorrit Leenaarts and Sven
Wedemeyer-Böhm).

• character dustreconstruction:
While usually (i.e., when this parameter is not set) the reconstruction scheme for the addi-
tional density fields is the same as for the normal hydrodynamics quantities (see 5.4.7), it
can make sense to chose a more aggressive but strictly monotonic scheme for these additional
fields. It can be chosen e.g., with

character dustreconstruction f=A80 b=80 n=’Reconstruction method for qucs’ &

c0=Constant c1=Minmod/VanLeer/Superbee c2=PP/PPmimo &

c3=FRmimo,FRmono

FRmono

Usuful combinations are

◦ reconstruction=vanLeer, dustreconstruction=Superbee.

◦ reconstruction=FRweno, dustreconstruction=FRmono.

◦ reconstruction=FRweno, dustreconstruction=PP.

• real c_dust0X:
There are ten parameters ( real c_dust01 to real c_dust10) to control each dust forma-
tion scheme in detail. A parameter can be given as in

real c_dust01 f=E15.8 b=4 n=’Dust parameter 1’

0.0
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The meaning (and unit) can vary from scheme to scheme. The default value is 0.0 in each
case.
Important: The parameter real c_dust01 must be set to 1.0 in order to activate advec-
tion of particle densities for the CHEM (chemreacnet) and the HION (hiontd) module.
The default value is 0.0, i.e. advection is switched off.

• character chem_reacfile:
The name of the input file containing the chemical reaction network.

character chem_reacfile f=A80 b=80 n=’file name of reaction table’

chem.dat

• character chem_reacpath:
The path of the input file containing the chemical reaction network.

character chem_reacpath f=A80 b=80 n=’path of reaction table’

/data/sven/cobold/dat/chem/

• real chem_abumetal:
Abundance of the representative metal (’M’, if present) relative to hydrogen (εM =
[M ]/[H]). A value of 1.0E-04 means there are 104 hydrogen atoms for every metal atom.
The metal number density for each grid cell is then derived via nH = εM ρ/mH (assuming a
pure hydrogen gas). This parameter is ignored when a quc array for the metal is found in
the input model.

real chem_abumetal f=E15.8 b=4 n=’Chemical abundance of repres. metal’

1.0E-04

• character hion_datapath:
The path of all input files for HION.

character hion_datapath f=A80 b=80 n=’HION data path’

/data/sven/cobold/dat/hion/

• character hion_atomfile:
The file name of the model atom for HION.

character hion_atomfile f=A80 b=80 n=’HION atom file name’

H_6.atom

• character hion_abufile:
The name of the HION input file containing the chemical abundances.

character hion_abufile f=A80 b=80 n=’HION abundance file name’

abundance.input

• character hion_edensfile:
The name of the HION input file containing the electron density table.

character hion_edensfile f=A80 b=80 n=’HION electron density file name’

edens.dat

• character hion_pffile:
The name of the HION input file containing the partition functions.

character hion_pffile f=A80 b=80 n=’HION partition function file name’

pf_kurucz.dat
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• real dtime_out_hion:
Time increment for additional HION output. Positive values specify the time increment in
seconds, negative values the increment in computational time steps. Setting the parameter
to zero, suppresses the output.

real dtime_out_hion f=E15.8 b=4 n=’Output file time step (HION)’

-10.0

• integer hion_chunks:
Number of chunks to use for HION in order to limit the required memory. Do not make it
bigger than the number of points in the x2 direction.

integer hion_chunks f=I9 b=4 n=’Number of HION chunks’

1

5.4.10 Dust: dustscheme=dust moment04 c2

In this section the parameters for dustscheme=dust_moment04_c2 (4-bin (4 moments) dust
scheme for carbon-rich dust) are described:

• real c_dust01:
The carbon to oxygen ratio is specified with e.g.

real c_dust01 f=E15.8 b=4 n=’C to O ratio’ u=1

1.4

Larger values mean more dust. Values below 1 make no sense for the current dust model.

• real c_dust02:
The oxygen abundance is specified with e.g.

real c_dust02 f=E15.8 b=4 n=’Oxygen abundance’ u=1

6.606934E-04

• real c_dust03:
The cutoff for the integration of the degree of condensation is specified with e.g.

real c_dust03 f=E15.8 b=4 n=’cutoff for integration of degree of condensation’ &

u=1

1.0E-05

• real c_dust04:
The relative dust opacity factor is specified with e.g.

real c_dust04 f=E15.8 b=4 n=’Relative dust opacity factor’ u=1

1.0

5.4.11 Dust: dustscheme=dust k3mon 03

In this section the parameters for dustscheme=dust_k3mon_03 (simple 2-bin dust scheme for
Forsterite dust) are described:

• integer n_dustgrainradius:
The number of dust grain radius bins (including one for the monomers) is specified with

integer n_dustgrainradius f=I8 b=4 n=’Number of dust grain radius bins’ &

c1=’Includes: bin for monomers’

2
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The default value is 1 (to avoid an empty array). The value should be the same as the
upper dimension in real ar_dustgrainradius. For the current dust scheme, there should
always be exactly two bins.

• real ar_dustgrainradius:
The radii of the dust grains are specified with e.g.

real ar_dustgrainradius f=E10.4 b=4 p=1 d=(1:2) n=’Dust grain radii’ u=cm

0.0

1.0E-04

The default value is 0.0.

• real c_dust01:
The density of the grain material is specified with e.g.

real c_dust01 f=E15.8 b=4 n=’Density of grain material’ u=g/cm^3

3.3E+00

• real c_dust02:
The atomic weight of the ”dust monomer” is specified with e.g.

real c_dust02 f=E15.8 b=4 n=’Atomic weight of dust monomer’ u=u

140.71

The value 140.71 should be appropriate for Forsterite (Mg2SiO4). The unit is the atomic
mass unit. The default value is 0.0.

• real c_dust03:
The number fraction of the rarest component is specified with e.g.

real c_dust03 f=E15.8 b=4 n=’Number fraction of rarest component’ u=1 &

c0=’For Mg2SiO4, Mg is the rarest, its fraction is 3.1187E-05’ &

c1=’Mg2SiO4 contains 2 Mg -> * 1/2 -> 1.55935e-05’

1.55935e-05

For Mg2SiO4 the rarest component is (usually) Mg2. So, half the magnesium abundance is
required as value. The default value is 0.0.

• real c_dust04:
The lower dust limit fraction is specified with e.g.

real c_dust04 f=E15.8 b=4 n=’Lower dust limit fraction’ u=1

1.0E-10

It is used in the calculation of the settling velocity where a division by the total density
of monomers and dust is required. To prevent this denominator to become zero a term
cdust04 ρ is added. The default value is 0.0.

• real c_dust05:
The minimum number of monomers during condensation is specified with e.g.

real c_dust05 f=E15.8 b=4 n=’Minimum number of monomers during condensation’ u=1

10.0

For very small grains (just one or very few monomers) the condensation rates can be very
small in this dust model: nucleation that would form already small clumps of monomers is
not considered. Therefore, to speed things up a minimum number of monomers can be given
that is considered for the condensation rate. With 1.0 or smaller values the enhancement
is switched off. The default value is 0.0.
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• real c_dust06:
The sticking coefficient for the condensation rate is specified with e.g.

real c_dust06 f=E15.8 b=4 n=’Sticking coefficient’ u=1 &

c0=’For C-rich dust: 0.37; can be between 0 and 1’

1.0

The default value is 0.0.

5.4.12 Dust: dustscheme=dust bins 01

In this section the parameters for dustscheme=dust_bins_01 (multi-size-bin dust scheme for
Forsterite dust) are described:

• integer n_dustgrainradius:
The number of dust grain radius bins (including one for the monomers) is specified with

integer n_dustgrainradius f=I8 b=4 n=’Number of dust grain radius bins’ &

c1=’Includes: bin for monomers’

8

The default value is 1 (to avoid an empty array). The value should be the same as the
upper dimension in real ar_dustgrainradius.

• real ar_dustgrainradius:
The radii of the dust grains are specified with e.g.

real ar_dustgrainradius f=E15.8 b=4 p=1 d=(1:8) n=’Dust grain radii’ u=’cm’

0.0

0.00390625E-04

0.0156250E-04

0.06250E-04

0.25000E-04

1.00000E-04

4.00000E-04

16.0000E-04

The default value is 0.0.

• real c_dust01:
The density of the grain material is specified with e.g.

real c_dust01 f=E15.8 b=4 n=’Density of grain material’ u=g/cm^3

3.3E+00

• real c_dust02:
The atomic weight of the ”dust monomer” is specified with e.g.

real c_dust02 f=E15.8 b=4 n=’Atomic weight of dust monomer’ u=u

140.71

The value 140.71 should be appropriate for Forsterite (Mg2SiO4). The unit is the atomic
mass unit. The default value is 0.0.

• real c_dust03:
The number fraction of the rarest component is specified with e.g.

real c_dust03 f=E15.8 b=4 n=’Number fraction of rarest component’ u=1 &

c0=’For Mg2SiO4, Mg is the rarest, its fraction is 3.1187E-05’ &

c1=’Mg2SiO4 contains 2 Mg -> * 1/2 -> 1.55935e-05’

1.55935e-05
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For Mg2SiO4 the rarest component is (usually) Mg2. So, half the magnesium abundance is
required as value. The default value is 0.0.

• real c_dust04:
The lower dust limit fraction is specified with e.g.

real c_dust04 f=E15.8 b=4 n=’Lower dust limit fraction’ u=1

1.0E-10

If the density in a bin relative to the gas density falls below this value, the bin is completely
emptied and the material is added to the bin with the largest dust or monomer density.
Typical values are 1.0E-09 or so. The default value is 0.0.

• real c_dust06:
The sticking coefficient for the condensation rate is specified with e.g.

real c_dust06 f=E15.8 b=4 n=’Sticking coefficient’ u=1 &

c0=’For C-rich dust: 0.37; can be between 0 and 1’

1.0

Typical values are between 0.0 (deactivating this process) and 1.0. The default value is
0.0. The standard choice is 1.0.

• real c_dust07:
The sticking coefficient for the coagulation rate is specified with e.g.

real c_dust07 f=E15.8 b=4 n=’Sticking coefficient for coagulation’ u=1 &

c0=’Typically between 0 and 1’

1.0

Typical values are between 0.0 (deactivating this process) and 1.0. The default value is
0.0.

• real c_dust08:
The sticking coefficient for the coalescence rate is specified with e.g.

real c_dust08 f=E15.8 b=4 n=’Sticking coefficient for coalescence’ u=1 &

c0=’Typically between 0 and 1’

1.0

Typical values are between 0.0 (deactivating this process) and 1.0. The default value is
0.0.

• real c_dust09:
The sticking coefficient for the nucleation rate is specified with e.g.

real c_dust09 f=E15.8 b=4 n=’Sticking coefficient for nucleation’ u=1 &

c0=’Typically between 0 and 1’

1.0

Typical values are between 0.0 (deactivating this process) and 1.0. The default value is
0.0. The standard choice is 1.0.

5.4.13 Radiation Transport Control

In this part of the parameter file the radiation transport module has to be selected. Depending
on this selection a couple of additional parameters have to be specified. Table 12 gives a list of the
parameters and the modules they apply to. The standard routines are now in the MSrad module
for local models and the SHORTrad module for global “Star-in-a-Box” models. The LHDrad
module is not maintained very much anymore.
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Parameter Section LHDrad MSrad SHORTrad

radscheme 5.4.13 * * *
n_radminiter 5.4.13 * * *
n_raditer 5.4.13 * * *
n_radmaxiter 5.4.13 * * *
radraybase 5.4.13 * * *
radraystar 5.4.13 * *
n_radtheta 5.4.13 *
n_radphi 5.4.13 *
n_radsubray 5.4.13 *
n_radthinpoint *
n_radthickpoint 5.4.13 * *
n_radtaurefine 5.4.13 * *
n_radband 5.4.13 *
n_radrsyslevel 5.4.13 *
n_radoutput 5.4.13 *
c_radtcool 5.4.13 *
c_raddcool 5.4.13 *
c_radscool 5.4.13 *
c_radtinci 5.4.13 *
c_raddinci 5.4.13 *
c_radimplicitmu 5.4.13 * *
c_raditereps 5.4.13 * *
c_raditerstep 5.4.13 * *
c_radtvisdtau 5.4.13 *
c_radtvis 5.4.13 *
c_radhtautop 5.4.4 *
c_radcourant 5.4.15 * * *
c_radcourantmax 5.4.15 * * *
c_radmaxeichange 5.4.15 * * *

Table 12: List of radiation transport control parameters and the modules they are relevant for.

• character radscheme:
So far, there exist three different radiation transport modules. The active on can be selected
e.g. with

character radscheme f=A80 b=80 n=’Radiation transport scheme’ &

c0=’LHDrad/MSrad/SHORTrad’ &

c1=’None (skip radiation transport step entirely)’

SHORTrad

Possible values are

◦ None: Skip radiation transport entirely.

