next up previous contents index

1.1.1 The Euler equations in differential form (vectors)

The Euler equations in differential conservation form in vector notation are

\begin{displaymath}
{ \renewedcommand{arraystretch}{2.0}
\begin{array}{cclcc}
...
...dmath$\scriptscriptstyle v$}}} \right) &
= &
0
\end{array}}
\end{displaymath} (1)
They describe the inviscid flow of density \bgroup\color{HIGH2color}$\rho$\egroup, momentum \bgroup\color{HIGH2color}$\rho\ensuremath{\mathchoice{\mbox{\boldmath$\displayst...
...ox{\boldmath$\scriptstyle v$}}
{\mbox{\boldmath$\scriptscriptstyle v$}}}$\egroup, and total energy \bgroup\color{HIGH2color}$\rho e_{\rm ik}$\egroup, with
\bgroup\color{DEFcolor}$\ensuremath{\mathchoice{\mbox{\boldmath$\displaystyle v$...
...ox{\boldmath$\scriptstyle v$}}
{\mbox{\boldmath$\scriptscriptstyle v$}}}$\egroup velocity vector
\bgroup\color{DEFcolor}$e_{\rm ik}$\egroup total (internal + kinetic) energy per mass unit
\bgroup\color{DEFcolor}$P$\egroup pressure
\bgroup\color{DEFcolor}$\bar{\bar{\ensuremath{\mathsf{I}}}}$\egroup unity tensor  .