next up previous contents index

1.1.3 The solution of the Euler equations

The task is now: Find a solution for Eq. (2) for given initial conditions

\begin{displaymath}
\left( \rho, \rho\ensuremath{\mathchoice{\mbox{\boldmath$\d...
...ox{\boldmath$\scriptscriptstyle x$}}}, t_0 \right)
\enspace ,
\end{displaymath} (3)
boundary conditions
\begin{displaymath}
\left( \rho, \rho\ensuremath{\mathchoice{\mbox{\boldmath$\d...
...ptscriptstyle x$}}}_\mathrm{boundaries}, t \right)
\enspace ,
\end{displaymath} (4)
and material function (equation of state)
\begin{displaymath}
P= P\left( \rho, e_{\rm i}\right)
\end{displaymath} (5)
with
\begin{displaymath}
\textstyle
e_{\rm i}= e_{\rm ik}- \frac{1}{2} \ensuremath{...
...yle v$}}
{\mbox{\boldmath$\scriptscriptstyle v$}}}
\enspace .
\end{displaymath} (6)