◦ LHDrad: (old “supergiant module”) It uses long characteristics and is restricted to an
equidistant grid and open boundaries at all surfaces. Note that the switch -Drhd_r01=1

has to be set during compilation (see Sect. 3.6).

◦ MSrad: (“solar module”) It uses long characteristics. The lateral boundaries have to be
periodic. Top and bottom can be closed or open. Note that the switch -Drhd_r02=1

has to be set during compilation (see Sect. 3.6).

◦ SHORTrad: (new “supergiant module”) It uses short characteristics and is restricted
to an equidistant grid and open boundaries at all surfaces. Note that the switch
-Drhd_r03=1 has to be set during compilation (see Sect. 3.6).
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• integer n_radminiter:
Usually the stability considerations dictate a radiative time step smaller than the hydrody-
namics or tensor viscosity time step. To remedy this situation it is possible to allow several
radiation transport steps per global time step. Hitherto, all three radiation transport mod-
ules support this iteration. The minimum number of iterations (radiative sub-steps) can be
specified e.g. with

integer n_radminiter f=I4 b=4 &

n=’Minimum number of radiation transport iterations’ c0=8

1

If less iterations are needed the time step limit for the next step is increased. This value
will in almost any case (for explicit radiation transport) be set to 1. In the implicit case it
is set to a higher value (typically 5).

• integer n_raditer:
After each complete radiative time step the recommendation for the next time step will be
chosen so that n_raditer iterations will (probably) needed. The parameter can be set e.g.
with

integer n_raditer f=I4 b=4 &

n=’Number of radiation transport iterations’ c0=10

8

For a simulation of a solar-type star (with comparatively long radiative time scales) it will
typically be set to 1. For stars with shorter radiative time scales values around 10 may be
considered. All three radiation transport modules understand this parameter.

• integer n_radmaxiter:
The absolute maximum number of iterations can be specified e.g. with

integer n_radmaxiter f=I4 b=4 &

n=’Maximum number of rad. transport iterations’ c0=30

0

If more iterations are needed the computation for the current time step is stopped and
resumed with a smaller one (which means that the hydrodynamics and the tensor viscosity
step have to be done again). Usually, n_radmaxiter will either be set to a value somewhat
larger than the recommended number of iterations (n_raditer) or to 0 which disables the
check for too many iterations completely. This can be safely allowed in many cases and has
the advantage that there is no need to save the initial model before calling the radiation
transport module, which saves some memory. To disable the iteration of the radiation
transport sub-step set n_radminiter=n_raditer=n_radmaxiter=1. All three radiation
transport modules understand this parameter.

• character radraybase:
Using the modules LHDrad or SHORTrad the orientation of the base axis system can be
selected e.g. with

character radraybase f=A80 b=80 n=’Base axis system’ &

c0=’SHORTrad: unity/random/randomgroup/alternate’ &

c1=’MSrad: lobatto/dblgaus’

random

Allowed values for radscheme=SHORTrad are:

◦ unity: (default) During all time steps and radiative sub-steps the direction of the rays
stays the same.

◦ random: At each time step (and radiative sub-step) a new base axis system is chosen
at random
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◦ randomgroup: At each new time step a new base axis system is chosen at random. It
is kept for all radiative sub-steps.

◦ alternate: Alternate between unity and random orientation matrix.

◦ drift01: Slow drift, algorithm 1.

◦ drift02: Slow drift, algorithm 2.

Because typically only a relatively small number of rays is chosen per time step
(with radraystar) it is advisable to vary the directions of the rays (by choosing
radraybase=random or randomgroup) to cover the entire sphere at least over a longer
time.
Allowed values for radscheme=MSrad are:

◦ lobatto:

◦ dblgaus:

• character radraystar:
Using the modules LHDrad or SHORTrad the list of ray directions (i.e. the number of rays
and their coordinates) relative to the base axis system can be specified with e.g.

character radraystar f=A80 b=80 n=’List of relative ray directions’ &

c0=’x1(1)/x2(1)/x3(1)/oktaeder(3)/tetraeder(4)/cube(4)’ &

c1=’ikosaeder(6)/dodekaeder(10)’

oktaeder

Examples for allowed values are

◦ x1: (N=1) one single ray along x1 axis (not enough to specify fluxes in all directions)

◦ x2: (N=1) one single ray along x2 axis (not enough to specify fluxes in all directions)

◦ x3: (N=1) one single ray along x3 axis (not enough to specify fluxes in all directions)

◦ oktaeder: (N=3, default) octahedron

◦ tetraeder: (N=4) tetrahedron

◦ cube: (N=4)

◦ ikosaeder: (N=6) icosahedron

◦ dodekaeder: (N=10) dodecahedron

◦ list-01, list-01(3): Choose ray systems from a list (oktahedrons, tetrahedrons). If
character radraybase is set to unity the rays will only be aligned to the axes or diag-
onals and thus avoid the time-consuming interpolation step of the short-characteristics
method.

Several other choices are possible, which are meant for test purposes only. Choosing one
of the five Platonic solids (Ops! “German-Greek” names only, so far) means that the 3 to
10 rays are equally distributed over the solid angle (from the center to each corner of the
respective solid).

• integer n_radtheta:
Using the MSrad module the ray directions have to specified in a different way: The number
of ray sets in theta direction can be chosen with e.g.

integer n_radtheta f=I4 b=4 &

n=’NTHETA: Number of ray sets in theta direction’ c0=2

2

• integer n_radphi:
Using the MSrad module the number of ray sets in phi direction can be set e.g. with
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integer n_radphi f=I4 b=4 &

n=’NPHI: Number of ray sets in phi direction’ c0=2

2

• integer n_radsubray:
Using the MSrad module the number of rays per cell (with the same direction) can be
specified e.g. with

integer n_radsubray f=I4 b=4 n=’KPHI: Number of rays per cell’ c0=2

2

• integer n_radthickpoint:
With the MSrad module the lower part of the model can be computed in diffusion approxi-
mation. The number of points in diffusion approximation can be set with e.g.

integer n_radthickpoint f=I4 b=4 &

n=’Number of grid points with optically thick (diff.) approximation’ &

c0=’0: no diffusion approximation’

0

The value should be choosen so that for all points in that region ∆τ > 1 is valid. Setting
this value to 0 means that the diffusion approximation is not used in any part of the model.

• integer n_radtaurefine:
With the LHDrad and the MSrad module the number of points on the rays can be finer than
the number of points in the basic numerical grid. The refinement can be set e.g. with

integer n_radtaurefine f=I4 b=4 &

n=’Refinement factor’

0

• integer n_radband:
It can be specified whether the grey opacity table or the binned frequency-dependent part
of the opacity table is used during the computation. The grey part contains only one bin.
The other (possibly non-grey) contains one or more bins depending on the table chosen.
The parameter is specified with e.g.

integer n_radband f=I4 b=4 n=’Number of frequency bins’ &

c0=’1: grey opacities’ &

c1=’2: non-grey opacities (if available from table)’ &

c2=’3: two bands: 1.grey, 2.CO (density via XCO)’ &

c3=’4: two bands: 1.grey, 2.CO (density from chemistry)’

1

Allowed values are

◦ 1: Use the grey part of the table

◦ 2: Use the other (possibly non-grey, frequency-dependent) part of the table

◦ 3: Use a continuum band plus an infrared band with CO opacity, calculated with CO
equilibrium density

◦ 4: Use a continuum band plus an infrared band with CO opacity, calculated with CO
density resulting from time-dependent chemistry

Only the MSrad module so far can handle non-grey tables.

• integer n_radrsyslevel:
This parameter specifies the ”zero” point of the ray system, default: 0 (MSrad only). The
parameter is specified with e.g.
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integer n_radrsyslevel f=I4 b=4 n=’Zero index of ray system’ &

c0=’0: (default)’ &

0

• integer n_radoutput:
This parameter controls additional output into the file ’rhd.qrad’, default: 0 (MSrad only).
The parameter is specified with e.g.

integer n_radoutput f=I4 b=4 n=’Output level of MSrad’ &

c0=’0: (default)’ &

1

• real c_radtcool:
Parameter for surface cooling option (N_radband≤0) of MSrad. It can be activated with
the parameter

real c_radtcool f=E15.8 b=4 &

n=’Surface cooling’ u=1 &

c0=’0.0: default’

0.0

• real c_raddcool:
Parameter for surface cooling option (N_radband≤0) of MSrad. It can be activated with
the parameter

real c_raddcool f=E15.8 b=4 &

n=’Surface cooling’ u=1 &

c0=’0.0: default’

0.0

• real c_radscool:
Parameter for surface cooling option (N_radband≤0) of MSrad. It can be activated with
the parameter

real c_radscool f=E15.8 b=4 &

n=’Surface cooling’ u=1 &

c0=’0.0: default’

0.0

• real c_radtinci:
Temperature of black body that emits incident radiation, default: 0.0, (MSrad only). It
can be used e.g. with

real c_radtinci f=E15.8 b=4 &

n=’Temperature of black body that sends incident radiation’ u=K &

c0=’0.0: default’

0.0

• real c_raddinci:
Dilution factor (R∗/d)2 of black body that emits incident radiation, default: 0.0, (MSrad
only). It can be used e.g. with

real c_raddinci f=E15.8 b=4 &

n=’Dilution factor of black body that sends incident radiation’ u=1 &

c0=’0.0: default’

0.0
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• real c_radimplicitmu:
So far, only the LHDrad and the SHORTrad module support implicit radiation transport. It
can be activated with the parameter

real c_radimplicitmu f=E15.8 b=4 &

n=’Implicitness parameter for radiation transport’ u=1 &

c0=’0.0: explicit / 0.5: time centered / 1.0: fully implicit’

0.0

Allowed values are

◦ 0.0: Fully explicit radiation transport (possible with all modules)

◦ 0.0 < C < 1.0: Partly implicit radiation transport

◦ 0.5: Radiation transport time-centered

◦ 1.0: Fully implicit radiation transport

Values outside this range do not have much meaning. The implicit transport does not work
efficiently yet: It does not yield significantly larger time steps than possible with a sequence
of purely explicit sub time steps. Additionally, it turns out that the hydrodynamics runs
into trouble if a too large time step (still well within the Courant condition) is requested.

• real c_raditereps:
With activated implicit radiation transport (LHDrad module only) the requested convergence
accuracy of the iteration can be set e.g. with

real c_raditereps f=E15.8 b=4 &

n=’Relative accuracy for radiation iteration’ u=1 &

c0=’Typical value: 1.0E-03’

2.0E-03

• real c_raditerstep:
With activated implicit radiation transport (LHDrad module only) the step size of the iter-
ation can be restricted with e.g.

real c_raditerstep f=E15.8 b=4 &

n=’Step size of radiation iteration’ u=1 &

c0=’Typical values: 0.7,0.81’

1.0

Allowed values are

◦ 0.0 < 1.0: Restricted step size

◦ 1.0: No restriction, standard step size

◦ > 1.0: Extra large steps

This value has to be chosen carefully to get optimal performance. Is the step size too small
the convergence is safe but too slow. A too large step size inhibits convergence and leads
to a decrease in the time step, which results in a bad performance, too.

• real c_radtvisdtau:
Using the LHDrad module the limit in delta optical depth (rho*kappa*dx) below which the
“radiative temperature viscosity” (=temperature smoothing) is to be applied can be set
with e.g.

real c_radtvisdtau f=E15.8 b=4 &

n=’Optical depth limit for temperature viscosity’ u=1

0.1
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The introduction of this “temperature diffusion” is a somewhat desperate and inelegant
attempt to improve the behavior of the Greens function (hot cells should be cooled, cool
cells should be heated). This diffusion is necessary for not well resolved models. It is
switched off with c_radtvisdtau ≤ 0.0.

• real c_radtvis:
Using the LHDrad module the amount of the “radiative temperature viscosity” (=tempera-
ture smoothing) can be specified e.g. with

real c_radtvis f=E15.8 b=4 n=’Temperature viscosity’ u=1

1.6

For well resolved models it should be switched off (with c_radtvis ≤ 0.0).

• real c_tminlimit:
A minimum temperature can be set, that is enforced by the radiation transport module
MSrad3D and SHORTrad by adding energy to the too cool cells, e.g. with

real c_tminlimit f=E15.8 b=4 &

n=’Enforced minimum temperature for radiation transport step’ u=K &

c0=’<=0.0: off (default); 500.0: reasonable value’

400.0

5.4.14 Process Time Management

In this group several parameters can be set which control the start of the time counting during
a simulation and the total length of a job. If either one of the halt conditions below is met,
CO5BOLD finishes the current step, writes a final model (plus some final information to other
files), and stops execution.

For example on a CRAY one typically wants to use most of the CPU time given for an
individual batch job. In this case one can set e.g. real cputime_remainlimit=2000.0 and the
values for the other halt conditions to -1.0 or -1.

• real starttime:
The start time of a simulation is usually taken from the start model file. But sometimes
is simulation is to be started with the final model of a previous run but should start at
time=0.0. This can be achieved by setting the start time with

real starttime f=E15.8 b=4 n=’Start time’ u=s

0.0

Allowed values are

◦ ≥ 0.0: Set the initial time of the simulation to this value and override value from start
model.

◦ < 0.0: (default) Take the initial time from start model.

• integer starttimestep:
The start time step count of a simulation is usually taken from the start model file. But
sometimes is simulation is to be started with the final model of a previous run but should
start at time step=0. This can be achieved by setting the start time step count with

integer starttimestep f=I11 b=4 n=’Start time step number’ u=1

0

Allowed values are

◦ ≥ 0: Set the initial time step of the simulation to this value and override value from
start model.
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◦ < 0: (default) Take the initial time step count from start model.

• real cputime:
Because of the long simulation time usually CO5BOLD will run in some sort of batch mode
which might impose limits on the execution time per run. On a CRAY the CPU time that
is left can be accessed with a special subroutine (in call tremain in timing_module.F90).
On other machines it is possible to specify the allowed total time for the job e.g. with

real cputime f=E15.8 b=4 n=’CPU time’ u=s

1000000.0

During the run of CO5BOLD the leftover CPU time is computed by subtracting the used
CPU time (which is given by e_time=etime(tarray) in timing_module.F90) from the
specified total CPU time for the job.

• real cputime_remainlimit:
Because CO5BOLD needs some time to finish the last time step it should start exiting well
before all CPU time is used up. This amount of buffer CPU time can be specified e.g. with

real cputime_remainlimit f=E15.8 b=4 n=’maximum remaining CPU time’ u=s

2000.0

Its value depends on the size of the model and the speed of the machine (more precisely
the maximum CPU time per time step).

• real endtime:
If the simulation should run up to a certain (stellar) time, its values can be specified e.g.
with

real endtime f=E15.8 b=4 n=’total simulation time limit’ u=s

10000.0

A value < 0.0 deactivates this halt condition: it is not checked at all. If this parameter is
set to a non-negative value a follow-up simulation should not use the same parameter file:
it would stop immediately.

• real plustime:
If the initial model should be advanced by a certain (stellar) time span, this value can be
set e.g. with

real plustime f=E15.8 b=4 n=’simulation advance time’ u=s

5.0E+07

A value < 0.0 cancels this halt condition: it is not checked at all. This condition assures
(if it is the only one) that all individual simulation runs cover (approximately) the same
stellar time.

• integer endtimestep:
If the simulation should run up to a certain time step, its values can be specified e.g. with

integer endtimestep f=I11 b=4 n=’total simulation time step number’ u=1

1234

This might be useful to advance the simulation up to a point shortly before a previous
simulation crashed. A value < 0 cancels this halt condition: it is not checked at all.

• integer plustimestep:
If the initial model should be advanced by a certain number of time steps their number can
be set e.g. with

integer plustimestep f=I11 b=4 n=’simulation advance time step number’ u=1

2000

A value < 0 deactivates this halt condition: it is not checked at all.
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5.4.15 Time Step Control

In this group parameters to control the time step restrictions can be set.
They are important because decide about performance and stability of CO5BOLD. They

should be tested and adjusted for a simulation of a new type of object. But all the dimensionless
parameters can stay unchanged for a group of similar simulations. Only the parameters with an
explicit time dimension should be checked in all cases (they scale with characteristic timescales
and depend particularly on gravity).

• real dtime_start:
The initial time step recommendation of a simulation is usually taken from the start model
file. It can be overwritten e.g. with

real dtime_start f=E15.8 b=4 n=’Start time step’ u=s

1.0E+03

A value < 0.0 means that the original value from the start model is used.

• real dtime_min:
In some rare cases it might be useful to specify explicitly the minimum time step with e.g.

real dtime_min f=E15.8 b=4 n=’Minimum time step’ u=s &

c0=’dtime_min=0.0 => no restriction’

1.0

This value is used even if restrictions from the Courant condition try to enforce a smaller
value. A fixed time step can be prescribed by setting dtime_min = dtime_max to some
positive value. A value dtime_min ≤ 0.0 means that this time step restriction is completely
ignored, which is the case that should usually be chosen.

• real dtime_max:
It is possible to explicitly specify the maximum time step too, e.g. with

real dtime_max f=E15.8 b=4 n=’Maximum time step’ u=s &

c0=’dtime_max=0.0 => no restriction’

1.0E+05

A fixed time step can be prescribed by setting dtime_min = dtime_max to some positive
value. A value dtime_max ≤ 0.0 means that this time step restriction is completely ignored,
which is the case that should usually be chosen.

• real dtime_min_stop:
Sometimes a simulation can run into a pathological state where the time step decreases
rapidly without recovering. To prevent a simulation in such a case from running forever (or
until some other process time restriction applies) without actually advancing significantly
in time, it is possible to specify an absolute minimum time step, e.g. with

real dtime_min_stop f=E15.8 b=4 n=’Minimum time step’ u=s &

c0=’dtime_min_stop=0.0 => no restriction’ &

c1=’dtime < dtime_min_stop => program stop’

1.0

If the actual time step falls below this value, the simulation finishes gracefully. This val-
ues has to specified as absolute time and has to be chosen carefully for each individual
model (or each group of models). This time step restriction can be switched off by setting
real dtime_min_stop=0.0. But in general, one should keep it activated and try to find a
proper positive value.

• real dtime_incmax:
Sometimes a time step restriction can lead to a sudden drastic drop in the time step. To
prevent unwanted oscillations in the size of the time step its increase can be restricted e.g.
with



5.4 Parameter File: rhd.par 119

real dtime_incmax f=E15.8 b=4 n=’Maximum time step increment factor’ u=1 &

c0=’dtime_max<1.0 => no restriction’ c1=’typically 1.1’

1.2

This value specifies the maximum factor by which the time step can be increased from step
to step (even if the new Courant condition etc. would allow more). A value value < 0.0

deactivates this restriction.

• real c_courant:
A typical Courant factor for each 1D hydrodynamics step can be specified with e.g.

real c_courant f=E15.8 b=4 n=’HD Courant factor’ u=1 &

c0=’range: 0.0 < C_Courant <= 1.0, typically: 0.5’

0.5

From the minimum cell crossing time of a partial wave and this factor a recommendation
for the next time step is computed. A value of 1.0 is the upper limit which guarantees
stability for some simple linear test problems. Values around 0.5 are recommended for fully
non-linear simulations.

• real c_courantmax:
A typical maximum Courant factor for each 1D hydrodynamics step can be specified with
e.g.

real c_courantmax f=E15.8 b=4 n=’maximum HD Courant factor’ u=1 &

c0=’range: C_Courant < C_Courantmax <= 1.0, typically: 0.9’

0.8

From the minimum cell crossing time of a partial wave and this factor an upper limit for the
current time step is computed. If this limit is exceeded the computation is interrupted and
resumed with a smaller time step (based on c_courant). Usually this parameter should be
restricted by c_courant < c_courantmax ≤ 1.0. A value around 0.8 appears to be a good
choice.

• real c_hydsoundcourant:
In addition to the normal Courant factor c_courant that gives a time-step restriction based
on c+ abs(v1), another factor can be specified that is based only on the sound speed c, e.g.
with

real c_hydsoundcourant f=E15.8 b=4 n=’HD sound-speed Courant factor’ u=1 &

c0=’range: 0.0 < c_hydsoundcourant <= 0.5, typically: 0.45’

0.48

The check for this condition should be activated (by giving c_hydsoundcourant a positive
value) for 3D simulations with hdsplit=CTU, see Sect. 5.4.7 and Table 11. In this case, a
value slightly smaller than 0.5 is a reasonable choice.

• real c_hydsoundcourantmax:
In addition to the normal maximum Courant factor c_courantmax that gives a time-step
restriction based on c + abs(v1), another factor can be specified that is based only on the
sound speed c, e.g. with

real c_hydsoundcourantmax f=E15.8 b=4 &

n=’maximum HD sound-speed Courant factor’ u=1 &

c0=’range: c_hydsoundcourant < c_hydsoundcourantmax <= 0.5, typically: 0.5’

0.5

The pair c_hydsoundcourant/c_hydsoundcourantmax works together in a the same way
as described above for c_courant/c_courantmax.
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• real c_hydexpcourant:
In addition to the usual Courant condition one could restrict the maximum expansion
between two adjacent grid cells with e.g.

real c_hydexpcourant f=E15.8 b=4 n=’HD expansion Courant factor’ u=1 &

c0=’range: 0.0 < C_hydExpCourant < C_hydExpCourantmax, typically: 0.3’

0.2

• real c_hydexpcourantmax:
This parameter can be set e.g. with

real c_hydexpcourantmax f=E15.8 b=4 n=’HD max. expansion Courant factor’ u=1 &

c0=’range: 0.0 < C_hydExpCourant < C_hydExpCourantmax, typically: 0.5’

0.3

The pair c_hydexpcourant/c_hydexpcourantmax works analogously to the pair
c_courant/c_courantmax.

• real c_maxeichange:
The relative change in internal during a single 1D hydrodynamics step can be used to
restrict the time step by specifying

real c_maxeichange f=E15.8 b=4 n=’maximum hydro energy change’ u=1 &

c0=’range: 0.1 - 1.0, typically 0.5, off:0.0’

0.5

The default is 0.9. Nevertheless, since the Roe solver is constructed to handle shocks and
rapid changes in density and energy, this check is usually not needed. It can be switched
off by setting c_maxeichange=0.0.

• real c_radcourant:
The radiation transport routines are subject so time step restrictions, too. And in typical
scenarios, its the radiative timescale are the shortest one and poses the tightest restriction.
Contrary to the hydrodynamics routines the timescale relevant for the stability of the radi-
ation transport scheme can only be estimated using the characteristic timescale of a small
sinusoidal temperature disturbance with a wavelength of the grid size in a homogeneous
background and grey radiative energy exchange. The “radiative Courant” factor can be set
e.g. with

real c_radcourant f=E15.8 b=4 n=’RAD Courant factor’ u=1 &

c0=’range: 0.0 < C_radCourant, typically: 1.0’

2.5

If the estimate of the timescale would be correct a value of 2.0 would cause the temperature
fluctuation on the shortest scale to flip its sign, setting the absolute stability limit. A value
of 1.0 would lead to a damping of theses fluctuations within one time step. But in practice,
even higher values (for example 2.5) show a reasonable behavior. This might be due to
the effect that the shortest radiative timescale only occurs at single points (or in 2D layers)
but that already the immediate neighbors have longer timescales and can damp the “most
sensitive points”. Based on real c_radcourant the recommended typical radiative time
step is computed.

• real c_radcourantmax:
With this parameter the maximum allowed radiative time step is prescribed as e.g. in

real c_radcourantmax f=E15.8 b=4 n=’maximum RAD Courant factor’ u=1 &

c0=’range: C_radCourant <= C_radCourantmax, typically: 2.0’

3.0

This value will typically be somewhat larger than real c_radcourant.
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• real c_radmaxeichange:
The relative energy change per radiative sub step can be restricted e.g. with

real c_radmaxeichange f=E15.8 b=4 n=’maximum radiative energy change’ &

u=1 c0=’range: 0.01 - 1.0’

0.25

The default is 0.5. Values between 0.1 and 0.5 seem reasonable. A value ≤ 0.0 deactivates
this time step check. However, the check of the radiative energy change should usually be
performed. A way to maximize the radiative time step (and therefore the performance of the
entire code) can be to first set real c_radmaxeichange to a proper value (say 0.25). Then,
real c_radcourant (and real c_radcourantmax) are adjusted (by trial and error) in a
way that the radiative time step is almost always restricted by the “Courant” condition and
only sometimes in extreme cases by the maximum energy change restriction. The computed
output intensity should be checked for the size of its fluctuations due to a possibly too large
value of c_radmaxeichange.

• real c_radthintimefac:
In the LHDrad module only the radiative time step restriction due to energy changes can be
relaxed further in the optically thin by specifying e.g.

real c_radthintimefac f=E15.8 b=4 &

n=’time scale reduction in optically thin’ u=1 &

c0=’range: 0.1 - 1.0, typically: 0.5’

0.60

A value ≤ 0.0 or real c_radtvisdtau ≤ 0.0 switches off this relaxation.

• real c_viscourant:
The tensor viscosity routines have their own time step restriction. The recommended typical
viscous time step can be set e.g. with

real c_viscourant f=E15.8 b=4 n=’viscous Courant factor’ u=1 &

c0=’range: 0.0 < C_visCourant, typically: 0.5-1.0, better 0.25’

0.5

As the corresponding viscous timescale is typically longer than the radiative one (and even
the Courant timescale from the Roe hydrodynamics routines) this factor is often irrelevant.
The absolute upper stability limit is located at c_viscourant=2.0. Values around 0.5 to
1.0 are more typical. In some extreme cases in simulations of the solar chromosphere it
has turned out that an even lower value (0.2) is necessary to prevent some spikes in the
neighborhood of strong colliding shocks.

• real c_viscourantmax:
The absolute upper limit for the viscous time scale can be set with

real c_viscourantmax f=E15.8 b=4 n=’maximum viscous Courant factor’ u=1 &

c0=’range: C_visCourant <= C_visCourantmax, typically smaller than 2.0’

1.0

Its value should be slightly above c_viscourant and below 2.0.

5.4.16 Input/Output Control

With this group of parameters the start model and the type and amount of output can be
specified. Parameters with the suffix “_start” describe the initial model, these with suffix “_end”
the corresponding final model. Additional data can be written into the file described by the
parameters with suffix “_full” (full 2D/3D model dumps, huge, see Sect. 5.1) or into the file
described by the parameters with suffix “_mean” (additional information, see Sect. 5.3).
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• real dtime_out_full:
The interval between datasets in the full file can be set e.g. with

real dtime_out_full f=E15.8 b=4 n=’Output time step’ u=s &

c0=’dtime_out_full < 0.0 => no output’ &

c1=’dtime_out_full = 0.0 => output every time step’

2.0E+06

Allowed values are

◦ < 0.0: No output to this file

◦ = 0.0: Output at every time step. Attention: This can produce HUGE files in no
time.

◦ > 0.0: Output to full file approximately every dtime_out_full seconds.

Some examples: The “classical” value for this output for simulations of solar granulation
is 20 sec. To save memory this can be increased to 30 sec. But in this case chromospheric
shocks are very badly resolved. To cover them properly, a sampling rate of 10 sec or below
is needed.

• real dtime_out_end:
The interval between outputs into the end file can be set e.g. with

real dtime_out_end f=E15.8 b=4 n=’Output time step’ u=s &

c0=’dtime_out_end < 0.0 => output only at very end’ &

c1=’dtime_out_end = 0.0 => output every time step’ &

c2=’dtime_out_end > 0.0 => output every dtime_out_end seconds (and at end)’

1.0E+04

Allowed values are

◦ < 0.0: Output only at very end of run (classical behavior).

◦ = 0.0: Output at every time step. Attention: This can produce lots of I/O operations
and can take a long time. However, it will not produce a large file. Instead, the end

file is written over and over again.

◦ > 0.0: Output to end file approximately every dtime_out_end seconds (and at the
very end of the simulation).

The standard value is -1.0, not enabling any additional output into this file. A value a
reasonable factor smaller than real dtime_out_full seems appropriate.

• real dtime_out_mean:
The interval between datasets in the mean file can be set e.g. with

real dtime_out_mean f=E15.8 b=4 n=’Output time step’ u=s &

c0=’dtime_out_mean<0.0 => no output’

0.5E+06

Allowed values are

◦ < 0.0: No output to this file

◦ = 0.0: Output at every time step.

◦ > 0.0: Output to mean file approximately every dtime_out_mean seconds.

Because the size of one mean dataset is much smaller than one full dataset, it is possible
to request a higher sampling rate without using too much disk space.

• integer n_outslicedim_mean:
The index of the optional slice in the mean output file can be specified with e.g.
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integer n_outslicedim_mean f=I4 b=4 n=’index of slice in mean output file’ u=1 &

c0=’0: no output of slice’ &

c1=’1, 2, 3: output of slice with plane perpendicular to this direction’

2

With a value of 0 the output is suppressed. A value of 1, 2, 3 indiciates the direction of the
normal to the output plane: for instance, in a local 3D ”box-in-a-star” model with gravity
along direction 3 a value of 3 gives a horizontal plane in the middel of the model (useful
only in special cases) whereas a value of 2 (or 1) gives a vertical slice with a horizontal
and the vertical axis – useful for movies of 2D slices. The grid index of the slice cannot be
specified.

• integer outdim_chu1:
The dimension of an additional output chunk into a separate file can be specified with this
parameter (a 2×3 integer array). The output of a horizontal slice at the 20th layer from
the bottom can be requested with:

integer outdim_chu1 d=(1:2,1:3) f=I5 b=4 p=6 n=’Chunk 1 dimension’ u=1 &

c0=’0: start from first, 9999: end with last’

0 9999 0 9999 20 20

The index ranges go from 1 to the number of elements in that dimension. Specifying a
lower first or a larger last dimension (as in the example), means that all elements will be
taken. The output sampling rate is the same a for mean files. Attention: a high sampling
frequency of large chunks can produce large files very quickly.

• character infile_start:
The filename of the initial model is specified e.g. with

character infile_start f=A80 b=80 n=’File name of start model’

rhd.sta

Default is rhd.sta (for a parameter file used within a batch system). Typical filenames are
st35gm04n01_01.sta or gt57g44n20dz.end.

• integer istep_in_start:
The index number of the dataset in the start model file to be used can be specified, e.g.
with

integer istep_in_start f=I4 b=4 n=’Number of dataset to read as start model’ &

u=1 c0=’1: first dataset (default), 2: second dataset, ...’

1

• character outfile_end:
The file name for the final model can be specified with e.g.

character outfile_end f=A80 b=80 n=’Output file name’

rhd.end

The default is rhd.end. Leaving it empty means that no final model is written. This of
course inhibits follow-up simulations but can be useful to save time and disk space for some
tests.

• character outfile_full:
The name of the file for the output of additional full models at regular intervals (see Sect. 5.1)
can be given with e.g.

character outfile_full f=A80 b=80 n=’Output file name’

rhd.full
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Leaving it empty means that no file of this type is written.

• character outfile_mean:
The name of the file for the output of additional information (average stratification, mean
fluxes, surface intensities) at regular intervals (see Sect. 5.3) can be specified with e.g.

character outfile_mean f=A80 b=80 n=’Output file name’

rhd.mean

Leaving it empty means that no file of this type is written.

• character outfile_chu1:
The name of the file for the output of an additional data chunk. at regular intervals (the
same as for mean file) can be specified with e.g.

character outfile_chu1 f=A80 b=80 n=’Output file name for chunks’

rhd.chu1

The UIO format is the same as specifiec for mean files. Leaving the name empty means
that no file of this type is written.

• character outform_end:
The format (see Sect. 4.3.1) of the final model files can be chosen e.g. with

character outform_end f=A80 b=80 n=’Output file format’ &

c0=’formatted/unformatted’

unformatted

Allowed values are

◦ unformatted: (default) fast compact (possibly machine-dependent) output: strongly
recommended

◦ formatted: slow (machine-independent) output, big files

• character outconv_end:
The conversion type (see Sect. 4.3.1) of the final model files can be specified e.g. with

character outconv_end f=A80 b=80 n=’Output file conversion’ &

c0=’ieee_4/ieee_8/crayxmp_8/native’

ieee_4

The allowed values depend on the machine. Leaving this field empty means that the default
is chosen that is build into the local UIO module. If the type ieee_4 is supported (which
is always the case, so far) it should be chosen.

• character outform_full:
The format (see Sect. 4.3.1) of the full model files can be chosen e.g. with

character outform_full f=A80 b=80 n=’Output file format’ &

c0=’formatted/unformatted’

unformatted

Allowed values are

◦ unformatted: (default) fast compact (possibly machine-dependent) output: strongly
recommended

◦ formatted: slow (machine-independent) output, big files

• character outconv_full:
The conversion type (see Sect. 4.3.1) of the full model files can be specified e.g. with
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character outconv_full f=A80 b=80 n=’Output file conversion’ &

c0=’ieee_4/ieee_8/crayxmp_8/native’

ieee_4

The allowed values depend on the machine. Leaving this field empty means that the default
is chosen that is build into the local UIO module. If the type ieee_4 is supported (which
is always the case, so far) it should be chosen.

• character outform_mean:
The format (see Sect. 4.3.1) of the additional data files can be chosen e.g. with

character outform_mean f=A80 b=80 n=’Output file format’ &

c0=’formatted/unformatted’

unformatted

Allowed values are

◦ unformatted: (default) fast compact (possibly machine-dependent) output: strongly
recommended

◦ formatted: slow (machine-independent) output, big files

• character outconv_mean:
The conversion type (see Sect. 4.3.1) of the additional data files can be specified e.g. with

character outconv_mean f=A80 b=80 n=’Output file conversion’ &

c0=’ieee_4/ieee_8/crayxmp_8/native’

ieee_4

The allowed values depend on the machine. Leaving this field empty means that the default
is chosen that is build into the local UIO module. If the type ieee_4 is supported (which
is always the case, so far) it should be chosen.

5.4.17 Additional Information, Obsolete and Test Parameters

• real abux:
This optional information parameter can be specified with

real abux f=E15.8 b=4 n=’hydrogen abundance (number fraction)’ u=1 &

c0=’standard solar mixture’

0.90851003E+00

It has no practical consequences because the actually used chemical composition is deter-
mined by the files for equation of state and opacity.

• real abuy:
This optional information parameter can be specified with

real abuy f=E15.8 b=4 n=’helium abundance (number fraction)’ u=1 &

c0=’standard solar mixture’

0.90850003E-01

It has no practical consequences because the actually used chemical composition is deter-
mined by the files for equation of state and opacity.

• real qmol:
This optional information parameter can be specified with

real qmol f=E15.8 b=4 n=’mean molecular weight’ u=u &

c0=’standard solar mixture’

0.13018000E+01
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It has no practical consequences because the actually used chemical composition is deter-
mined by the files for equation of state and opacity.

• real gamma:
This optional information parameter can be specified with

real gamma f=E15.8 b=4 n=’Adiabatic coefficient’ u=1 &

c0=’0.0/1.6666666666666/1.4’

0.0

It has no practical consequences because the actually used chemical composition is deter-
mined by the files for equation of state and opacity.

• real c_visneu1:

real c_visneu1 f=E15.8 b=4 &

n=’Linear viscosity parameter (von Neumann-Richtmyer type)’ u=1

0.0

• real c_visneu2:

real c_visneu2 f=E15.8 b=4 &

n=’Quadratic viscosity parameter (von Neumann-Richtmyer type)’ u=1

0.0

• real c_radkappasmooth:
In the LHDrad module the opacity along each ray can be smoothed. The amount of smooth-
ing can be set e.g. with

real c_radkappasmooth f=E15.8 b=4 n=’Opacity smoothing parameter’ u=1 &

c0=’0.0: no smoothing, 0.25: light smoothing, 0.666: strong smoothing’

0.0

The smoothing can perhaps reduce the noise in the intensity images somewhat but has no
general beneficial effect and should usually not be used.

• real c_radtsmooth:
In the LHDrad module the 3D temperature array can be smoothed. The amount of smooth-
ing can be set e.g. with

real c_radtsmooth f=E15.8 b=4 n=’Temperature smoothing parameter’ u=1 &

c0=’0.0: no smoothing, 0.5: reasonable smoothing, 1.0: max. smoothing’

0.0

The smoothing can sometimes reduce the noise in the intensity images but causes/amplifies
some anomalies of the radiative Greens function: Some cool cell just above the sharp sub-
photospheric temperature drop are not heated but cool further down. Negative temperature
spikes may result. This smoothing should not be used anymore.

• character radpressure:
In the LHDrad module there exists a simple prescription for the radiative pressure (reason-
able in the optically thin) which can be activated with

character radpressure f=A80 b=80 n=’Radiation pressure mode’ &

c0=’on/off’

on

Allowed values are
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◦ on: Radiation pressure on.

◦ off: Radiation pressure off.

The scheme is pretty slow and wrong in the optically thick. Do not use! However, the
SHORTrad version is much more advance and can be used, even if it might require some
more testing.

• real c_radtintminfac:
In the LHDrad module: The fraction the interpolated temperature (at a point on the ray)
may exceed the minimum temperature at its four neighbors on the HD grid can be set e.g.
with

real c_radtintminfac f=E15.8 b=4 &

n=’Temperature interpolation parameter’ u=1 &

c0=’<1.0: only bilinear, 1.1: reasonable weighting between min. und bil.’

0.0

The introduction of this parameter was an attempt to reduce the negative (cooling) effect
of a single hot cell on its cool neighbors. It should be switched off e.g. by setting it to 0.0.

• integer dtimestep_out_fine:
This parameter can be specified but there is no corresponding output file in CO5BOLD yet.

integer dtimestep_out_fine f=I4 b=4 n=’Output time step number’ u=1 &

c0=’dtimestep_out_fine<0 => no output’

-1

• character outfile_fine:
The name of the file for the output of additional information at regular (small) intervals
can be specified with e.g.

character outfile_fine f=A80 b=80 n=’Output file name’

rhd.fine

Leaving it empty means that no file of this type is written. Specifying it means the same
(yet).

• character outform_fine:
The format (see Sect. 4.3.1) of the files with frequent output can be chosen e.g. with

character outform_fine f=A80 b=80 n=’Output file format’ &

c0=’formatted/unformatted’

unformatted

Allowed values are

◦ unformatted: (default) fast compact (possibly machine-dependent) output: strongly
recommended

◦ formatted: slow (machine-independent) output, big files

This parameter can be specified but there is no corresponding output file in CO5BOLD yet.

• character outconv_fine:
The conversion type (see Sect. 4.3.1) of the files with frequent output can be specified e.g.
with

character outconv_fine f=A80 b=80 n=’Output file conversion’ &

c0=’ieee_4/ieee_8/crayxmp_8/native’

ieee_4
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The allowed values depend on the machine. Leaving this field empty means that the default
is chosen that is build into the local UIO module. If the type ieee_4 is supported (which
is always the case, so far) it should be chosen. This parameter can be specified but there is
no corresponding output file in CO5BOLD yet.

• real c_visdrag:
This viscosity parameter controls the drag force which is (if requested) applied inside the
hydrodynamics routines themselves. It does not act on velocity gradients as usual viscosity
but applies a force proportional to the velocity itself (but with the opposite sign). The
amount can be specified e.g. with

real c_visdrag f=E15.8 b=4 &

n=’Drag viscosity parameter’ u=1

0.001

The value gives the fraction the velocity is reduced per time step. Therefore, reasonable
values lie between 0.0 and 1.0. In almost every case the drag forces will be switched off
(c_visdrag=0.0). If e.g. strong pulsation have to be damped in the initial phase of a
simulation a value around 0.001-0.01 seems appropriate.

• rhd_roe1d_slope_l01:
in rhd_hyd_module.F90, (“rhd roe 1 dimension slope loop 01”).
Category: feature activation.
When this compiler switch is set, a new extra stabilization mechanism can be activated: If
one of the reconstruction methods VanLeer, Superbee, or PP (see Sect. 5.4.7) is activated,
the slope can be reduced (by averaging with the results from a MinMod reconstruction) by
setting c_slopered (see Sect. 5.4.7) to a positive non-zero value. This can improve the
stability without significantly reducing the effective numerical resolution. Switch values:

◦ 0: (default) no slope reduction.

◦ 1: slope reduction in case of expansion wave.

◦ 2: slope reduction in case of strong density contrast.

• IDF:
in rhd_hyd_module.F90, (“Integer Delta Flux”).
Category: performance enhancement.
Number of padding cells for flux-like variables. This number was introduced to check
whether the increase of the size of vectors for flux-like quantities (defined at cell boundaries)
can improve the performance (especially on a CRAY machine). The gain is marginal (if
present at all). The parameter is usually set to zero or left undefined. Values:

◦ 0: (default) no padding cells

◦ 1,2,3,. . . : extra padding cells

• rhd_hyd_roe1d_l01:
in rhd_hyd_module.F90, (“rhd hydrodynamics roe 1 dimension loop 01”).
Category: performance enhancement.
The computation of the Roe fluxes can be done by either of two sets of routines to find the
set which gives optimum performance (with essentially the same results). Values:

◦ 0: (default) lots of small routines acting on scalars, inlining needed, cache reuse is
optimized

◦ 1: routines acting on arrays, more temporary arrays necessary, vectorization is easier
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5.5 Additional Control and Status Files: rhd.stop, rhd.cont, rhd.done, and
rhd.dump

Before each time step CO5BOLD checks in the working directory whether the file rhd.stop exists.
If it has been generated (e.g. with touch rhd.stop), the code exits gracefully, i.e. it produces a
proper final model, which can be used to restart the code. This method of stopping a simulation
is to be preferred over a simple kill or qdel command because it allows to analyze the state of
the model just at the end of the simulation and a smooth restart.

Before the restart the rhd.stop file has to be deleted! The simulation can be continued by
just initiating a new run. If the file rhd.cont exists at the beginning of a simulation, the code
tries to resume an interrupted computation: The initial model will not be taken from the start
model file (infile_start) but from the final model (outfile_end). The data for the full and
the mean file is not written into new files but will be appended to the existing ones.

In this way a simulation can be interrupted and continued in a fairly safe way. It is possible
to analyze the final model and to changes values in the parameter file. Keep in mind that after
a restart with rhd.cont the specifications about the length of the job (e.g. the number of time
steps) will be counted from the restart point and not from the beginning of the original simulation.

To interrupt a job with rhd.stop can be very handy. The continuation with rhd.cont and
the old parameter file is not to be preferred over an ordinary restart with a new parameter file.

At the beginning of every time step CO5BOLD checks in the working directory whether the
file rhd.dump exists. If it has been generated (e.g. with touch rhd.dump) and the file rhd.snap

does not exist, the current model is written into rhd.snap. It has the same file properties (format
and conversion) as the regular rhd.end file. The run of the simulation itself is not modified. This
feature might be useful for debugging purposes.

If a run was successful i.e. it was completed because one of the regular termination conditions
was fulfilled (e.g. the requested number of time steps was performed) the exit status file rhd.done
is produced. Currently, it contains the date and time of its generation. The existence of this file
can be checked within a script to determine if the simulation was successful (and should be
continued). Note: the existence of an rhd.end file only indicates that CO5BOLD managed to
exit gracefully – due to an error or in a regular way.

5.6 Text Output: rhd.out

During execution – expecially during the initialization phase – CO5BOLD writes lots of informa-
tion to standard output:

After the header its with a block “Compiler call”, e.g.

pgf90 -byteswapio -fast -Mvect=sse -Mcache_align -Minfo=inline -Minline=rhd_hyd_a

vg,rhd_hyd_upwind,rhd_hyd_pred0,rhd_hyd_predm,rhd_hyd_predp,rhd_hyd_alpha,rhd_h

yd_constanteq,rhd_hyd_minmodeq,rhd_hyd_minmod,rhd_hyd_vanleereq,rhd_hyd_vanleer

,rhd_hyd_superbeeeq,rhd_hyd_superbee,rhd_hyd_ppeq,rhd_hyd_pp,rhd_hyd_hdflux,rhd

_hyd_entropyfix -Minline=rhd_rad3d_raylhd,rhd_rad3d_solve,rhd_rad3d_solveeq,rhd

_shortrad_operator,rhd_shortrad_dtauop -Drhd_hyd_roe1d_l01=0 -Drhd_r02 -Drhd_r0

3 -DMSrad_raytas1 -Drhd_hyd_entropyfix_p01=1 -Drhd_roe1d_step_t01 -Drhd_roe1d_f

lux_t01 -Drhd_vis_t01 -Drhd_bound_t01 -Drhd_shortrad_step_t01 -Drhd_shortrad_fo

rmal_t01 -Drhd_shortrad_lambda_t01

These lines were produced by the configure script (see Sect. 3.5) and written into the file

compiler_flags.info

which is accessed from rhd.F90 via include during compilation.

Various modules now have a routine “XXX_switchinfo” that prints the values of the compiler
switches used during the compilation of that particular module. The output can look e.g. like

Compiler switches: rhd_hyd_module .........................

IDF: 0
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rhd_hyd_gravcorr_p01: 5

rhd_hyd_entropyfix_p01: 1

rhd_hyd_upwind_p01: 0

rhd_hyd_roe1d_l01: 0

rhd_roe1d_step_l01: 0

rhd_roe1d_slope_l01: 0

rhd_roe1d_flux_l01: undefined

rhd_bound_t01: defined

rhd_roe1d_flux_t01: defined

rhd_roe1d_step_t01: defined

See Sect. 3.6 for more information about the meaning of the values.
The reading of the parameter file starts with

ACTION: Read parameter file <<<<<<<<

After a parameter is read, its value is printed (see Sect. 5.4)
The line

ACTION: Load EOS data <<<<<<<<

indicates the start of the reading of the equation of state data. It is followed by some information
about the EOS table in use.

Similarly, the line

ACTION: Load opacity tables <<<<<<<<

indicates the start of the reading of the opacity data. The information that follows is taken
directly from the header of the opacity table.

Currently, the last file to be read is the start model, which is announced by

ACTION: Read start model <<<<<<<<

and followed by some information about the start model, e.g. the number of grid points and a
new section showing the quantities actually read, e.g.

Properties of start model:

time "time" [s]

xc1 "x1 coordinates of cell centers" [cm]

xc2 "x2 coordinates of cell centers" [cm]

xc3 "x3 coordinates of cell centers" [cm]

xb1 "x1 coordinates of cell boundaries" [cm]

xb2 "x2 coordinates of cell boundaries" [cm]

xb3 "x3 coordinates of cell boundaries" [cm]

rho "Density" [g/cm^3]

ei "Internal energy" [erg/g]

v1 "Velocity 1" [cm/s]

v2 "Velocity 2" [cm/s]

v3 "Velocity 3" [cm/s]

quc001 "Number density of CO" [1/cm^3] advect(1)

bb1 "Magnetic field 1" [G]

bb2 "Magnetic field 2" [G]

bb3 "Magnetic field 3" [G]

It might follow

ACTION: Initialize MS radiation transport routines <<<<<<<<

And finally

ACTION: Open output files <<<<<<<<
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which indicates that the rhd.full file (see Sect 5.1)) and the rhd.mean file (see Sect 5.3)) have
been opened and now contain a header.

The end of the initialization phase and the beginning of the proper simulation is marked by
e.g.

================================ Start Computation =================================

=== Time step number: itime= 47050 time= 2.5821813E+08 t_job= 8.510000E+00 ===

The output for a typical simulation time step can look like (for a supergiant model with
SHORTrad radiation transport)

--- Time step number: itime= 49048 time= 2.6822680E+08 t_job= 1.272180E+06 ---

dtime= 5.3047E+03 HD= 1.4838E+04 RAD= 5.3047E+03 VIS= 1.0723E+05

Luminosity per core volume: 4.49999049E-02

HYD 1: N_cellsperchunk, n_chunks: 10000 1410

HYD 2: N_cellsperchunk, n_chunks: 10000 1410

HYD 3: N_cellsperchunk, n_chunks: 10000 1410

VIS3D: N_cellsperchunk, n_chunks: 10000 1360

=== Start of rhd_shortrad_step ===

n_subdtime: 1

minmax(T) 1.111651E+03 1.630733E+05

Main ( 1/ 3) ray direction 2: 0.000000 1.000000 0.000000 -----------------------

Main ( 2/ 3) ray direction 3: 0.707105 0.000000 0.707109 -----------------------

Main ( 3/ 3) ray direction 3: -0.707105 0.000000 0.707109 -----------------------

Time step ratio: dtime/dtime_rad: 1.750409E+01

dtime_:rad,drhoei,limit_this,all: 6.667E+02 2.510E+03 6.276E+02 0.000E+00

n_subdtime: 2

minmax(T) 1.116348E+03 1.630658E+05

Main ( 1/ 3) ray direction 1: 1.000000 0.000000 0.000000 -----------------------

Main ( 2/ 3) ray direction 3: 0.000000 0.707105 0.707109 -----------------------

Main ( 3/ 3) ray direction 3: 0.000000 -0.707105 0.707109 -----------------------

Time step ratio: dtime/dtime_rad: 1.836970E+01

dtime_:rad,drhoei,limit_this,all: 6.353E+02 3.188E+03 7.971E+02 6.276E+02

...

n_subdtime: 8

minmax(T) 1.118540E+03 1.630164E+05

Main ( 1/ 3) ray direction 2: -0.707105 0.707109 0.000000 -----------------------

Main ( 2/ 3) ray direction 2: 0.707105 0.707109 0.000000 -----------------------

Main ( 3/ 3) ray direction 3: 0.000000 0.000000 1.000000 -----------------------

Time step ratio: dtime/dtime_rad: 1.791384E+01

dtime_:rad,drhoei,limit_this,all: 6.515E+02 3.894E+03 8.884E+02 4.814E+03

=== End of rhd_shortrad_step =====

A simulation ends with e.g.

=== Time step number: itime= 49050 time= 2.6823742E+08 t_job= 1.273407E+06 ===

================================ End Computation ===================================

A proper exit is indicated by

------------------------------------------------------------------------------------

Exit information: Requested number of time steps done

Exit status: 0

------------------------------------------------------------------------------------

In this case a file rhd.done (see Sect. 5.5) is produced. A messages like

************************************************************************************

Severe error: SHORTRAD: Time step below absolute limit

Error index: 100

Interrupt computation

************************************************************************************
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marks an exit with an error and without rhd.done file. A message about the final model like

ACTION: Write final model <<<<<<<<

Model file ’rhd.end’ opened on channel 12

====================================================================================

is followed by some timing information like e.g.

Timing statistics (rate x factor= 1000000 x 10000)

========================================================

Process Samples Total time Mean time

[sec] [sec]

-------------------------------------------------------------------------------

RHD code 1 410.830017 410.830017

uio output routines 27 37.469997 1.387778

HYD: bound_3Dcenter 2000 3.540000 0.001770

Hydrodynamics routines 2000 48944.660156 24.472330

HYD: 1 2000 16350.610352 8.175305

HYD: 2 2000 16052.459961 8.026230

HYD: 3 2000 16520.798828 8.260400

Viscosity routines 3D 2000 25446.400391 12.723200

VIS: make_box(modelvis) 2000 0.010000 0.000005

VIS: copy_box(modelvis) 2000 1750.960083 0.875480

VIS: delete_box(modelvis) 2000 0.000000 0.000000

Radiation transport routines 2000 243729.000000 121.864502

SHC: step 2020 244064.515625 120.824020

SHC: step: dtime: init: EOS 16024 49312.738281 3.077430

SHC: step: dtime: explicit 16024 174542.343750 10.892558

SHC: formal 16024 170085.437500 10.614418

SHC: formal: init 16024 35591.378906 2.221129

SHC: formal: dirloop 16024 133010.687500 8.300717

SHC: formal: exp 28014 9014.280273 0.321778

SHC: formal: exp: expl2t 28014 3950.409912 0.141016

SHC: formal: dir3 36083 63222.242188 1.752134

SHC: time: dir3 36083 19676.009766 0.545299

SHC: formal: limitei 16024 1306.419922 0.081529

SHC: step: dtime: final 16024 12730.129883 0.794441

SHC: formal: dir2 11959 22205.000000 1.856761

SHC: time: dir2 11959 5731.149902 0.479233

SHC: formal: dir1 4044 10674.429688 2.639572

SHC: time: dir1 4044 1893.760010 0.468289

SHC: step: dtime: final(output) 181 8620.870117 47.629116

Radiation trans.: output only 20 335.929993 16.796499

In this example the value for the overall time (“rhd code 410.830017 sec”) is not useful because
of an overflow in the counter. However, it is evident that the radiation transport consumes most
of the time (243729.000000 sec), followd by the hydrodynamics routines (48944.660156 sec) and
the tensor viscosity routines (25446.400391 sec). Some of these values are split further.

5.7 Chemistry Input

The number densities of the chemical species must be provided as cell-centred quantities quc in
cm−3 (see Sect. 3.6). The array (UIO) headers must be named following this example: ”Number
density of H2”.

The chemistry input file contains all data for the reaction network. It is a text file with a
strict format following the UMIST 99 ratefile standard:

FORMAT(I4,5(A8,1X),2(1X,A4),1X,1PE8.2,3X,0PF5.2,2X,0PF8.1,A16)

It consists of 12 columns with the following meaning:
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col. meaning format

1 reaction ID I4
2-4 reactants (max. 3 symbols with 8 characters) 3(A8,1X)
5-8 products (max. 4 symbols, first two with 2(A8,1X),2(1X,A4)

8 characters, last 2 with 4 characters 2(A8,1X),2(1X,A4)
9 reaction coefficient α 1PE8.2
10 reaction coefficient β 0PF5.2
11 reaction coefficient γ 0PF8.1
12 reference A16

The symbols are usually the chemical symbols of the involved species, e.g. C for carbon. The
present species are recognised automatically. Molecules consisting of more than one atom of the
same chemical element, e.g. H2, are also possible (H2). A special case is the representative metal
M which is a catalytic element only, i.e. it must appear as reactant and product. The special
symbol PHOTON represents a photon as reaction product. Currently no photon can be used as
reactant ionising or exciting another species.

The reaction coefficients are needed to calculate the chemical rates at runtime. The basic rate
is then given by

k = α T300
β e−γ/T , (97)

where T300 = T/300 K with T the gas temperature. For catalytic reactions which involve a
representative metal also the number density nM of the metal enters:

k = nM α T300
β e−γ/T . (98)

An input file could look like this:

5001 H H H2 H2 H2 9.00E-33 -0.6 0.0 - AK

5002 H H H H2 H 4.43e-28 -4.0 0.0 DBDDG72

4069 H2 H2 H2 H H 1.00e-08 0.00 84100.0L 28034

4071 H2 OH O H2 H 6.00e-09 0.00 50900.0L 16964

66 C OH O CH 2.25e-11 0.50 14800.0L 4934

67 C OH CO H 1.81e-11 0.50 0.0 - W80

3707 C O CO PHOTON 1.58e-17 0.34 1297.4C BDD90

7001 C O H CO H 2.14e-29 -3.08 -2114.0D DBDDG76

4076 CO M O C M 2.79e-03 -3.52 128700.0D CBDDG76

Refer to [Wedemeyer-Böhm et al. (2005)] for more details.

5.8 HION Input

Several input files are required for the time-dependent treatment of hydrogen ionization. Cur-
rently, they need to be stored in the same input directory as specified with the parameter
hion_datapath. There are four input files:

• model atom: The following formatting rules apply. Currently we only provide a hydrogen
atom file H_6-2.atom. The module might be extended for other species in a future version.

• electron density look-up table (edens.dat) as function of total number density of hydrogen
in cm−3 or m−3, gas temperature in K, and ionization degree of hydrogen.

• chemical abundances (abundance.input)

• partition functions (pf_kurucz.dat)

The first two files are always needed, whereas the files containing chemical abundances and
partition functions are required the initial LTE electron densities for very first time step of a model
sequence (and for creating electron density tables). Once the first time step has been calculated
the last two input files are obsolete. We plan to implement another initial guess for the LTE
densities so that only the model atom and the electron density look-up table are necessary.

Refer to [Leenaarts & Wedemeyer-Böhm (2005)] for more details.
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5.9 HION Output

The HION module can produce two types of output. The first is the standard output of the quc ar-
rays in the .full and .end files, holding the level populations. This is all that is needed to restart
a computation. The second (optional) output is a HION specific output system that generates
files in UIO format after a prescribed number of simulation timesteps or alternatively after a pre-
scribed time interval (see parameter dtime_out_hion). Output after a fixed number of timesteps
is mainly useful for debugging. The files are named HION.aaaa.bb.cccc.out with aaaa either
’step’ or ’time’, indicating output after a fixed number of timesteps or a fixed amount of solar
time, bb the atom identifier and cccc the number of the output file, e.g. HION.step.H.0001.out.
The HION files can be read with the IDL uio_dataset_rd (’filename’) function. The result-
ing data structure contains mass density, gas temperature, electron density of the atmosphere, as
well as the axes in the atmos substructure. The atom substructure contains the time-dependent
populations ntd, the LTE populations nstar, the total population ntot, a number of atomic pa-
rameters and l_ntr and c_ntr, arrays of the z-index per column where the radiation temperature
in a transition starts to deviate from the gas temperature.

Refer to [Leenaarts & Wedemeyer-Böhm (2005)] for more details.
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6 Running a Simulation

6.1 Quickstart: How to Run CO5BOLD

The generation of a start file and the modification of the parameter file is a somewhat complex
process. In short, the following steps have to be performed.

1. Produce an executable rhd.exe (see Sect. 3.1) and put it into your working directory.

2. Choose a start model (e.g. the final model of an earlier simulation or a model produced
with an IDL routine).

3. Edit the parameter file rhd.par: typically, you will start with an existing file and edit it.
You should check that the paths and names of EOS, opacity, and start file are set correctly
(Watch the username!). For details about the parameter file see Sect. 5.4.1.

4. Start the simulation with
nice nohup rhd.exe > rhd.out &

5. You can see how the simulation proceeds with
tail -f rhd.out

6. The other data files usually are in a binary format (this can be changed to ASCII “for-
matted” in rhd.par). Their contents can be read and analyzed with IDL routines (see
Sect. 4.7.3).

For machines with batch queue there is a script, which can handle an entire sequence of
simulations (see Sect. 6.2).
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6.2 Running CO5BOLD on a Machine with Batch System

For longer simulations it is inconvenient to restart the individual jobs by hand. This task is done
by a script originally from Hans-Günter Ludwig. Its basic function is sketched in Fig. 6.

Figure 6: Program scheme

Here comes an example of the script (rhd1.job) for a system without dedicated batch system.
The submission of a job is done via nohup rhd1.job &:

#!/bin/sh

#--- PBS -N rhd1

#--- PBS -l walltime=72:00:00

#--- PBS -l nodes=1:ppn=4

#

# --- Job file for the execution of RHD on gunnar (Itanium 2, Uppsala) ---

# --- Source: rhd1.job, original from HGL ---

# --- Last modification: 2002-12-13 ---
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#

#set -xv

#

BASEDIR=/users/bf/dat/job/j1

STADIR=${BASEDIR}/sta # Start directory: contains *.par, rhd1.cmd, rhd1.job

WRKDIR=${BASEDIR}/wrk # Work directory

BAKDIR=${BASEDIR}/bak # Backup and output directory

RHDEXE=$STADIR/rhd.exe # RHD program to be executed

#

#export NCPUS=4

#echo $NCPUS

export OMP_NUM_THREADS=1

#

# --- Jump into work directory ---

cd $WRKDIR

#

# --- Loop: execute RHD code (possibly) several times in one job --------------

for IRUN in 1

do

echo

echo ’CO5BOLD Run #’ $IRUN

date

#

# --- Clear up work directory ---

#set +e

rm *

#set -e

#

##############################################################################

#

# --- Get old command file, select actual command line ---

# --- and read variables from command line ---

#

cp -p $STADIR/rhd1.cmd rhd1.cmd

#

awk \

’ /#/ { print; next}

/\*/ { print; next}

/\+/ { print; next}

DONE!="T" { print >"cmdline"; printf "%-77s*\n", $0; DONE="T"; next}

{ print} ’ rhd1.cmd | cat > dummy_nrhd.cmd

#

read INFILE OUTFILE PARFILE ACT < cmdline

mv dummy_nrhd.cmd ${OUTFILE}_nrhd.cmd

echo ${INFILE}

echo ${OUTFILE}

echo ${PARFILE}

echo ${ACT}

#

##############################################################################

#

if [ "${ACT}" != dum ]

then

############################################################################

#

# --- RHD execution ---

#

# --- Copy parameter file ---

cp -p ${STADIR}/${PARFILE} rhd.par

#

# --- Copy start file ---

if test -s ${BAKDIR}/${INFILE}

then

cp -p ${BAKDIR}/${INFILE} rhd.sta

else

cp -p ${STADIR}/${INFILE} rhd.sta

cp -p rhd.sta ${BAKDIR}/${INFILE}
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fi

# --- Copy executable ---

cp -p ${RHDEXE} rhd.exe

#

# --- Execute RHD ---

./rhd.exe > rhd.out

RHD_EXIT=$?

#

if [ "$RHD_EXIT" != 0 ] || [ ! -s rhd.done ]

then

# --- Exit status not zero, ---

# --- error may have occurred during execution of rhd.exe ---

if [ "$RHD_EXIT" != 0 ]

then

echo ’Non-zero exit status ’ $RHD_EXIT ’ occurred during execution of RHD!’

else

echo ’No rhd.done file found: assume error during execution of RHD!’

fi

echo ’Execution of job chain terminated!’

# --- Modify nrhd.cmd, set termination character "+" ---

awk \

’ /#/ { print; next}

/\*/ { print; next}

/\+/ { print; next}

DONE!="T" { printf "%-77s+\n", $0; DONE="T"; next}

{ print} ’ rhd1.cmd | cat > nrhd.cmd

# --- Terminate chain by simulating ${ACT} = eoc ... ---

ACT=eoc

else

# --- Modify command file: add ’*’ in appropriate column to indicate ---

# --- proper execution ---

awk \

’ /#/ { print; next}

/\*/ { print; next}

/\+/ { print; next}

DONE!="T" { print >"cmdline"; printf "%-77s*\n", $0; DONE="T"; next}

{ print} ’ rhd1.cmd | cat > nrhd.cmd

fi

#

ls -l

#

# --- Move data into backup directory ---

cp -p rhd.par ${BAKDIR}/${PARFILE}

mv rhd.out ${BAKDIR}/${OUTFILE}.out

mv rhd.par ${BAKDIR}/${OUTFILE}.par

#mv rhd.sta ${BAKDIR}/${OUTFILE}.sta

mv rhd.end ${BAKDIR}/${OUTFILE}.end

mv rhd.full ${BAKDIR}/${OUTFILE}.full

mv rhd.mean ${BAKDIR}/${OUTFILE}.mean

mv rhd.chu1 ${BAKDIR}/${OUTFILE}.chu1

chmod go+r ${BAKDIR}/${PARFILE} ${BAKDIR}/${OUTFILE}.*

chmod go-w ${BAKDIR}/${PARFILE} ${BAKDIR}/${OUTFILE}.*

#

############################################################################

fi

#

#

##############################################################################

#

# --- Dispose modified command file for next job ---

cp -p nrhd.cmd $STADIR/rhd1.cmd

#

# --- Exit loop if end of chain reached ---

if test ${ACT} = eoc

then

break

fi
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#

# --- End of loop ------------------------------------------------------------

done

#

# --- Submit next job if not end of chain reached---

if test ${ACT} != eoc

then

cd $STADIR

echo "Resubmit job"

# /usr/local/bin/qsub rhd1.job

# qsub rhd1.job

# nice nohup rhd1.job &

nohup rhd1.job &

else

echo "End of job chain"

fi

#

################################################################################

A more detailed description of the script will come sometime in the future (e.g. from Sven’s
manual. . . ).
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7 Data Analysis with IDL

In this section some basic commands for handling CO5BOLD data in IDL are described. See also
Sect. 4.7

7.1 Preparations

Make the UIO IDL routines visible to IDL – somehow. There are several ways to do that. Three
are described below:

We recommend to create an initialization file (e.g. named start.pro ) which should be called
after starting IDL (e.g. @start ). This is necessary to define relevant paths of IDL subroutines
and to provide the UIO package. Thus, the file should contain the following:

; --- Add user IDL directory to search path ---

addpath=expand_path(’+$UIOPATH/idl’)

addpath=addpath + ’:’ + expand_path(’+$HOME/HYDRO/IDL/rhdpro’)

if strtrim(addpath,2) ne ’’ then !path=addpath+’:’+!path

delvar, addpath

; --- Initialize uio-routines ---

uio_init, progrm=’by hand’

Note: Before using IDL the environment variables for the CO5BOLD paths should have been
set. Use setarcdeppaths.sh (or .ksh, .csh) for this purpose. Important is ${UIOPATH} which
specifies where to find the IDL routines for the UIO handling in the script above.

Alternatively, one might set the IDL path variable accordingly like

export IDL_PATH="+$UIOPATH/idl"

for example in the .bashrc file before starting IDL.

Or, you just make a symbolic link from the UIO IDL routines at their original location to a
sub-directory of the main IDL directory, which should be in the IDL path anyway.

The initial (single) call of uio_init is necessary in any case.

7.2 CO5BOLD Data in IDL

Important to know is that all operations can be performed in the command line of IDL. This
allows an interactive processing of CO5BOLD data. Moreover, there are already prepared IDL
scripts for this purpose but most of them are rather complex and still have to be edited (e.g.
changing file names – Huuhh!). For the beginning it is more clear to use single commands. We
give a short overview of some essential commands.

7.2.1 Loading the Parameter File

IDL> parfile=’mymodel.par’

IDL> par=uio_struct_rd(parfile)

All control parameters are provided in the structure PAR.

7.2.2 Loading CO5BOLD Data (.full, .sta, .end)

IDL> modelfile=’/home/user/mymodel.full’ & n=0

IDL> ful=uio_dataset_rd(modelfile,n=n)

First the name and full path (if not in the actual directory) of the model file and the wanted
time step should be defined. Here, time step means the consecutive number of the model snapshot
in the file. Declaring a time step number greater than the number of snapshots contained in the
file will cause an error.
Otherwise all data of the particular time step n will be provided in the structure FUL.
Loading more than one timestep from the same file could be achieved as follows:
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IDL> uio_openrd, nc, modelfile, outstr, ierr

IDL> for i=0,ntime-1 do begin &$

IDL> ful=uio_dataset_rd(modelfile, channel=nc,ierr=ierr, outstr=err_msg) &$

IDL> endfor &$

IDL> uio_closrd, nc

Again, this operation would cause an error if the wanted time step is not contained in the
file. Via checking the error flag ierr of the routine uio_dataset_rd such errors can be avoided.
This way it is unnecessary to know exactly of how many time steps the model file consists.

IDL> uio_openrd, nc, modelfile, outstr, ierr

IDL> i=0

IDL> repeat begin &$

IDL> ful=uio_dataset_rd(modelfile, channel=nc, ierr=ierr) &$

IDL> if (ierr eq 0) then begin &$

IDL> ;--- Do the data processing here ---

IDL> i=i+1 &$

IDL> endif else begin &$

IDL> print,’IDL> Reached EOF.’ &$

IDL> endelse &$

IDL> endrep until (ierr ne 0) or (EOF(nc))

IDL> uio_closrd, nc

To read a number of entries from a list of files in sequence the routine
uio_datasetlist_rd.pro (see Sect. 4.7.3) is appropriate.

7.2.3 Loading the Equation of State

IDL> eosfile=’../eos/dat/’+par.eosfile

IDL> tabinter_rdcoeff,eosfile, eos

The table for the equation of state is provided in the structure EOS.
NOTE: Always check file name and path!

7.2.4 Loading the Opacity Table

IDL> opafile=’../opa/dat/’ + par.opafile

IDL> dfopta, opafile

The opacity table will be stored as common block OPTA_COMMON. NOTE: Always check file
name and path!

7.2.5 Computation of Deduced Quantities

After having read the model data FUL and the tables for the equation of state (EOS) and opacity
(OPTA_COMMON) (see Sects. 7.2.3, 7.2.4), more quantities can be calculated:

IDL> eosbox, ful, eos=eos , /opa ,ierror=ierror

This operation adds the tags EOS and OPA to the data structure FUL, which contain more
quantities like e.g. the temperature (see Sect. 7.3).

Based on the thermodynamic quantities now present in the FUL structure, further quantities
can be computed with combox.pro, as for instance in

IDL> cs=combox(’cs’,ful)
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7.3 IDL Data Structure

The data structure FUL contains the following variables and substructures. Use help,/str,ful,
to get this information. See also the short description of the contents of a model file in Sect. 5.1
and particularly the man-page of the script uiolook in Sect. 4.6.2 which gives you even more
detailed information directly from the file:

** Structure <8287a0c>, 9 tags, length=78404128, refs=1:

TYPE STRING ’uio’

HEAD STRUCT -> <Anonymous> Array[1]

DATASET_ID STRING ’single_box’

MODELTIME FLOAT 10050.1

MODELITIME LONG 64088

DTIME FLOAT 0.176381

TIME_OUT_FULL_LAST FLOAT 10050.1

TIME_OUT_MEAN_LAST FLOAT 10040.0

Z STRUCT -> <Anonymous> Array[1]

If the command in Sect.7.2.5 has been performed, the following substructures are present:

EOS STRUCT -> <Anonymous> Array[1]

OPA STRUCT -> <Anonymous> Array[1]

The substructure FUL.Z contains the original data arrays from the model file like the spatial
axes, density rho, internal energy ei, and the three spatial components of the velocity (v1, v2,
v3):

** Structure <8274184>, 16 tags, length=78403900, refs=2:

TYPE STRING ’uio’

BOX_ID STRING ’z’

DIMENSION LONG Array[2, 3]

TIME FLOAT 10050.1

ITIME LONG 64088

XC1 FLOAT Array[140, 1 , 1 ]

XC2 FLOAT Array[1 , 140, 1 ]

XC3 FLOAT Array[1 , 1 , 200]

XB1 FLOAT Array[141, 1 , 1 ]

XB2 FLOAT Array[1 , 141, 1 ]

XB3 FLOAT Array[1 , 1 , 201]

RHO FLOAT Array[140, 140, 200]

EI FLOAT Array[140, 140, 200]

V1 FLOAT Array[140, 140, 200]

V2 FLOAT Array[140, 140, 200]

V3 FLOAT Array[140, 140, 200]

Spatial axes: XC1, XC2, XC3, XB1, XB2, XB3:
The indices stand for 1:x, 2:y, 3:z (or h) C for the grid cell centre, B for the boundaries. Most

of the quantities are defined for the cell centres. In case of doubt, this can be found out by
checking the array dimensions.

The substructure FUL.Z can contain additional arrays in case of dust formation, chemical
reaction networks or time-dependent hydrogen ionization:

QUC001 FLOAT Array[140, 140, 200]

QUC002 FLOAT Array[140, 140, 200]

QUC003 FLOAT Array[140, 140, 200]

QUC004 FLOAT Array[140, 140, 200]

The magnetic field components are also stored in this substructure:

BB1 FLOAT Array[141, 140, 200]

BB2 FLOAT Array[140, 141, 200]

BB3 FLOAT Array[140, 140, 201]
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The magnetic field is defined on the cell boundaries in the direction of the spatial components,
e.g. BB1 in direction 1, and in the cell-centres for the other directions. The resulting array
dimensions differ from the cell-centred quanties like, e.g., rho. The array values must be multiplied
with a factor

√
4π in order to obtain the field strength in Gauss.

The substructure FUL.EOS (which is present only after a call of, e.g., eosbox.pro) contains
important quantities like the temperature T, gas pressure P, entropy S:

** Structure <826a03c>, 6 tags, length=109760000, refs=2:

P FLOAT Array[140, 140, 200]

DPDRHO FLOAT Array[140, 140, 200]

DPDEI FLOAT Array[140, 140, 200]

T FLOAT Array[140, 140, 200]

DTDEI FLOAT Array[140, 140, 200]

S FLOAT Array[140, 140, 200]

The substructure FUL.OPA only contains the opacity KAPPA:

** Structure <826a5b4>, 1 tags, length=15680000, refs=2:

KAPPA FLOAT Array[140, 140, 200]

7.4 More IDL routines

In the directory IDL/bflib/ a lot of useful routines can be found which can be used for further
processing and visualisation of CO5BOLD data. For the visualisation of 2-D models or 2-D data
slices in general we recommend plotfield.pro. With combox.pro further quantities can be
calculated.
Furthermore, we currently develop a widget-based analysis tool called CO5BOLD AT (abbrev.:
CAT) which will help to work with CO5BOLD data without having to write and edit own IDL
code. The routines are stored (if available) in the directory IDL/COBOLDAT and have to be started
with @cat. A more detailed documentation is planned.
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8 Document history

• 2002-02-16: First version on the web

• . . . lots of extensions and changes in between. . .

• 2004-02-23: SGI Origin compiler settings section modified (for CINES machines) 3.7.16,
3.7.17

• 2004-02-23: short example for uio_datasetlist_rd.pro usage: 4.7.3

• 2004-03-02: Intel compiler settings section modified (LD_ASSUME_KERNEL=2.4.19): 3.7.11

• 2004-03-02: SGI Origin compiler settings section modified: 3.7.16

• 2004-03-03: IBM compiler settings section added: 3.7.9

• 2004-03-04: Document history started (pretty late. . . )

• 2004-03-04: Dedicated OpenMP section: 3.7.1

• 2004-03-04: Dedicated inlining section: 3.7.2

• 2004-03-04: Parameter for core drag force: 5.4.4

• 2004-03-04: New EOS table for solar composition: 5.4.5

• 2004-03-04: Trademarks: 10

• 2004-03-04: List of new dust files (the table was split into two): 3.4

• 2004-03-04: Installation of UIO UNIX scripts with configure: 4.6.1

• 2004-05-03: Thermodynamic relations: 2.3

• 2004-05-14: Point-to-point ”tensor” viscosity: 5.4.8

• 2004-07-26: New gravitational potential mimicking a travelling tidal wave: 5.4.3

• 2004-08-18: New control files rhd.dump and rhd.snap to request a snapshot of current
model: 5.5

• 2005-03-08: New control parameter dtime_out_end: 5.4.16

• 2006-07-28: Preparation for major code release (beta version) with the new modules CHEM
(5.7), and HION(5.8), including new parameters (5.4.9) and switches for the configure script
(3.5)

• 2006-08-14: MHD section: 2.2, MHD parameters: 5.4.7, 5.4.4

• 2007-02-12: Hydro section with new modii and parameters: heat mode: 5.4.4, rotating
coordinate system: 5.4.3, possible hydrodynamics iteration: 5.4.7, new pressure correction
scheme: 3.6 unsplit hydrodynamics operator possible: 5.4.7.

• 2007-10-22: Double precision time as additional scalar in model file: 5.1

• 2007-12-18: Rather stable version and parameter-rearrangements for dust model
dustscheme=dust_k3mon_03: 5.4.11
and dustscheme=dust_bins_01: 5.4.12.

• 2008-03-13: Expansion Courant number C_hydExpCourant, C_hydExpCourantmax: 5.4.15

• 2008-03-17: ”Hydrostatic pressure correction” in waves 3 and ”6” switch-on-and-offable
with C_hydPredfactor: 5.4.7
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• 2008-04-27: Expansion viscosity C_visExpansion: 5.4.8

• 2008-07-03: Linear viscosity C_visLinear: 5.4.8

• 2008-08-13: Parameters N_radrsyslevel, N_radoutput, C_radTcool, C_radDcool,
C_radscool in MSrad: 5.4.13, parameters C_radTinci and C_radDinci to control inci-
dent radiation in MSrad: 5.4.13

• 2008-08-14: Compiling double precision code: 3.7.3

• 2008-08-19: Some parameters (possibly) valid for MHD module: 5.4.7

• 2008-08-28: Rather old parameters for additional I/O control:
integer n_outslicedim_mean: 5.4.16, integer istep_in_start: 5.4.16

• 2009-01-12: README_MHD: 2.2

• 2010-03-17: Performance enhancement for EOS: gasinter_l02: 3.6

• 2010-03-19: Performance enhancement during box handling: rhd_box_arrays01: 3.6

• 2010-04-09: Transmitting upper boundary condition: c_rhochangetop: 5.4.4
Better counters for timing statisctis: timing_c_range: 3.6

• 2010-04-11: Merging of previous introductory text to Sect. 2.2 by BF with README_MHD by
WS. Update of various text passages. Shift of parameter description to Sect. 5.4: 2.2
Removal of remarks relating to the magnetic field in descriptions of parameters side_bound,
top_bound, and bottom_bound: 5.4.4
Description of boundary parameters for the magnetic field: side_bound_mag_x1,
side_bound_mag_x2, top_bound_mag, bottom_bound_mag, b1_inflow, C_magthetaB, and
C_magphiB: 5.4.4
Updates for reconstruction:PP, c_slopered, n_hyditer, n_hydmaxiter: 5.4.7
Updates and introduction of parameters for the MHD-module: c_resb, c_resbconst,
c_resepsilon, beta_inv, va_max, N_magDiffSide, N_magDiffTop, and n_magbiffbottom:
5.4.4
F90_MHD: comment about zero magnetic fields: 3.5
Removal of “(first version)” for MHD entry in table of high-level modules: 3.4
References: Balsara(1999), Janhunen(2000), Stone & Pringle (2001): 10

• 2010-04-14: Some parameters in MHD module were renamed: B_theta, B_phi,
N_side, N_top, N_bottom → C_magthetaB, C_magphiB, N_magDiffSide, N_magDiffTop,
N_magDiffBottom

• 2010-04-29: The files rhd_mac_*module.f90 were removed. The single routine from it was
put into timing_module.F90.

• 2010-05-06: Compiler switch timing_r_type explained: 3.6.
Input/output (UIO) compiler switches explained: 3.6, accompanied by some changes con-
cerning the files uio_mac*_module.[fF]90.

• 2010-06-14: Output of additional chunks described in 5.4.16 and 5.4.16
New versions of bottom boundary conditions, better suited for HLLMHD solver: 5.4.4
The HLLMHD solver can do different time-integration schemes: 5.4.7
In the HLLMHD step the CheckFlux step can be (des)activated: 5.4.7
MHD module allows unsplit update: 5.4.7.

• 2011-02-10: New parameters for MHD module: 5.4.7

• 2011-03-28: New option ’vertical2’ for magnetic boundary conditions: 5.4.4
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• 2011-07-04: MHD equations: 2.2
New parameters r0_core, centrifugal_force: 5.4.3
Heating modes for core heating: 5.4.4

• 2011-12-09: New parameter r2_grav: 5.4.3 New option for old parameter c_radhtautop:
5.4.4

• 2012-01-10: A few new references including links: 10
Removal of old uio_mac_modules, mention of rhd_rec_module.f90: 3.4
New reconstruction methods: PPmimo, FRmimo, FRmono, FRweno, FRcont: 5.4.7
New parameters:
r2_grav, r0_core: 5.4.3
ar_RotationAxis, centrifugal_force: 5.4.3
hdTransVeloMode: 5.4.7

• 2012-01-11: Parameter real C_visDrag is obsolete: 5.4.17
Compiler switches rhd_roe1d_slope_l01, IDF, rhd_hyd_roe1d_l01 are obsolete: 5.4.17
Updates for c_slopered: 5.4.7
New options for parameters:
hdsplit=CTU: 5.4.7
for HD Roe solver: hdtimeintegrationscheme=Single,RungeKutta2,RungeKutta3 5.4.7
New parameters:
C_hydTdiffLin, C_hydTdiffMach: 5.4.7
C_RecContShift, C_RecContSteep: 5.4.7
dustReconstruction: 5.4.9

• 2012-01-12: New parameters:
C_hydSoundCourant, C_hydSoundCourantmax: 5.4.15
C_v3ChangeLinBottom, C_v3ChangeSqrBottom: 5.4.4

• 2012-02-16: New parameter: C_TminLimit: 5.4.13

• 2012-04-06: Added some lines in the Intel compiler section: 3.7.11

• 2012-09-04: New options for hdTransVeloMode: 5.4.7
New parameters:
C_hydLowMachcsFactor: 5.4.7
hdEntropyWaveMode: 5.4.7
hdEnthalpyAvgMode: 5.4.7
C_hydsDiffVelo, C_hydvDiffVelo: 5.4.7
C_visP2PhypSmagorinsky, C_visP2PhypArtificial, C_visP2PhypExpansion,
C_visP2Phypdivrhov: 5.4.8

• 2012-11-07: New options for:
hdEntropyWaveMode: 5.4.7
hdEnthalpyAvgMode: 5.4.7
character reconstruction: 5.4.7
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9 Glossary

• CAT: ’CO5BOLD Analysis Tool’

• CO5BOLD or COBOLD is the short form of “COnservative COde for the COmputation
of COmpressible COnvection in a BOx of L Dimensions with l=2,3”.

• EOS: “Equation Of State”

• HION: “Hydrogen IONization”

• MHD: “Magneto-HydroDynamics”

• RHD: “Radiation HydroDynamics”

• UIO: the “Universal Input Output” format. It is used in CO5BOLD for parameter, model,
mean, and EOS files.

10 Trademarks

• AMD is a trademark of Advanced Micro Devices, Inc.

• Compaq is a US trademark of Compaq and/or Hewlett-Packard Company.

• Cray is a trademark of Cray Research.
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• IBM is a US trademark of International Business Machines.

• IDL is a registered trademark of Research Systems, Inc.

• Intel, Itanium, and Pentium are US trademarks of Intel Corporation.

• Linux is a trademark of Linus Torvalds.

• NEC is a registered trademark of Nippon Electric Company.
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687

[Schaffenberger et al. (2005)] Schaffenberger, W., Wedemeyer-Böhm, S., Steiner, O., & Freytag,
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on Linux Intel, 45
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character hion_edensfile, 105

character hion_pffile, 105

character history, 75

character infile_start, 123

character opafile, 86

character opapath, 86

character outconv_end, 124

character outconv_fine, 127

character outconv_full, 124

character outconv_mean, 125

character outfile_chu1, 124

character outfile_end, 123

character outfile_fine, 127

character outfile_full, 123

character outfile_mean, 124

character outform_end, 124

character outform_fine, 127

character outform_full, 124

character outform_mean, 125

character radpressure, 126

character radraybase, 111

character radraystar, 112

character radscheme, 110

character reconstruction, 89

character side_bound, 78

character side_bound_mag_x1, 83

character side_bound_mag_x2, 83

character top_bound, 79

character top_bound_mag, 84

chemical reaction network, 103

dust, 103

effective temperature, 76, 81

equation of state, 85

fileform uio, 75

gravity, 76

header, 75

hydrodynamics, 87

hydrogen ionization, 103

input/output, 121

integer dtimestep_out_fine, 127

integer endtimestep, 117

integer hion_chunks, 106

integer istep_in_start, 123

integer n_outslicedim_mean, 122

integer n_dustgrainradius, 106, 108

integer n_hydcellsperchunk, 41, 96

integer n_hyditer, 96

integer n_hydmaxiter, 96

integer n_magdiffbottom, 100

integer n_magdiffside, 99

integer n_magdifftop, 99
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integer n_orderconstrainedtransport,
97

integer n_radband, 113

integer n_raditer, 111

integer n_radmaxiter, 111

integer n_radminiter, 111

integer n_radoutput, 114

integer n_radphi, 112

integer n_radrsyslevel, 113

integer n_radsubray, 113

integer n_radtaurefine, 113

integer n_radtheta, 112

integer n_radthickpoint, 113

integer n_rescellsperchunk, 97

integer n_viscellsperchunk, 102

integer outfile_chu1, 123

integer plustimestep, 117

integer starttimestep, 116

luminosity, 81

MHD, 87

molecules, 103

opacities, 86

process management, 116

radiation transport, 109

reading in IDL, 66

real abux, 125

real abuy, 125

real ar_dustgrainradius, 107, 108

real ar_RotationAxis, 78

real b1_inflow, 84

real beta_inv, 99

real c_magthetab, 85

real c_radkappasmooth, 126

real c_visp2phypartificial, 102

real c_visp2phypdivrhov, 103

real c_visp2phypexpansion, 103

real c_visp2phypsmagorinsky, 102

real c_coredrag, 83

real c_courant, 119

real c_courantmax, 119

real c_dust01, 106–108

real c_dust02, 106–108

real c_dust03, 106–108

real c_dust04, 106, 107, 109

real c_dust05, 107

real c_dust06, 108, 109

real c_dust07, 109

real c_dust08, 109

real c_dust09, 109

real c_dust0X, 104

real chem_abumetal, 105

real c_hptopfactor, 82

real c_hydexpcourant, 120

real c_hydexpcourantmax, 120

real c_hydlowmachcsfactor, 87

real c_hydpredfactor, 94

real c_hydsdiffvelo, 94

real c_hydsoundcourant, 119

real c_hydsoundcourantmax, 119

real c_hydtdifflin, 95

real c_hydtdiffmach, 96

real c_hydvdiffvelo, 95

real c_magphib, 85

real c_maxeichange, 120

real c_pchange, 81

real cputime, 117

real cputime_remainlimit, 117

real c_radcourant, 120

real c_radcourantmax, 120

real c_raddcool, 114

real c_raddinci, 114

real c_radhtautop, 82

real c_radimplicitmu, 115

real c_raditereps, 115

real c_raditerstep, 115

real c_radmaxeichange, 121

real c_radscool, 114

real c_radtcool, 114

real c_radthintimefac, 121

real c_radtinci, 114

real c_radtintminfac, 127

real c_radtsmooth, 126

real c_radtvis, 116

real c_radtvisdtau, 115

real c_reccontshift, 91

real c_reccontsteep, 91

real c_resB, 98

real c_resBconst, 98

real c_rescourant, 98

real c_rescourantmax, 98

real c_resepsilon, 98

real c_rhochangetop, 82

real c_schange, 81

real c_slopered, 90

real c_tchange, 82

real c_tminlimit, 116

real c_tsurf, 82

real c_v3changelinbottom, 81

real c_v3changesqrbottom, 81

real c_visartificial, 100

real c_visbound, 97

real c_viscourant, 121

real c_viscourantmax, 121

real c_visdrag, 128

real c_visexpansion, 100

real c_vislinear, 100

real c_visneu1, 126

real c_visneu2, 126
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real c_visp2pcoeff, 102
real c_visp2pincl1, 103
real c_visp2pincl2, 103
real c_visprturb, 101
real c_vissmagorinsky, 100
real c_vistensordiag, 101
real c_vistensordiv, 101
real c_vistensoroff, 101
real dtime_out_hion, 106, 134
real dtime_incmax, 118
real dtime_max, 118
real dtime_min, 118
real dtime_min_stop, 118
real dtime_out_end, 122
real dtime_out_full, 122
real dtime_out_mean, 122
real dtime_start, 118
real endtime, 117
real gamma, 126
real grav, 76
real luminositypervolume, 80
real mass_star, 76
real nu_rotation, 78
real plustime, 117
real qmol, 125
real r0_core, 77
real r0_grav, 76
real r1_grav, 77
real r1_rad, 77
real r2_grav, 77
real rho_min, 83
real s_inflow, 80
real starttime, 116
real teff, 76
real va_max, 99
tensor viscosity, 100
time step, 118

rhd.snap, 129
rhd.stop, 129
Roe solver, 39, 41, 44
rotation, 78

SGI, 48, 147
short characteristics, 44
SHORTrad, 6, 24, 109, 110
single precision, 38
Sparc, 147
Sun, 49, 147

tensor viscosity, 100
tensor viscosity routine, 24
thermodynamic relations, 11

adiabatic gradient, 12, 13
enthalpy, 11
entropy, 13

internal energy, 11, 13
polytropic gas, 16
sound speed, 13, 16
specific heats, 11, 14

time step, 111
timing statistics, 27, 132
total energy flux, 73

UIO, 52–67
conversion type, 53
example, 52, 54, 55
format, 53
Fortran, 58
IDL, 63
makefile, 59
record length unit, 39
uiocat, 38, 62
uio_datasetlist_rd.pro, 66
uio_dataset_rd.pro, 66
uio_dataset_rd.pro, 66
uioinfo, 63
uio_init.pro, 65
uiolook, 62
uio_mac_module, 58
uio_struct_rd.pro, 66
UNIX scripts, 61

UKAFF, 48
unformatted, 53
UNIX, 147

viscosity
point-to-point, 102
tensor, 24, 32, 100

xb1, 69
xb2, 69
xb3, 69
xc1, 69
xc2, 69
xc3, 69
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